Academic literature on the topic 'Heisenberg limit'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heisenberg limit.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heisenberg limit"
Gaete, Patricio. "Some Remarks on Nonlinear Electrodynamics." Advances in High Energy Physics 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/2463203.
Full textPutra, Fima Ardianto. "De Broglie Wave Analysis of the Heisenberg Uncertainty Minimum Limit under the Lorentz Transformation." Jurnal Teras Fisika 1, no. 2 (September 20, 2018): 1. http://dx.doi.org/10.20884/1.jtf.2018.1.2.1008.
Full textLuis, Alfredo. "Nonlinear transformations and the Heisenberg limit." Physics Letters A 329, no. 1-2 (August 2004): 8–13. http://dx.doi.org/10.1016/j.physleta.2004.06.080.
Full textSIOPSIS, GEORGE. "THE PENROSE LIMIT OF AdS×S SPACE AND HOLOGRAPHY." Modern Physics Letters A 19, no. 12 (April 20, 2004): 887–95. http://dx.doi.org/10.1142/s0217732304013891.
Full textSanchidrián-Vaca, Carlos, and Carlos Sabín. "Parameter Estimation of Wormholes beyond the Heisenberg Limit." Universe 4, no. 11 (November 6, 2018): 115. http://dx.doi.org/10.3390/universe4110115.
Full textNapolitano, M., M. Koschorreck, B. Dubost, N. Behbood, R. J. Sewell, and M. W. Mitchell. "Quantum Optics and the “Heisenberg Limit” of Measurement." Optics and Photonics News 22, no. 12 (December 1, 2011): 40. http://dx.doi.org/10.1364/opn.22.12.000040.
Full textOhring, Peter. "A central limit theorem on Heisenberg type groups." Proceedings of the American Mathematical Society 113, no. 2 (February 1, 1991): 529. http://dx.doi.org/10.1090/s0002-9939-1991-1045146-7.
Full textMaleki, Yusef, and Aleksei M. Zheltikov. "Spin cat-state family for Heisenberg-limit metrology." Journal of the Optical Society of America B 37, no. 4 (March 10, 2020): 1021. http://dx.doi.org/10.1364/josab.374221.
Full textUnternährer, Manuel, Bänz Bessire, Leonardo Gasparini, Matteo Perenzoni, and André Stefanov. "Super-resolution quantum imaging at the Heisenberg limit." Optica 5, no. 9 (September 20, 2018): 1150. http://dx.doi.org/10.1364/optica.5.001150.
Full textTSVELIK, A. M. "TWO WEAKLY COUPLED HEISENBERG CHAINS—SOLUTION IN CONTINUOUS LIMIT." Modern Physics Letters B 05, no. 30 (December 30, 1991): 1973–79. http://dx.doi.org/10.1142/s0217984991002379.
Full textDissertations / Theses on the topic "Heisenberg limit"
Exler, Matthias. "On classical and quantum mechanical energy spectra of finite Heisenberg spin systems." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980110440.
Full textShettell, Nathan. "Quantum Information Techniques for Quantum Metrology." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS504.
Full textQuantum metrology is an auspicious discipline of quantum information which is currently witnessing a surge of experimental breakthroughs and theoretical developments. The main goal of quantum metrology is to estimate unknown parameters as accurately as possible. By using quantum resources as probes, it is possible to attain a measurement precision that would be otherwise impossible using the best classical strategies. For example, with respect to the task of phase estimation, the maximum precision (the Heisenberg limit) is a quadratic gain in precision with respect to the best classical strategies. Of course, quantum metrology is not the sole quantum technology currently undergoing advances. The theme of this thesis is exploring how quantum metrology can be enhanced with other quantum techniques when appropriate, namely: graph states, error correction and cryptography. Graph states are an incredibly useful and versatile resource in quantum information. We aid in determining the full extent of the applicability of graph states by quantifying their practicality for the quantum metrology task of phase estimation. In particular, the utility of a graph state can be characterised in terms of the shape of the corresponding graph. From this, we devise a method to transform any graph state into a larger graph state (named a bundled graph state) which approximately saturates the Heisenberg limit. Additionally, we show that graph states are a robust resource against the effects of noise, namely dephasing and a small number of erasures, and that the quantum Cramér-Rao bound can be saturated with a simple measurement strategy. Noise is one of the biggest obstacles for quantum metrology that limits its achievable precision and sensitivity. It has been showed that if the environmental noise is distinguishable from the dynamics of the quantum metrology task, then frequent applications of error correction can be used to combat the effects of noise. In practise however, the required frequency of error correction to maintain Heisenberg-like precision is unobtainable for current quantum technologies. We explore the limitations of error correction enhanced quantum metrology by taking into consideration technological constraints and impediments, from which, we establish the regime in which the Heisenberg limit can