Academic literature on the topic 'HEISENBERG MODEL; SPIN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'HEISENBERG MODEL; SPIN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "HEISENBERG MODEL; SPIN"
FARACH, H. A., R. J. CRESWICK, and C. P. POOLE. "THE RESTRICTED SPIN MODEL." Modern Physics Letters B 04, no. 16 (September 10, 1990): 1029–41. http://dx.doi.org/10.1142/s0217984990001306.
Full textSZETO, K. Y. "HIGH TEMPERATURE SERIES ANALYSIS OF SUSCEPTIBILITY DATA OF La2CuO4." Modern Physics Letters B 04, no. 04 (February 20, 1990): 283–87. http://dx.doi.org/10.1142/s0217984990000350.
Full textAfremov, Leonid L., and Aleksandr A. Petrov. "“Average Spin” Approximation in the Heisenberg Model." Applied Mechanics and Materials 752-753 (April 2015): 243–46. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.243.
Full textITO, NOBUYASU, and MASUO SUZUKI. "COHERENT-ANOMALY METHOD FOR QUANTUM SPIN SYSTEMS." International Journal of Modern Physics B 02, no. 01 (February 1988): 1–11. http://dx.doi.org/10.1142/s0217979288000020.
Full textFelcy, A. Ludvin, and M. M. Latha. "A spin rotator model for Heisenberg helimagnet." Physica A: Statistical Mechanics and its Applications 491 (February 2018): 1–12. http://dx.doi.org/10.1016/j.physa.2017.08.059.
Full textANGELUCCI, ANTIMO. "ORDER PARAMETERS OF FRUSTRATED SPIN SYSTEMS." International Journal of Modern Physics B 05, no. 04 (February 20, 1991): 659–74. http://dx.doi.org/10.1142/s0217979291000365.
Full textYANG, J., W. P. SU, and C. S. TING. "MODIFIED SCHWINGER BOSON THEORY OF QUANTUM HEISENBERG MODEL." Modern Physics Letters B 05, no. 24n25 (October 1991): 1695–701. http://dx.doi.org/10.1142/s0217984991002045.
Full textNg, K. K. "Bilayered Spin-S Heisenberg Model in Fractional Dimensions." International Journal of Modern Physics B 12, no. 18 (July 20, 1998): 1809–12. http://dx.doi.org/10.1142/s0217979298001034.
Full textBELINICHER, V. I., and L. V. POPOVICH. "QUARTET STATE OF THE TWO-DIMENSIONAL HEISENBERG MODEL WITH THE SPIN-½ ON A SQUARE LATTICE." International Journal of Modern Physics B 08, no. 16 (July 20, 1994): 2203–19. http://dx.doi.org/10.1142/s0217979294000890.
Full textPrata, G. N., P. H. Penteado, F. C. Souza, and Valter L. Líbero. "Spin-density functional for exchange anisotropic Heisenberg model." Physica B: Condensed Matter 404, no. 19 (October 2009): 3151–54. http://dx.doi.org/10.1016/j.physb.2009.07.066.
Full textDissertations / Theses on the topic "HEISENBERG MODEL; SPIN"
Lozano, Dairon Andrés Jiménez. "Modelo de Heisenberg Antiferromagnético de spin-1/2 na rede triangular com interações competitivas." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21092016-212043/.
Full textIn this thesis we study spin systems in low-dimensional lattices at zero temperature, analyzing their quantum phase transitions. More precisely, we study the properties of the ground state and the possible phase transitions in the antiferromagnetic spin-1/2 quan- tum Heisenberg model with interaction between the first and second neighbors, in several lattices, and in particular in the triangular lattice, which is the focus of our study. To obtain the approximate ground state, we use a variational method in which the lattice is partitioned into a set of plates of sites. The ground state is written as a tensor product of the states of plates. For the triangular lattice, we choose a triangle as a plate. Four phases were found: the antiferromagnetic Néel phase, the collinear, the modified Néel phase and that we call resonating valence bond. We obtained the energy and the magnetization as a function of the ratio of the interactions between the first and second neighbor sites. Between the Néel and collinear phases, we can observe the spin resonating valence bond phase, characterized as a singlet with respect to the spin of each plate.
Fong, Manson Cheuk-Man. "Heisenberg model with spin anisotropy on the Kagomé lattice /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202008%20ZFONG.
