Academic literature on the topic 'Heavy metals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heavy metals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Heavy metals"

1

Laurinaitis, Domas, and Aušra Zigmontienė. "RESEARCH ANALYSIS OF VERMICOMPOST INFLUENCE ON BIOACCUMULATION OF HEAVY METALS IN COMMON MEADOW-GRASS (POA PRATENSIS) / VERMIKOMPOSTO ĮTAKOS SUNKIŲJŲ METALŲ BIOAKUMULIACIJAI PIEVINĖJE MIGLĖJE (POA PRATENSIS) TYRIMŲ ANALIZĖ." Mokslas – Lietuvos ateitis 8, no. 4 (October 24, 2016): 376–81. http://dx.doi.org/10.3846/mla.2016.953.

Full text
Abstract:
The more intensive growth of agricultural crops adding mineral fertilizers, environmental pollution make the soil degraded: reduce the fertility of soil, increase the concentration of heavy metals. Especially dangerous is a common, synergistic effect of heavy metals. Vermicompost optimizes pH, texture and organic material content – the soil indicators, which are the major contributors to migration of heavy metals in the soil and to the plants from it. In the article there is an investigation of vermicompost influence on bioaccumulation of heavy metals in common meadow-grass. After experimental research it is determined that immobilization of heavy metals was the best in soil-vermicompost substrate, prepared in a ratio 1:2. The cadmium (Cd) concentrations were lowest and the difference of HM content determined between roots and shoots was the most in biomass grown up in that mixture. In the underground part of plant the concentration equal to 11.10 mg/kg and in the part of above ground – 1.05 mg/kg. The situation of lead (Pb) and copper (Cu) is analogous. This is the optimal ratio of mixture preparation. Intensyvesnis žemės ūkio kultūrų auginimas, tręšiant mineralinėmis trąšomis, aplinkos tarša nualina dirvožemį: sumažėja dirvožemio derlingumas, didėja sunkiųjų metalų koncentracijos. Ypač pavojingas bendras, sinergetinis sunkiųjų metalų poveikis. Vermikompostas optimizuoja dirvožemio pH, granuliometrinę sudėtį, organinės medžiagos kiekį – rodiklius, nuo kurių labiausiai priklauso sunkiųjų metalų migracija dirvožemyje ir iš jo į augalus. Straipsnyje nagrinėjama vermikomposto įtaka sunkiųjų metalų bioakumuliacijai pievinėje miglėje. Atlikus eksperimentinį tyrimą nustatyta, kad geriausiai sunkiuosius metalus „surakino“ dirvožemio-vermikomposto substratas, paruoštas santykiu 1:2. Tame mišinyje užaugintoje biomasėje kadmio (Cd) koncentracijos buvo mažiausios, o skirtumas tarp SM kiekio nustatyto šaknyse ir ūgliuose didžiausias. Požeminėje augalo dalyje koncentracija lygi 11,10 mg/kg, o antžeminėje – 1,05 mg/kg. Švino (Pb) ir vario (Cu) atvejais situacija yra analogiška. Tai optimalus mišinio ruošimo santykis.
APA, Harvard, Vancouver, ISO, and other styles
2

Jena, Smaranika, and Surjendu Kumar Dey. "HEAVY METALS." American Journal of Environment Studies 1, no. 1 (April 19, 2017): 48–60. http://dx.doi.org/10.47672/ajes.247.

Full text
Abstract:
Purpose: The study investigated on heavy metalsMethodology: The study used desktop study research design.Results: Phytoremediation has been perceived to be a more environmentally-friendly “green” and low tech alternative to more active and intrusive remedial methods.Unique contribution to theory, practice and policy: The potential role of both free living and symbiotic soil microbes in the rhizosphere of plants growing in metal-contaminated soils in enhancing the phytoremediation process can be an important tool to support the technology. The outcome of undergoing genetic engineering investigation concerning plants applicable in phytoremediation may also lead to a better understanding of metal metabolism in plants, which can result in important contributions for the implementation of phytoremediation as a feasible soil remediation technology.
APA, Harvard, Vancouver, ISO, and other styles
3