be maintained in the presence of noise. Fully implementing a quantum metrology problem is technologically demanding: entangled quantum states must be generated and measured with high fidelity. One solution, in the instance where one lacks all of the necessary quantum hardware, is to delegate a task to a third party. In doing so, several security issues naturally arise because of the possibility of interference of a malicious adversary. We address these issues by developing the notion of a cryptographic framework for quantum metrology. We show that the precision of the quantum metrology problem can be directly related to the soundness of an employed cryptographic protocol. Additionally, we develop cryptographic protocols for a variety of cryptographically motivated settings, namely: quantum metrology over an unsecured quantum channel and quantum metrology with a task delegated to an untrusted party. Quantum sensing networks have been gaining interest in the quantum metrology community over the past few years. They are a natural choice for spatially distributed problems and multiparameter problems. The three proposed techniques, graph states, error correction and cryptography, are a natural fit to be immersed in quantum sensing network. Graph states are an well-known candidate for the description of a quantum network, error correction can be used to mitigate the effects of a noisy quantum channel, and the cryptographic framework of quantum metrology can be used to add a sense of security. Combining these works formally is a future perspective
Tashiro, Kenshiro. "Gromov-Hausdorff limits of compact Heisenberg manifolds with sub-Riemannian metrics." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263433.
Full textBaker, Travis J. "Quantum correlations: Schrodinger's steering in lossy conditions; Heisenberg's limit to laser coherence." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/405636.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Benoit, Jérôme. "Symétrie, géométrie, topologie et spins : spins de Heisenberg à la limite continue, membranes magnétiques." Cergy-Pontoise, 1999. http://www.theses.fr/1999CERG0076.
Full textKipper, Carla Judite. "Emprego da parametrização de heisenberg e do método de adomian no decaimento da camada limite convectiva." Universidade Federal de Santa Maria, 2009. http://repositorio.ufsm.br/handle/1/3893.
Full textIn this paper we present a spectral model to describe the decay of turbulent kinetic energy in the Convective Boundary Layer (CLC) of the earth s surface, where the physical processes that occur generate turbulence of convective origin and mechanics in the air. Using the equations of conservation of time, which describe the dynamics of an element of fluid in a flow, you get an equation for the spectrum of kinetic energy in a homogeneous turbulent flow, but not isotropic. The spectrum of energy is expressed in terms of number of wave vector kappa and time. Each term in this equation of energy balance, describing different physical processes that generate the turbulence. The terms of production or loss of energy by the effect of heat and friction, are written according to the number of Richardson, which is a dimensionless quantity that expresses a relationship between potential energy and kinetic energy of a fluid. The term transfer of kinetic energy by inertial effect between eddies of different wave numbers is parameterized from the Heisenberg model which, based on intuitive arguments, assume that the transfer of energy between eddies with small number of wave for the large number of wavelength is similar to conversion of mechanical energy into heat energy, the effect of molecular viscosity. The number of eddies with wave absorbing higher energy of eddies of wave number with lower. The dynamic equation for the three-dimensional spectrum of kinetic energy obtained was solved by the Adomian decomposition method for the analytical solution of ordinary differential equations or partial, linear or nonlinear, deterministic or stochastic. This technique is to decompose a given equation into a linear part and one non-linear, isolating the operator linear, easily inverted of higher order. The nonlinear term is written as a sum of a special class of polynomials called Adomian polynomials of, and unknown function as a series whose terms are calculated on recursively. The application of the Adomian decomposition method for the solution of differential equation integrated non linear due to the spectrum of kinetic energy, has an analytical solution without linearization, commonly used for simplicity, in problems where processes are highly nonlinear. Moreover, due to rapid convergence of the solution in terms of the Adomian polynomials, the spectrum of kinetic energy was obtained without a large computational effort. From the calculation of the energy spectrum could be determined the variation of turbulent kinetic energy in the CLC and compared with results of numerical simulation in the literature.