Full textRowan, David Glenn. "Theoretical studies of disordered short-range spin models." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299226.
Full textSzàllàs, Attila. "Heisenberg antiferromagnetic model on 2D quasiperiodic tilings." Paris 11, 2008. http://www.theses.fr/2008PA112174.
Full textThe Penrose tiling is a perfectly ordered two dimensional structure with fivefold symmetry and scale invariance. We considered a Heisenberg antiferromagnet on the Penrose rhombus tiling, and showed it has an inhomogeneous Neel-ordered ground state. Spin wave energies and wavefunctions were studied in the linear spin wave approximation. Spatial properties of eigenmodes were characterized in several different ways. At low energies, eigenstates were found to be relatively extended, and appeared to show multifractal scaling. At higher energies, states were found to be more localized, and, depending on the energy, confined to sites of a specified coordination number. The ground state energy of this antiferromagnet, and local staggered magnetizations were calculated. Perpendicular space projections were shown, showing the underlying simplicity of this “complex" ground state. A simple analytical model, the two-tier Heisenberg star, was presented to explain the staggered magnetization distribution in this antiferromagnetic system. The effects of a novel type of disorder in a two dimensional quantum antiferromagnet is considered. The original bipartite structure is geometrically disordered in such a way that no frustration is introduced, and the system retains a Neel ordered ground state. We show, using a linear spin wave expansion and QMC, that the staggered moment decreases exponentially as a function of increasing disorder. The spatial distribution of staggered magnetizations becomes more homogeneous compared to the deterministic tiling, the effective spin wave velocity increases with disorder, and singularities in the magnon spectrum and wavefunctions are partly smoothed
Oliveira, Ravenna Rodrigues. "Modelo de Heisenberg para cadeia de spins." reponame:Repositório Institucional da UFC, 2016. http://www.repositorio.ufc.br/handle/riufc/19729.
Full textSubmitted by Giordana Silva (giordana.nascimento@gmail.com) on 2016-09-26T18:55:18Z No. of bitstreams: 1 2016_dis_rroliveira.pdf: 2847981 bytes, checksum: edaf4ac09f696a3c00730658e00f0e9c (MD5)
Approved for entry into archive by Giordana Silva (giordana.nascimento@gmail.com) on 2016-09-26T18:55:56Z (GMT) No. of bitstreams: 1 2016_dis_rroliveira.pdf: 2847981 bytes, checksum: edaf4ac09f696a3c00730658e00f0e9c (MD5)
Made available in DSpace on 2016-09-26T18:55:56Z (GMT). No. of bitstreams: 1 2016_dis_rroliveira.pdf: 2847981 bytes, checksum: edaf4ac09f696a3c00730658e00f0e9c (MD5) Previous issue date: 2016-08-04
Everyday new technological inventions arrives in the world, improving the life of the society as one. For new devices to have improvements, science needs to be improved too. Within science, a subject that stands out is the magnetism properties of the materials, like ferromagnetic materials. Due to the studies about the magnetism properties of the materials become possible the criation of computer hard drive. In this dissertation, we use the Heisenberg model to better understand the spin waves, which commonly appear in magnetic materials. This model considers the exchange interation of spins, together with the Zeeman effect. In this dissertation we use the eisenberg model for spin waves applied to some networks. The study for a two layer network where one of them is displaced in relation to the other was done. The behavior for a network displaced to the left and a network equally dislocated to the right is the same. Due to the helical structure of an RNA molecule we study the Heisenberg model in a network around a cylinder. For this network, we found that case where the network is symmetrically displaced is degenerate, which can be broke by changing the network configuration, so there is no symmetry in the system.