Fields, Cheryl, and Jonathan Borak. "Heavy Metals." Journal of Occupational and Environmental Medicine 53, no. 5 (May 2011): 587. http://dx.doi.org/10.1097/jom.0b013e318216d0f5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Idzelis, Raimondas Leopoldas, Vytautas Kesminas, Gintaras Svecevičius, and Vaidas Misius. "ACCUMULATION OF HEAVY METALS (CU, ZN, NI, CR, PB, CD) IN TISSUES OF PERCH (PERCA FLUVIATILIS L.) AND ROACH RUTILUS RUTILUS (L.) UNDER EXPERIMENTAL CONDITIONS/SUNKIŲJŲ METALŲ (CU, ZN, NI, CR, PB, CD) KAUPIMASIS EŠERIO PERCA FLUVIATILIS L. IR KUOJOS RUTILUS АККУМУЛЯЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ (CU, ZN, NI, CR, PB, CD) В ТКАНЯХ ОКУНЯ PERCA FLUVIATILIS L. И ПЛОТВЫ RUTILLUS RUTILLUS L. В ЭКСПЕРИМЕНТАЛЬНЫХ УСЛОВИЯХ." JOURNAL OF ENVIRONMENTAL ENGINEERING AND LANDSCAPE MANAGEMENT 16, no. 4 (December 31, 2008): 205–12. http://dx.doi.org/10.3846/1648-6897.2008.16.205-212.

Full text
Abstract:
The paper analyses the effects of heavy metals on freshwater fishes. From the point of view of pollution caused by heavy metals, the condition of ecosystems in Lithuania is yet less affected by heavy metals compared to that the world over. Fishes accumulate heavy metals selectively. Fishes mostly accumulate Pb, Cr, Cd. Our experiments showed that MPC (Maximum Permitted Concentration) (0.2 mg/kg) of lead was exceeded 1.6 time in the muscles of perch, and 1.4 time ‐ in the muscles of roach. The MPC (0.05 mg/kg) of cadmium was exceeded 1.2 time in the muscles of perch and roach. It was determined that perch accumulate heavy metals more intensively than roach. Heavy metals accumulate in fishes: liver > muscle> gills. As heavy metals are considered to be one of the most harmful water pollutants, there is a great need for a constant ecological monitoring and reduction of their amounts released into the environment. According to long‐term research data, the MPC in fishes is exceeded only slightly. This confirms a good condition of aquatic ecosystems in Lithuania. Santrauka Įvertintas sunkiųjų metalų pasiskirstymas gėlavandenių žuvų audiniuose monitoringiniuose vandens telkiniuose, taip pat ir kuojų bei ešerių, paveiktų sunkiųjų metalų didžiausiomis leidžiamosiomis koncentracijomis (DLK), audiniuose. Eksperimentiniai tyrimai atlikti su Cu, Zn, Ni, Cr, Pb, Cd, kurių kiekvienas pasižymi kancerogeniniu mutageniniu poveikiu. Nustatyta, kad švino DLK (0,2 mg/kg) buvo viršyta ešerių raumenyse 1,6 karto, o kuojų – 1,4 karto. Kadmio DLK (0,05 mg/kg) ešerių ir kuojų raumenyse buvo viršyta apie 1,2 karto. Taip pat nustatyta, kad ešeriai sunkiuosius metalus kaupia intensyviau nei kuojos. Eksperimentiniai duomenys sutampa su sunkiųjų metalų tyrimų monitoringiniuose vandens telkiniuose duomenimis. Žuvų audiniuose Pb ir Cd koncentracijos yra didžiausios ir dažnai viršija Lietuvos higienos normoje nurodytąją DLK. Tokie rezultatai įpareigoja nuolat kontroliuoti sunkiųjų metalų kiekį žuvyse. Rezultatai pateikiami sunkiųjų metalų sklaidos pasiskirstymo grafikuose. Резюме Представлены данные по распределению тяжелых металлов в тканях пресноводных рыб в мониторинговых водоемах, а также результаты, полученные путем воздействия тяжелых металлов в предельно допустимых концентрациях (ПДК) на окуня и плотву. В экспериментальных исследованиях применялись металлы Cu, Zn, Ni, Cr, Pb, Cd, оказывающие на живые организмы воздействие мутагенного и канцерогенного характера. Установлено, что концентрация Cd в тканях окуня превышала ПДК (0,2 мг/кг) в 1,6 раза, а в тканях плотвы – в 1,4 раза. Концентрация Cd в тканях тех же рыб превышала ПДК (0,05 мг/кг) примерно в 1,2 раза. Также установлено, что окунь аккумулирует тяжелые металлы интенсивнее плотвы. Экспериментальные данные совпадают с данными, полученными в мониторинговых водоемах. Установлено также, что концентрация Pb и Cd в тканях рыб зачастую превышает ПДК. Полученные результаты обязывают постоянно контролировать уровень тяжелых металлов в тканях рыб.
APA, Harvard, Vancouver, ISO, and other styles
5

Birgėlaitė, Rūta, Vaidotas Valskys, and Gytautas Ignatavičius. "USE OF SAPROPEL FOR REMOVAL OF HEAVY METALS FROM SOLUTION / SILICINIO SAPROPELIO NAUDOJIMAS SUNKIESIEMS METALAMS ŠALINTI IŠ TIRPALO." Mokslas – Lietuvos ateitis 8, no. 4 (October 24, 2016): 388–96. http://dx.doi.org/10.3846/mla.2016.946.