No presente trabalho é apresentado um modelo espectral para descrever o decaimento da energia cinética turbulenta na Camada Limite Convectiva (CLC) da superfície terrestre, onde acontecem os processos físicos que geram turbulência de origem mecânica e convectiva no ar. Partindo das equações de conservação de momento, que descrevem a dinâmica de um elemento de fluído em um escoamento, se obtém uma equação para o espectro de energia cinética em um escoamento turbulento homogêneo, mas não isotrópico. O espectro de energia é expresso em termos do vetor número de onda κ e do tempo. Cada termo, nesta equaçaão de balanço de energia, descreve processos físicos distintos que geram a turbulência. Os termos de produção ou perda de energia por efeito térmico e por atrito, são escritos em função do número de Richardson, que é uma grandeza adimensional que expressa uma relação entre a energia potencial e a energia cinética de um fluído. O termo de transferência de energia cinética por efeito inercial entre os turbilhões de diferentes números de onda é parametrizado a partir do modelo de Heisenberg que, baseando-se em argumentos intuitivos, assume que o processo de transferência de energia entre turbilhões com pequeno número de onda para os de número de onda grande, é similar a conversão de energia mecânica em energia térmica, por efeito de uma viscosidade molecular. Os turbilhões com número de onda maior absorvem energia dos turbilhões com número de onda menor. A equação dinâmica para o espectro de energia cinética tridimensional obtida foi resolvida pelo método da decomposição de Adomian para solução analítica de equações diferenciais ordinárias ou parciais, lineares ou não lineares, determinísticas ou estocásticas. Esta técnica consiste em decompor uma dada equação em uma parte linear e outra não-linear, isolando o operador linear, facilmente inversível, de maior ordem. O termo não-linear é escrito como uma soma de uma classe especial de polinômios, denominados Polinômios de Adomian, e a função desconhecida como uma série, cujos termos são calculados de forma recursiva. A aplicação do método de decomposição de Adomian na solução da equação integro-diferencial não linear resultante para o espectro de energia cinética, permitiu uma solução analítica sem a linearização, comumente usada por simplicidade, em problemas onde se têm processos altamente não lineares. Além disso, devido a rápida convergência da solução expressa em termos dos polinômios de Adomian, o espectro de energia cinética foi obtido sem uma grande esforço computacional. A partir do cálculo do espectro de energia pôde-se determinar a variação da energia cinética turbulenta na CLC e comparar com os resultados de simulação numérica existentes na literatura.
Conti, William Remo Pedroso. "Teorema Central do Limite para o modelo O(N) de Heisenberg hierárquico na criticalidade e o papel do limite N -> infinito na dinâmica dos zeros de Lee-Yang." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26082008-093457/.
Full textIn this work we stablish the Central Limit Theorem for the hierarchical O(N) Heisenberg model at criticality via partial differential equation in the limit N -> infinity. For simplicity we only treat the d = 4 case but the theorem is still valid for d > 4. By studying a given partial differential equation (PDE) we determine for any d > 2 the critical inverse temperature of the continuum hierarchical spherical model, and we show a connection between criticality and the fixed point of PDE. By means of a geometric analysis of the critical trajectory we obtain some informations about Lee-Yang zeros´s dynamics and distribution.
Facon, Adrien. "Chats de Schrödinger d'un atome de Rydberg pour la métrologie quantique." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066534/document.
Full textThere is no fundamental limit to the precision of a classical measurement. The position of a meter’s needle can be determined with an arbitrarily small uncertainty. In the quantum realm, fundamental fluctuations due to the Heisenberg principle limit the precision of any measurement. When the needle is replaced by a mesoscopic system, for instance a spin J evolving on a spherical dial, the Bloch sphere, the semi-classical spin coherent state quantum fluctuations lead to a measurement uncertainty scaling as 1/√J, the standard quantum limit (SQL). This is far from the ultimate Heisenberg limit (HL), which scales as 1/J. We present here an innovative approach, using interferometric measurements on mesoscopic Schrödinger-cat-like superpositions of Rydberg states to realize a single-atom electrometer measuring weak fields of the order of 1 mV/cm in a few tens of nanoseconds. The sensitivity of this method is beyond the SQL and we check that its uncertainty scales as the HL. The extreme sensitivity of this non-invasive space- and time-resolved field measurement could have many practical applications
Books on the topic "Heisenberg limit"
Neuenschwander, Daniel. Probabilities on the Heisenberg group: Limit theorems and Brownian motion. Berlin: Springer, 1996.
Find full textProbabilities on the Heisenberg group: Limit theorems and Brownian motion. Berlin: Springer, 1996.
Find full textNeuenschwander, Daniel. Probabilities on the Heisenberg Group: Limit Theorems and Brownian Motion. Springer London, Limited, 2006.