Todo dia novas invenções tecnológicas surgem no mundo, melhorando a vida da sociedade como um todo. Para que os novos dispositivos estejam cada vez mais evoluindo, a ciência também precisa estar evoluindo. Dentro da ciência, um assunto que ganha destaque são as propriedades magnéticas dos materiais, tais quais materiais ferromagnéticos. A partir do estudo de materiais magnéticos foi possível a fabricação de dispositivos como o HD de computadores. Nos sistemas ferromagnéticos os spins vizinhos estão acoplados uns aos outros por meio da interação de troca, possuindo modos coletivos chamados de ondas de spin. Para entender as propriedades de ondas de spin utiliza-se o modelo de Heisenberg, que considera o termo de troca, juntamente com o efeito Zeeman. Nesta dissertação utilizamos o modelo de Heisenberg para ondas de spins para algumas redes. O estudo para uma rede de duas camadas onde uma é deslocada em relação à outra foi realizado, observando que o comportamento para uma rede deslocada para a esquerda e uma rede igualmente deslocada para a direita é o mesmo. Motivados pelo formato helicoidal da molécula de RNA, estudamos uma rede ao redor de um cilindro. O caso onde a rede é disposta simetricamente é encontrado degenerescência, que pode ser desfeita alterando a configuração da rede de modo que não haja mais simetria.
Silva, Wanêssa Façanha da. "Ondas de spin em redes decoradas." reponame:Repositório Institucional da UFC, 2014. http://www.repositorio.ufc.br/handle/riufc/13700.
Full textSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2015-10-22T20:40:26Z No. of bitstreams: 1 2014_dis_wfsilva.pdf: 5621741 bytes, checksum: 74eb09424ba24b6a3b1acd4b7df5dee6 (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-10-22T20:40:38Z (GMT) No. of bitstreams: 1 2014_dis_wfsilva.pdf: 5621741 bytes, checksum: 74eb09424ba24b6a3b1acd4b7df5dee6 (MD5)
Made available in DSpace on 2015-10-22T20:40:38Z (GMT). No. of bitstreams: 1 2014_dis_wfsilva.pdf: 5621741 bytes, checksum: 74eb09424ba24b6a3b1acd4b7df5dee6 (MD5) Previous issue date: 2014
Low-dimensional systems have attracted much attention lately due to systems such as graphene and carbon nanotubes. Such systems have great potential for technological applications. In particular the creation of electronic devices due to their specific electronic properties. In this sense , the study of other systems in low dimension becomes urgent. More specifically , the study of magnetic properties of materials at low dimensionality also brings great new features in the behavior of ferromagnetic systems . The behavior of spin waves in such systems may be important to the study of spintronic and the development of new devices and magnetic memories . Thus in this work we aim to study the behavior of ferromagnetic spin waves in two-dimensional systems . For two-dimensional systems we consider here two-dimensional networks decorated . The decorations are introduced to generate networks with more than one basic atom in the unit cell of the system to study the richness of the spectrum of spin waves due to these changes . At first deal with a superimposition of square networks where the displacement of these networks depends on the control parameters alpha and beta . We also use the superposition of a square on a hexagonal network.
Sistema de baixa dimensionalidade têm atraído uma grande atenção ultimamente devido a sistemas como grafeno e nanotubos de carbono. Tais sistemas têm grandes possibilidades de aplicações tecnológicas, em particular na criação de dispositivos eletrônicos, devido às suas propriedades eletrônicas específicas. Nesse sentido, o estudos de outros sistemas em baixa dimensão se torna urgente. Mais especificamente, o estudo de propriedades magnéticas de materiais de materiais em baixa dimensionalidade também trás grandes novidades no comportamento de sistemas ferromagnéticos. O comportamento de ondas de spin em tais sistemas pode ser para o estudo da spintrônica e o desenvolvimento de novos aparelhos e memórias magnéticas. Dessa forma temos como objetivo nesse trabalho estudar o comportamento de ondas de spin em sistemas bidimensionais ferromagnéticos. Por sistemas bidimensionais consideramos aqui redes bidimensionais decoradas. As decorações são introduzidas para gerar redes com mais de um átomo na base da célula unitária da rede para estudarmos a riqueza do espectro das ondas de spin devido a essas modificações. A princípio tratamos com uma superposição de redes quadradas onde o deslocamento dessas redes depende dos parâmetros de controle α e β. Também usamos a superposição de um rede quadrada sobre um hexagonal.
Souza, Fabiano Caetano de. "Método de diagonalização iterativa para o modelo de Heisenberg." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-13092010-103541/.