Full text
Abstract:
Abundant resources, natural and organic material – sapropel containing a multitude of different chemical elements has a great potential to be used in different areas, but for now these rich resources are not widely used because of different chemical composition of sapropel research is very few. The article deals with silicon sapropel as a sorbent is able to absorb heavy metals from the solution depending on the time and the concentration of heavy metals in the solution. The sorption studies of heavy metal concentrations were measured in dry sapropel sample using Thermo Scientific Niton® XL2 series of X-ray fluorescence spectrometer (XPS). Also, the heavy metal concentrations in solution were measured by atomic absorption spectrometer AAnalyst 200 (AAS). Get sapropel sorption capacity results are analyzed through absorption capacity curves and Matala ion removal efficiency curves. Also, comparing the results with the initial concentration of heavy metals sapropel and foreign authors used sorbent properties. After thorough research sapropel sorption capacity can be added to the knowledge of sapropel properties utilization. Gausūs natūralios organinės medžiagos – sapropelio, kurio sudėtyje yra daug įvairių cheminių elementų, – ištekliai turi didelį potencialą būti panaudoti įvairiose srityse. Šiuo metu šie gausūs ištekliai nėra plačiai naudojami, nes atlikta labai nedaug sapropelio įvairios cheminės sudėties tyrimų. Straipsnyje nagrinėjama silicinio sapropelio kaip sorbento geba sorbuoti sunkiuosius metalus iš tirpalo, priklausomai nuo laiko ir sunkiųjų metalų koncentracijos tirpale. Atlikus sorbcijos tyrimus, sunkiųjų metalų koncentracijos matuotos sausame sapropelio mėginyje, naudojant Thermo Scientific Niton® XL2 serijos rentgeno spindulių fluorescencinį spektrometrą (RFS). Taip pat sunkiųjų metalų koncentracijos matuotos tirpale naudojant atominės absorbcijos spektrometrą AAnalyst 200 (AAS). AAS tyrimus atliko atestuota UAB „Vilniaus vandenys“ geriamojo vandens laboratorija. Gauti sapropelio sorbcinės talpos tyrimų rezultatai analizuojami sudarant adsorbcinės talpos kreives bei metalo jonų pašalinimo efektyvumo kreives. Taip pat rezultatai buvo palyginti su pradine sunkiųjų metalų koncentracija sapropelyje ir užsienio autorių naudotų sorbentų sorbcinėmis savybėmis. Atlikus tyrimus gautas 97,4 % sorbento-sapropelio pašalinimo efektyvumas sorbuojant šviną ir 97,24 % sorbuojant cinką. Tyrimų rezultatų paklaida patikrinta lyginant išmatuotą sorbento talpą su apskaičiuotąja. Švino adsorbcinės talpos paklaida siekia 4–9 mg/kg, o cinko 1–14 mg/kg.
APA, Harvard, Vancouver, ISO, and other styles
6

Liekytė, Aistė, Raimondas Leopoldas Idzelis, and Nijolė Kazlauskienė. "RESEARCH INTO THE EFFECT OF HEAVY METALS AND THEIR BINARY MIXTURE ON THE CARDIO-RESPIRATORY SYSTEM OF FISH LARVAE / SUNKIŲJŲ METALŲ IR JŲ BINARINIO MIŠINIO POVEIKIO ŽUVŲ KARDIORESPIRACINEI SISTEMAI ANKSTYVOJOJE ONTOGENEZĖJE TYRIMAI." Mokslas - Lietuvos ateitis 3, no. 5 (December 19, 2011): 31–36. http://dx.doi.org/10.3846/mla.2011.083.