Find full textBook chapters on the topic "Heisenberg limit"
LaPierre, Ray. "Heisenberg Limit." In Getting Started in Quantum Optics, 165–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12432-7_17.
Full textNeuenschwander, Daniel. "Other limit theorems on H." In Probabilities on the Heisenberg Group, 85–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094033.
Full textCroca, Josee R. "Beyond Heisenberg’S Uncertainty Limits." In Gravitation and Cosmology: From the Hubble Radius to the Planck Scale, 385–92. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-48052-2_38.
Full textSchmidt-Böcking, H., S. Eckart, H. J. Lüdde, G. Gruber, and T. Jahnke. "The Precision Limits in a Single-Event Quantum Measurement of Electron Momentum and Position." In Molecular Beams in Physics and Chemistry, 223–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63963-1_12.
Full textEckle, Hans-Peter. "Finite Heisenberg Quantum Spin Chain." In Models of Quantum Matter, 667–86. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.003.0020.
Full textEckle, Hans-Peter. "Bethe Ansatz for the Anisotropic Heisenberg Quantum Spin Chain." In Models of Quantum Matter, 502–44. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.003.0014.
Full textBertlmann, Reinhold A., and Nicolai Friis. "Quantum Metrology." In Modern Quantum Theory, 777–816. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780199683338.003.0024.
Full textClerk, Aashish A. "Optomechanics and Quantum Measurement." In Quantum Optomechanics and Nanomechanics, 183–236. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198828143.003.0005.
Full textGherdjikov, Serghey Stoilov. "The Limits of Science." In The Paideia Archive: Twentieth World Congress of Philosophy, 80–87. Philosophy Documentation Center, 1998. http://dx.doi.org/10.5840/wcp20-paideia199837655.
Full text"Chap. 5: About the limits of the knowledge of nature." In My Life with Science (extendes English edition), 95–102. GNT-Verlag GmbH, 2023. http://dx.doi.org/10.47261/1558-5.
Full textConference papers on the topic "Heisenberg limit"
Wiseman, Howard M., S. Nariman Saadatmand, Travis J. Baker, and Dominic W. Berry. "The Heisenberg limit for laser coherence." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.m3a.1.
Full textWalter, Michael, and Joseph M. Renes. "A Heisenberg limit for quantum region estimation." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875008.
Full textTsarev, D. V., Ngo-The Vinh, and A. P. Alodjants. "Beating Heisenberg limit with moving matter-wave solitons." In 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285804.
Full textJin, Xian-Min, Martin Lebrat, Lijian Zhang, Kachung Lee, Tim Bartley, Marco Barbieri, Joshua Nunn, Animesh Datta, and Ian A. Walmsley. "Surpassing the conventional Heisenberg limit using classical resources." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qf2b.2.
Full textUnternährer, Manuel, Bänz Bessire, Leonardo Gasparini, Matteo Perenzoni, and André Stefanov. "Super-Resolution Quantum Imaging at the Heisenberg Limit." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_qels.2018.ff1b.4.
Full textTsarev, D. V., Ray-Kuang Lee, and A. P. Alodjants. "Quantum metrology beyond Heisenberg limit with entangled matter wave solitons." In 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435438.
Full textKolkiran, Aziz, and G. S. Agarwal. "Towards Heisenberg Limit in Magnetometry with Parametric Down Converted Photons." In Laser Science. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ls.2006.ltha5.
Full textBessire, Bänz, Manuel Unternährer, Leonardo Gasparini, Majid Zarghami, Matteo Perenzoni, and André Stefanov. "Super-resolution quantum imaging at the Heisenberg limit (Conference Presentation)." In Quantum Technologies, edited by Andrew J. Shields, Jürgen Stuhler, and Miles J. Padgett. SPIE, 2018. http://dx.doi.org/10.1117/12.2309773.
Full textNapolitano, Mario, Marco Koschorreck, Brice Dubost, Naeimeh Behbood, Robert Sewell, and Morgan W. Mitchell. "Interaction-based Quantum Metrology Showing Scaling Beyond the Heisenberg Limit." In Quantum Information and Measurement. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qim.2012.qw1b.2.
Full textOstrowski, Lucas A., Travis J. Baker, S. Nariman Saadatmand, and Howard M. Wiseman. "No Tradeoff between Coherence and Sub-Poissonianity in Heisenberg-Limited Lasers." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jw4a.86.
Full text