Full textIn this Thesis we develop a numerical method to diagonalize the Heisenberg model iteratively. In essence, we diagonalize spin chains in steps, each one corresponding to an addition of a spin to a smaller chain. The basis vectors to calculate the Hamiltonian of a N-spin chain, HN, is built by means of the direct product of the eigenvectors of the (N-1)-spin Hamiltonian, diagonalized on the previous step, by the eigenstates of the N-th added spin. Besides the common use of the conservation of the z-component of the total spin, Sz, we also exploit the conservation of the squared total spin, S2. For a specific class of spin systems we also implemented the reflection symmetry. We obtain the entire energy spectrum of spin-1/2 chains up to 20 sites, for which we show the temperature dependence of the magnetic susceptibility and specific heat, for systems with substitutional impurity spins, bond defects, border effects, i.e., for systems without translational invariance. This normally imposes enormous restrictions in many traditional methods. In order to diagonalize chains with a larger number of sites we implemented a procedure that selects lower energy states to be used in the basis vector on the next step. Using this truncation scheme, we are able to obtain low-lying energy states for chains with more than a hundred sites, up to five significant figures of accuracy. Our results reproduce those of the literature for the known cases, in general homogeneous systems. The approaches recently developed in the context of Density Functional Theory to the Heisenberg model, which also apply to inhomogeneous systems, are consistent with our numerical results. We generalize the method to diagonalize spin-1/2 ladders. We calculate the ground-state and the energy gap of this system, for arbitrary ratio of the couplings along the lags or over the rungs of the ladder. We also present the implementation of our iterative method to the Hubbard model, which describes a system of itinerant spins. It is known that in the regime of high Coulomb repulsion between the spins and unitary density (number of spins equal to the number of sites in the chain), this model is mapped onto Heisenberg one, a result which is verified numerically in our procedure by calculating the energy spectrum of both models in na appropriated parametric regime.
Silva, WanÃssa FaÃanha da. "Ondas de spin em redes decoradas." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12439.
Full textLow-dimensional systems have attracted much attention lately due to systems such as graphene and carbon nanotubes. Such systems have great potential for technological applications. In particular the creation of electronic devices due to their specific electronic properties. In this sense , the study of other systems in low dimension becomes urgent. More specifically , the study of magnetic properties of materials at low dimensionality also brings great new features in the behavior of ferromagnetic systems . The behavior of spin waves in such systems may be important to the study of spintronic and the development of new devices and magnetic memories . Thus in this work we aim to study the behavior of ferromagnetic spin waves in two-dimensional systems . For two-dimensional systems we consider here two-dimensional networks decorated . The decorations are introduced to generate networks with more than one basic atom in the unit cell of the system to study the richness of the spectrum of spin waves due to these changes . At first deal with a superimposition of square networks where the displacement of these networks depends on the control parameters alpha and beta . We also use the superposition of a square on a hexagonal network.
Exler, Matthias. "On classical and quantum mechanical energy spectra of finite Heisenberg spin systems." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980110440.
Full textSzallas, Attila. "Heisenberg antiferromagnetique model sur le pavage quasicrystaux bidimensionnelle." Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00358251.
Full textL'énergie de l'état fondamental de cette antiferromagnetique, et la distribution des aimantations locales dans cet état ont été calculés. Des projections dans l'espace perpendiculaire montrent la simplicité sous-jacente de ce état "complexe". Un simple modèle analytique, l'étoile de Heisenberg à deux niveaux, a été présenté pour expliquer de la distribution d'aimantation locales dans ce système antiferromagnétique.
Dans une dernière partie, les effets de désordre de type “phason” sont considérés. Nous avons progressivement augmenté le désordre géometrique de la structure originale. Nous avons trouvé que l'etat fondamental conserve son ordre de Néel, mais que la forme de la distribution ainsi que la norme des aimantations sont modifiés. Nous montrons, à l'aide d'un développement en ondes des spin ainsi que par Quantum Monte Carlo, que l'aimantation alternée diminue exponentiellement vers une valeur asymptote en fonction du désordre. La distribution spatiale de magnetizations locales devient plus homogène par rapport à pavage parfait. La vitesse des ondes des spin augmente avec le désordre, et les singularités dans le spectre et les functions d'onde sont en partie lissées. Ces résultats sont comparés avec des résultats connus dans des systèmes désordonnés.
Books on the topic "HEISENBERG MODEL; SPIN"
Sricheewin, Chanun. The coupled-cluster method treatment of spin-1/2 Heisenberg 2-leg ladder model. Manchester: UMIST, 1998.
Find full textBoudreau, Joseph F., and Eric S. Swanson. Quantum spin systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0022.