Full text
Abstract:
This article investigates toxic effects of heavy metals (Ni, Cu) and their binary mixture (Ni+Cu) on the cardio-respiratory system of rainbow trout (Oncorhynchus mykiss) larvae depending on the type of metal, metal concentration and the duration of their exposure. The one-day larvae of rainbow trout were exposed to Ni (0,1; 0,2 mg/l, respectively), Cu (0,25; 0;5 mg/l, respectively) and their binary mixture. During long-term exposure (30 days), the physiological parameters of larvae, e.g. heart rate (counts/min), gill ventilation frequency (counts/min) after 5, 10 and 20 days of exposure were recorded. During experimental studies, the effects of heavy metals and their binary mixture on the heart rate and gill ventilation frequency of rainbow trout larvae depending on the type of metal, their concentrations and exposure duration were determined. Consequently, comparative studies on toxic effects of heavy metals and their binary mixture on the cardio-respiratory system of rainbow trout larvae showed that the binary mixture was more toxic to larvae than to single metals. Santrauka Šiame straipsnyje nagrinėjamas sunkiųjų metalų (Ni, Cu) ir jų binarinio mišinio (Ni + Cu) toksinis poveikis vaivorykštinio upėtakio (Oncorhynchus mykiss) lervų kardiorespiracinei sistemai, priklausomai nuo veikiamo metalo rūšies, metalų koncentracijos ir ekspozicijos trukmės. Vaivorykštinio upėtakio vienadienės lervos buvo veikiamos Ni (0,1; 0,2 mg/l), Cu (0,25; 0,5 mg/l) ir jų binariniu mišiniu. Ilgalaikio tyrimo metu (30 parų) buvo registruojami lervų fiziologiniai rodikliai – širdies ir kvėpavimo dažniai (krt./min.) po 5, 10 ir 20 parų ekspozicijos. Atlikus eksperimentinius tyrimus, nustatytas sunkiųjų metalų ir jų binarinio mišinio poveikis vaivorykštinio upėtakio lervų širdies ir kvėpavimo dažniams, priklausomai nuo veikiamo metalo rūšies, koncentracijos ir ekspozicijos trukmės. Tyrimo rezultatai rodo, kad atskirų sunkiųjų metalų (Ni, Cu) poveikis lervų kardiorespiracinei sistemai silpnesnis, nei veikiant metalų binariniu mišiniu.
APA, Harvard, Vancouver, ISO, and other styles
7

Yadav, Abhinav Parkash. "Heavy Metal Pollution In Environment And Their Toxicological Effect On Plants And Living Organisms." Humanities and Development 18, no. 1 (June 20, 2018): 153–55. http://dx.doi.org/10.61410/had.v18i1.133.

Full text
Abstract:
Heavy metals normally occur in nature and are essential to life but can become toxic through accumulation in plants and living organisms. Arsenic, cadmium, chromium, copper, lead, nickel, and mercury are the most common heavy metals which can pollute the our environment. Most of the heavy metals causes environmental and atmospheric pollution, and may be lethal to plant. Heavy metal’s can become strongly toxic by mixing with different environmental elements, such as water, soil, and air plants and other living organisms can be uptake to them through the food chain.
APA, Harvard, Vancouver, ISO, and other styles
8

Khalil, Kashif Ur Rehman, Naheed Mehsood, Muhammad Saleh Faisal, and Baber Awan. "HEAVY METALS TOXICITY:." Professional Medical Journal 24, no. 09 (September 8, 2017): 1431–36. http://dx.doi.org/10.29309/tpmj/2017.24.09.885.

Full text
Abstract:
Objectives: To estimate the concentration of heavy metals (Lead, cadmium,Chromium and copper) in branded and non-branded (local) snacks in the markets of Peshawar,Khyber Pakhtunkhwa, Pakistan. Study Design: Cross-sectional analytical study. Setting:District Peshawar, Khyber Pakhtunkhwa, Pakistan. Period: 6 months; from December 2016 toApril 2017. Materials and Methods: A total of 96 different samples of potato and corn snackswere selected from four towns of district Peshawar by convenient sampling technique. Allsamples were subjected to wet digestion using acid digestion technique and Lead, Cadmium,Chromium and copper were quantitatively detected, using Atomic Absorption spectrometer inthe Public Health laboratory Khyber Medical College Peshawar. Results: Mean concentrationof Lead, cadmium, chromium and copper in potato based branded snacks were in the rangeof 0.085-0.423mg/kg, 0.003-0.046 mg/kg, 2.186-2.328 mg/kg and 0.008-0.108 mg/kg andconcentration of heavy metals in corn based branded snacks were in range of 0.240-0.351mg/kg, 0.007-0.012mg/kg, 2.254-2.179 mg/kg, 0.030-0.082 mg/kg respectively. While meanconcentration of Lead, cadmium, chromium and copper in non-branded (local) snacks were0.057-0.324 mg/kg, 0.005-0.012 mg/kg, 2.137-2.247 mg/kg and 0.018-0.06 mg/kg respectively.Conclusion: Lead and chromium were exceeding in majority samples of branded and localsnacks. Particular concern was of chromium, which was exceeding far beyond the allowedlimits in all samples.
APA, Harvard, Vancouver, ISO, and other styles
9

Ott, H. R. "Heavy-Electron Metals." Annual Review of Materials Science 17, no. 1 (August 1987): 13–33. http://dx.doi.org/10.1146/annurev.ms.17.080187.000305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steglich, F. "Heavy Fermion Metals." Physica Scripta T29 (January 1, 1989): 15–19. http://dx.doi.org/10.1088/0031-8949/1989/t29/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Heavy metals"

1

Sekhula, Koena Sinah. "Heavy metal ion resistance and bioremediation capacities of bacterial strains isolated from an Antimony Mine." Thesis, University of Limpopo, 2005. http://hdl.handle.net/10386/139.

Full text
Abstract:
Thesis (M.Sc.) -- University of Limpopo, 2005
Six aerobic bacterial strains [GM 10(1), GM 10 (2), GM 14, GM 15, GM 16 and GM 17] were isolated from an antimony mine in South Africa. Heavy-metal resistance and biosorptive capacities of the isolates were studied. Three of the isolates (GM 15, GM 16 and GM 17) showed different degrees of resistance to antimony and arsenic oxyanions in TYG media. The most resistant isolate GM 16 showed 90 % resistance, followed by GM 17 showing 60 % resistance and GM 15 was least resistant showing 58 % resistance to 80 mM arsenate (AsO4 3-). GM 15 also showed 90 % resistance whereas isolates GM 16 and GM 17 showed 80 % and 45 % resistance respectively to 20 mM antimonate (SbO4 3-). Arsenite (AsO2 -) was the most toxic oxyanion to all the isolates. Media composition influenced the degrees of resistance of the isolates to some divalent metal ions (Zn2+, Ni2+, Co2+, Cu2+ and Cd2+). Higher resistances were found in MH than in TYG media. All the isolates could tolerate up to 5 mM of the divalent metal ions in MH media, but in TYG media, they could only survive at concentrations below 1 mM. Also, from the toxicity studies, high MICs were observed in MH media than TRIS-buffered mineral salt media. Zn2+ was the most tolerated metal by all the isolates while Co2+ was toxic to the isolates. The biosorptive capacities of the isolates were studied in MH medium containing different concentrations of the metal ions, and the residual metal ions were determined using atomic absorption spectroscopy. GM 16 was effective in the removal of Cu2+ and Cd2+ from the contaminated medium. It was capable of removing 65 % of Cu2+ and 48 % of Cd2+ when the initial concentrations were 100 mg/l, whereas GM 15 was found to be effective in the biosorption of Ni2+ from the aqueous solutions. It was capable of removing 44 % of Ni2+ when the initial concentration was 50 mg/l. GM 17 could only remove 20 % of Cu2+ or Cd2+. These observations indicated that GM 16 could be used for bioremediation of xvi Cu2+ and Cd2+ ions from Cu2+ and Cd2+-contaminated aqueous environment, whereas GM 15 could be used for bioremediation of Ni2+.
National Research Foundation and the University of the North Research Unit
APA, Harvard, Vancouver, ISO, and other styles
2

Oltmanns, Jan. "Biosensors for heavy metals." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/22854.

Full text
Abstract:
Heavy metals from natural and man-made sources can be a great threat to human and animal life. As small inorganic ions they are challenging to detect, usually requiring expensive and complicated machinery. Several heavy metals can accumulate in the human body, leading to long term toxic effects on the nervous system. Many bacteria have developed strategies to survive in heavy metal rich environments. One of these strategies is a bacterial operon containing genes for detoxification mechanisms controlled by a promoter and a regulatory protein. In this work some of these promoter-protein pairs, Pars-ArsR, PcopA-CueR, PmerTPAD-MerR and PzntA-ZntR from Escherichia coli have been employed in the design and construction of a set of biosensors aimed at the detection of heavy metals in drinking water. Biosensors usually employ biological recognition elements, transducing the signal from these to produce an output that can be integrated into electronic circuitry. The sensors presented in this work focus on reducing complexity and on providing a controlled sensor reaction. The arsenic biosensor ‘AsGard’ is based on the Pars-ArsR pair and functions by making the dissociation of an ArsR-mCherry fusion protein from its binding site in the Pars promoter visible. In the cell, ArsR dissociates from Pars upon binding of trivalent arsenic ions. Immobilising the relevant part of the Pars sequence on a solid plastic support allows for the mobilisation of previously bound ArsR-mCherry proteins in the presence of arsenic to become the sensor output. The AsGard sensor detects arsenic within minutes in a concentration range overlapping with the arsenic thresholds for drinking water as set by the World Health Organisation. Additional prototype sensors are presented bringing a reporter gene under the control of the aforementioned promoters. These sensors have been tested in vivo and in vitro in a cell free transcription translation system and partially detect metal concentrations close to relevant ranges. The Pars based sensor is tuneable in vitro by modifying the ratio of the supplied regulatory protein ArsR and is able to detect arsenic well within the relevant range. Spinach2, a fluorescent RNA aptamer, may make future designs independent from translation, drastically reducing complexity of cell free biosensors based on cis-trans transcriptional regulation.
APA, Harvard, Vancouver, ISO, and other styles
3