Full textEriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. The Atomistic Spin Dynamics Equation of Motion. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0004.
Full textW, Lovesey S., Rutherford Appleton Laboratory, and Council For The Central Laboratory of The Research Councils., eds. A theory of spin correlations and neutron scattering from paramagnetic materials based on the Ising-Heisenberg model in one, two and three space dimensions. Chilton: Rutherford Appleton Laboratory, 1996.
Find full textEckle, Hans-Peter. Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.001.0001.
Full textBook chapters on the topic "HEISENBERG MODEL; SPIN"
Wysin, G. M., M. E. Gouvea, A. R. Bishop, and F. G. Mertens. "Classical Spin Dynamics in the Two-Dimensional Anisotropic Heisenberg Model." In Springer Proceedings in Physics, 40–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-93400-1_5.
Full textMuminov, Kh Kh, and Valirii K. Fedyanin. "Nonlinear Spin Waves and Magnet-Acoustic Resonance in the Model of Heisenberg Magnet." In Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, 205–20. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4799-0_18.
Full textSisson, C. J., and R. J. Creswick. "Decoupled-Cell Monte-Carlo Calculations of Critical Properties of the Spin-1/2 Heisenberg Model." In Springer Proceedings in Physics, 204–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78448-4_26.
Full textGutkin, Eugene. "Heisenberg—Ising Spin Chain: Plancherel Decomposition and Chebyshev Polynomials." In Calogero—Moser— Sutherland Models, 177–92. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1206-5_12.
Full textPorsezian, K. "On the Discrete and Continuum Integrable Heisenberg Spin Chain Models." In NATO ASI Series, 243–48. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1609-9_42.
Full textMatsubara, F., T. Iyota, and S. Inawashiro. "A Hybrid Monte-Carlo Spin-Dynamics Method and Its Applications to the ±J Heisenberg Models in Three Dimensions." In Springer Proceedings in Physics, 219–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84821-6_40.
Full textPires, Antonio Sergio Teixeira. "The Heisenberg model." In Theoretical Tools for Spin Models in Magnetic Systems. IOP Publishing, 2021. http://dx.doi.org/10.1088/978-0-7503-3879-0ch1.
Full textEckle, Hans-Peter. "The Anisotropic Heisenberg Quantum Spin Chain." In Models of Quantum Matter, 491–501. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.003.0013.
Full textEckle, Hans-Peter. "Thermodynamics of the Isotropic Heisenberg Quantum Spin Chain." In Models of Quantum Matter, 641–54. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.003.0018.
Full textEckle, Hans-Peter. "Six-Vertex Model." In Models of Quantum Matter, 454–73. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.003.0011.
Full textConference papers on the topic "HEISENBERG MODEL; SPIN"
Misumi, K., K. Seki, and Y. Ohta. "Spin Excitations in the Square-Lattice Heisenberg Model with Ring-Exchange Interactions." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.014021.
Full textTanamoto, T., K. Ono, Y. X. Liu, and F. Nori. "Dynamic creation of a topologically-ordered Hamiltonian using spin-pulse control in the Heisenberg model." In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.h-7-2.
Full textSi LAKHAL, B., and A. ABADA. "FOUR-SPINON CONTRIBUTION TO THE DYNAMIC STRUCTURE FACTOR IN THE ANTIFERROMAGNETIC HEISENBERG MODEL." In Proceedings of the 16th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701909_0099.
Full textStrečka, Jozef, Lucia Čanová, Kazuhiko Minami, Yurij Holovatch, Bertrand Berche, Nikolai Bogolyubov, and Reinhard Folk. "Weak-universal critical behavior and quantum critical point of the exactly soluble spin-1∕2 Ising-Heisenberg model with the pair XYZ Heisenberg and quartic Ising interactions." In STATISTICAL PHYSICS: MODERN TRENDS AND APPLICATIONS: The 3rd Conference on Statistical Physics Dedicated to the 100th Anniversary of Mykola Bogolyubov. AIP, 2009. http://dx.doi.org/10.1063/1.3284411.
Full textBISHOP, R. F., P. H. Y. LI, R. DARRADI, and J. RICHTER. "THE SPIN-1/2 AND SPIN-1 QUANTUM J1−J′1−J2 HEISENBERG MODELS ON THE SQUARE LATTICE." In Proceedings of the 14th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812779885_0034.
Full text