Dey, Gopal Ch. "Application of functionalised chelating resins for selective sorption of metal ions with special reference to heavy metals." Thesis, University of North Bengal, 2011. http://hdl.handle.net/123456789/1391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ngule, Chrispus M. Jr. "In Vitro Adsorption of Heavy Metals Using Metal-Organic Frameworks." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1597664070125999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sörme, Louise. "Urban heavy metals stocks and flows /." Linköping : Univ. : Vatten i natur och samhälle, Institutionen för tema [distributör], 2003. http://www.bibl.liu.se/liupubl/disp/disp2003/arts270s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beckett, C. L. "Heavy metals in Severn Estuary ecosystems." Thesis, University of Bristol, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Yuping. "Interactions of heavy metals with minerals /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487856076412928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Limson, Janice. "Aging, sex, death (and heavy metals)." Rhodes University, 2011. http://hdl.handle.net/10962/d1019732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Jin 1954. "Extraction of heavy metals with supercritical carbon dioxide : a novel approach to heavy metal analysis and decontamination." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39890.

Full text
Abstract:
The technique of extraction with supercritical carbon dioxide (SC-CO$ sb2$), which is now used routinely for the recovery of non-polar analytes from a variety of liquid and semipermeable solid media, was extended to the efficient extraction of metal ions. Measurements of the solubilities in SC-CO$ sb2$ corroborated the hypothesis that the non-polar character of a series of tetraalkylammoniun dialkyldithiocarbamates ion pairs was influenced (i) primarily by the chain length of the alkyl substituent(s) on the carbamate nitrogen and (ii) to a lesser extent, by the chain length of the alkyl substituent(s) on the ammonium counter ion. In operation, analyte metal(s) in aqueous medium was derivatized by in situ complexation with the dithiocarbamate complexing reagent and the product complex(es) was partitioned into the SC-CO$ sb2$ mobile phase then purged from the extractor by replacing the headspace with fresh solvent. A novel silica flame-in-tube interface was developed for the sensitive detection, by atomic absorption spectrometry (AAS), of As, Cd, Cu, Mn, Pb, Se, or Zn in SC-CO$ sb2$ extractor eluate. For different analyte elements, the limits of detection (LODs) ranged from sub-nanogram to low picogram if standard was flow injected into the mobile phase. These sensitivities permitted differences in the rates of mobilization of different forms of the analyte metal from various media to be explored as a technique for probing the interaction of the analyte metal with the matrix. A portion of the Zn burden in fresh bovine liver was mobilized rapidly in the absence of complexing agent and the remainder was solubilized more rapidly than the Zn in a freeze-dried reference material of this tissue. The nebulizer assembly of a conventional flame-AAS was modified to extend the range of metals amenable to on-line detection. Supplemental heating of the inlet air to 200$ sp circ$C resulted in an on line detector which provided approximately a ten-fold improvement over convention
APA, Harvard, Vancouver, ISO, and other styles
10

Mullins, M. "Subcellular localization of metals in metal tolerant higher plants." Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384378.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Heavy metals"

1

Förstner, Ulrich, Wim Salomons, and Pavel Mader, eds. Heavy Metals. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79316-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), SpringerLink (Online. Soil Heavy Metals. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Varma, A., and Irena Sherameti. Detoxification of heavy metals. Heidelberg: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Furini, Antonella. Plants and heavy metals. Dordrecht: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sharma, Sanjay, ed. Heavy Metals In Water. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782620174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Inamuddin, Mohd Imran Ahamed, Eric Lichtfouse, and Tariq Altalhi, eds. Remediation of Heavy Metals. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80334-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Furini, Antonella, ed. Plants and Heavy Metals. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4441-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alloway, Brian J., ed. Heavy Metals in Soils. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4470-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alloway, B. J., ed. Heavy Metals in Soils. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1344-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sherameti, Irena, and Ajit Varma, eds. Detoxification of Heavy Metals. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21408-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Heavy metals"

1

Dunbar, W. Scott, and Jocelyn Fraser. "A Closer Relationship with Our Metals." In Heavy Metal, 127–36. Cambridge, UK: Open Book Publishers, 2024. http://dx.doi.org/10.11647/obp.0373.13.

Full text
Abstract:
The existence and availability of metals is taken for granted by most people. However, these perceptions will be challenged as global metal demand increases due to economic development, and supplies are threatened by dwindling geological reserves and shifting geopolitics. Alternative sources and methods of supply must be developed if we are to meet anticipated needs for metals, including those required for the transition to renewable energy systems. The ideal goal is a circular economy, where recycling and reuse of metal-containing products keep these resources available to the economy as long as possible. At the same time, innovation within the existing global metal supply system can provide new access to metal sources and opportunities for improved recovery of metals along the supply chain. The key is to open new points of entry into the metal supply system, identify and remove barriers, introduce necessary technologies, and organize more efficient business models. This includes the targeting of smaller-scale deposits and the more efficient recovery of metals from waste material at various points along the supply chain. If society were more engaged in such developments, metals could be more efficiently supplied with significant economic benefits to a larger number of individuals.
APA, Harvard, Vancouver, ISO, and other styles
2

Holuszko, Maria. "A New Life for Old Metals." In Heavy Metal, 219–28. Cambridge, UK: Open Book Publishers, 2024. http://dx.doi.org/10.11647/obp.0373.29.

Full text
Abstract:
The current global economy is based on the extraction of natural resources for use in products that are often disposed of after a short time. Some of the metals used in these products are becoming scarcer and more expensive, and their extraction can be associated with negative social and environmental impacts. This has prompted significant efforts to recover and recycle metals from a wide variety of post-consumer products. With a particular focus on the challenging problem of electronic waste, this essay looks at the technical, social and economic factors shaping metal re-use and recycling. Electronic waste streams can be highly enriched in metals relative to primary mined sources, and they can be considered as the richest ore deposits in the world, often containing elements that are critical for green technology applications. Failure to recover these metals not only presents a significant missed economic opportunity, but also a potential environmental threat to air, water and soil. At present, standards and practices of metal recycling and recovery are highly variable around the world, and a more coordinated effort is needed to increase their efficiency. This will require new technological approaches, alongside economic incentives and regulatory oversight. With the right intention and approaches, there is a significant opportunity to recover valuable materials from metal-rich ‘urban mines’, building robust, resilient and efficient recycling systems that are needed for a truly circular economy.
APA, Harvard, Vancouver, ISO, and other styles
3

Southam, Gordon. "Microbial Mining." In Heavy Metal, 211–18. Cambridge, UK: Open Book Publishers, 2024. http://dx.doi.org/10.11647/obp.0373.28.

Full text
Abstract:
With the discovery of a wide range of biological processes affecting metal cycling on Earth, biotechnology is receiving increased attention from the mining industry. The diverse genetic responses of microbes to high metal concentrations metals offer a win-win opportunity, providing exploration targets and new approaches to bioremediation of metal pollution through the enhanced recovery of critical metals. This essay considers how biotechnology could be harnessed across the mining life cycle to improve the discovery and extraction of ore deposits, and the recovery and treatment of potentially hazardous wastes.
APA, Harvard, Vancouver, ISO, and other styles
4

Kabata-Pendias, Alina. "Agricultural Problems Related to Excessive Trace Metal Contents of Soils." In Heavy Metals, 3–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79316-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ree, C. C. D. F. "Engineering Methods for Control of Polluted Sites and Solid Waste Disposal." In Heavy Metals, 151–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79316-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rulkens, W. H., J. T. C. Grotenhuis, and R. Tichý. "Methods for Cleaning Contaminated Soils and Sediments." In Heavy Metals, 165–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79316-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Elgersma, F., J. N. Schinkel, and M. P. C. Weijnen. "Improving Environmental Performance of a Primary Lead and Zinc Smelter." In Heavy Metals, 193–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79316-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weijnen, M. P. C., J. N. Schinkel, and F. Elgersma. "Reduction of Metal Emissions by Cleaner Mineral Processing Technology." In Heavy Metals, 209–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79316-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Förstner, Ulrich. "Contaminated Aquatic Sediments and Waste Sites: Geochemical Engineering Solutions." In Heavy Metals, 237–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79316-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lewandowski, A., and J. Przewlócki. "Engineering Aspects of Pollution in View of Case Studies Carried Out in Poland." In Heavy Metals, 259–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79316-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Heavy metals"

1

Zorica, Bacinschi, Cristiana Zizi Rizescu, and Aurora Anca Poinescu. "Heavy metals concentrations control." In 2010 International Conference on Environmental Engineering and Applications (ICEEA). IEEE, 2010. http://dx.doi.org/10.1109/iceea.2010.5596105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tatar, Adina. "HEAVY METALS IN TG JIU." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b41/s17.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bolan, Shiv. "Heavy Metals and Gut Microbes Interactions." In Proceedings of the 18th International Conference on Heavy Metals in the Environment. openjournals ugent, 2016. http://dx.doi.org/10.21825/ichmet.71356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pereira, Miguel D., Octavian Postolache, and Pedro Silva Girao. "Improving celerity of heavy metals measurements." In 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. IEEE, 2010. http://dx.doi.org/10.1109/imtc.2010.5488121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Johal, E., M. K. Jha, and M. S. Saini. "Studies on Treatment of Heavy Metals." In World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Na, Qingzheng Xu, and Li Peng. "Heavy metals contamination in urban topsoil." In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2012. http://dx.doi.org/10.1109/fskd.2012.6234259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hagopian, V. E., and L. Winfrey. "Surface Plasma Phenomena of Heavy Metals." In 2022 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2022. http://dx.doi.org/10.1109/icops45751.2022.9813090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tuccillo, Mary Ellen. "Analysis of Heavy Metals in Stormwater." In Engineering Foundation Conference 2001. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40602(263)43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Altan, Metin, Ömer Ayyildiz, Semra Malkoç, Berna Yazici, and Savaş Koparal. "Developing Heavy Metal Pollution Map with Multifactor Contributed." In Optical Remote Sensing of the Environment. Washington, D.C.: Optica Publishing Group, 2010. http://dx.doi.org/10.1364/orse.2010.pdotua3.

Full text
Abstract:
In this study, a detailed investigation has been conducted to understand the contamination characteristics and distributions of heavy metal pollution in terms of contributions of the heavy metal concentrations as mg/kg of Cd, Cr, Cu, Ni, Zn, Pb, Fe and Mn in the urban soil in Eskişehir city center. The amount of these heavy metals were determined from 15 soil sample points collected within urban area and every sample point included 6 separated samples for chemical analyses. The results indicated that concentration values of all metals except Ni and Cr in soils were below the risky limit pollution values. Spatial distribution maps were created and recoded, in terms of these heavy metals concentrations as contribution to heavy metal pollution in soil, through Geographical Information Systems techniques.
APA, Harvard, Vancouver, ISO, and other styles
10

CHOCHOLOUŠEK, Michal, Zdeněk FULÍN, and Zbyněk ŠPIRIT. "Technologies for Testing and Precise Measurement in Heavy Liquid Metals." In METAL 2019. TANGER Ltd., 2019. http://dx.doi.org/10.37904/metal.2019.841.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Heavy metals"

1

Putnam, Mike, and Pilar Umnuss. Heavy Metals Analyzer. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada607339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Савосько, Василь Миколайович. Pedogeochemical Barriers of Heavy Metals’ Migration. Lublin: Institute of Agrophysics, 2018. http://dx.doi.org/10.31812/123456789/2944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

De Quesada, Armando, David Silveri, and Tom Bright. Abatement of Marine Coatings Containing Heavy Metals. Fort Belvoir, VA: Defense Technical Information Center, June 1995. http://dx.doi.org/10.21236/ada453186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilson, R. F. Transport of heavy metals in process wastewaters. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6203104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pereboom, D. P. K. H., I. J. W. Elbers, J. de Jong, M. K. van der Lee, and W. C. M. de Nijs. Proficiency test for heavy metals in compound feed. Wageningen: RIKILT Wageningen University & Research, 2016. http://dx.doi.org/10.18174/397952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Detering, B. A., and J. A. Batdorf. Plasma treatment of INEL soil contaminated with heavy metals. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/10139135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Watson, L. D., and J. E. Thompson. Heavy metals processing near-net-forming summary progress report. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/132677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bunting, Wade. Elimination of Toxic Heavy Metals From Small Caliber Ammunition. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada371028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Heather Richard, Heather Richard. Are biofilms responsible for heavy metals on plastic debris? Experiment, June 2014. http://dx.doi.org/10.18258/2743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Detering, B. A., and J. A. Batdorf. Plasma treatment of INEL soil contaminated with heavy metals. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5665137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography