To see the other types of publications on this topic, follow the link: Heavy fermion metals.

Journal articles on the topic 'Heavy fermion metals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Heavy fermion metals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Steglich, F. "Heavy Fermion Metals." Physica Scripta T29 (January 1, 1989): 15–19. http://dx.doi.org/10.1088/0031-8949/1989/t29/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shaginyan, V. R., M. Ya Amusia, A. Z. Msezane, and K. G. Popov. "Scaling behavior of heavy fermion metals." Physics Reports 492, no. 2-3 (July 2010): 31–109. http://dx.doi.org/10.1016/j.physrep.2010.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gegenwart, Philipp, Qimiao Si, and Frank Steglich. "Quantum criticality in heavy-fermion metals." Nature Physics 4, no. 3 (March 2008): 186–97. http://dx.doi.org/10.1038/nphys892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shaginyan, V. R., K. G. Popov, and S. A. Artamonov. "Hall coefficient in heavy fermion metals." Journal of Experimental and Theoretical Physics Letters 82, no. 4 (August 2005): 215–19. http://dx.doi.org/10.1134/1.2121817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nair, Sunil, S. Wirth, S. Friedemann, F. Steglich, Q. Si, and A. J. Schofield. "Hall effect in heavy fermion metals." Advances in Physics 61, no. 5 (October 2012): 583–664. http://dx.doi.org/10.1080/00018732.2012.730223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parihari, D., and N. S. Vidhyadhiraja. "Magnetoresistance in paramagnetic heavy fermion metals." Journal of Physics: Condensed Matter 21, no. 40 (September 14, 2009): 405602. http://dx.doi.org/10.1088/0953-8984/21/40/405602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shaginyan, V. R. "Dissymmetrical tunneling in heavy-fermion metals." Journal of Experimental and Theoretical Physics Letters 81, no. 5 (March 2005): 222–25. http://dx.doi.org/10.1134/1.1921320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mason, T. E., T. Petersen, G. Aeppli, W. J. L. Buyers, E. Bucher, J. D. Garrett, K. N. Clausen, and A. A. Menovsky. "Magnetic fluctuations in heavy-fermion metals." Physica B: Condensed Matter 213-214 (August 1995): 11–15. http://dx.doi.org/10.1016/0921-4526(95)00051-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sauls, J. A., and D. Rainer. "Unconventional pairing in heavy Fermion metals." Czechoslovak Journal of Physics 46, S6 (June 1996): 3089–96. http://dx.doi.org/10.1007/bf02548114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steglich, F., P. Gegenwart, R. Helfrich, C. Langhammer, P. Hellmann, L. Donnevert, C. Geibel, et al. "Are heavy-fermion metals Fermi liquids?" Zeitschrift für Physik B Condensed Matter 103, no. 2 (June 1996): 235–42. http://dx.doi.org/10.1007/s002570050366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zlatić, V., S. K. Ghatak, and K. H. Bennemann. "Electronic Spectral Density in Heavy-Fermion Metals." Physical Review Letters 57, no. 10 (September 8, 1986): 1263–66. http://dx.doi.org/10.1103/physrevlett.57.1263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hai, Lin, Li Zhengzhong, Xiao Mingwen, and Xu Xiaohua. "Effect of Pressure on Heavy-Fermion Metals." Communications in Theoretical Physics 31, no. 1 (January 30, 1999): 49–56. http://dx.doi.org/10.1088/0253-6102/31/1/49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Schröder, A., G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. v. Löhneysen, E. Bucher, R. Ramazashvili, and P. Coleman. "Onset of antiferromagnetism in heavy-fermion metals." Nature 407, no. 6802 (September 2000): 351–55. http://dx.doi.org/10.1038/35030039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lai, Hsin-Hua, Sarah E. Grefe, Silke Paschen, and Qimiao Si. "Weyl–Kondo semimetal in heavy-fermion systems." Proceedings of the National Academy of Sciences 115, no. 1 (December 18, 2017): 93–97. http://dx.doi.org/10.1073/pnas.1715851115.

Full text
Abstract:
Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy-fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here, we advance a Weyl–Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy-fermion semimetal Ce3Bi4Pd3. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations and open up an avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
APA, Harvard, Vancouver, ISO, and other styles
15

Shaginyan, V. R., A. Z. Msezane, G. S. Japaridze, and V. A. Stephanovich. "Violation of the Time-Reversal and Particle-Hole Symmetries in Strongly Correlated Fermi Systems: A Review." Symmetry 12, no. 10 (September 25, 2020): 1596. http://dx.doi.org/10.3390/sym12101596.

Full text
Abstract:
In this review, we consider the time reversal T and particle-antiparticle C symmetries that, being most fundamental, can be violated at microscopic level by a weak interaction. The notable example here is from condensed matter, where strongly correlated Fermi systems like heavy-fermion metals and high Tc superconductors exhibit C and T symmetries violation due to so-called non-Fermi liquid (NFL) behavior. In these systems, tunneling differential conductivity (or resistivity) is a very sensitive tool to experimentally test the above symmetry break. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition (FCQPT), it exhibits the NFL properties, so that the C symmetry breaks down, making the differential tunneling conductivity to be an asymmetric function of the bias voltage V. This asymmetry does not take place in normal metals, where Landau Fermi liquid (LFL) theory holds. Under the application of magnetic field, a heavy fermion metal transits to the LFL state, and σ(V) becomes symmetric function of V. These findings are in good agreement with experimental observations. We suggest that the same topological FCQPT underlies the baryon asymmetry in the Universe. We demonstrate that the most fundamental features of the nature are defined by its topological and symmetry properties.
APA, Harvard, Vancouver, ISO, and other styles
16

Steglich, F., B. Buschinger, P. Gegenwart, M. Lohmann, R. Helfrich, C. Langhammer, P. Hellmann, et al. "Quantum critical phenomena in undoped heavy-fermion metals." Journal of Physics: Condensed Matter 8, no. 48 (November 25, 1996): 9909–21. http://dx.doi.org/10.1088/0953-8984/8/48/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

SCHROEDER, A., G. AEPPLI, P. COLEMAN, R. RAMAZASHVILI, R. COLDEA, M. ADAMS, E. BUCHER, D. F. MCMORROW, H. V. LÖHNEYSEN, and O. STOCKERT. "QUANTUM CRITICAL FLUCTUATIONS IN HEAVY FERMION COMPOUNDS." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3031–36. http://dx.doi.org/10.1142/s0217979202013493.

Full text
Abstract:
The electronic properties of heavy fermion alloys are dominated by spin fluctuations which are expected to become critical when tuned by pressure to a quantum critical point (QCP), entering a magnetic ordered state. Apart from the onset of exotic superconductivity, unexpected "normal conducting" behavior is found close to the QCP, which does not seem only to escape the conventional view of metals (Fermi liquids) but also the "conventional view" of an antiferromagnetic quantum phase transition in these f-metals. So far only few compounds have been investigated by neutron scattering to directly reveal the critical fluctuations spectrum. In CeCu 59 Au 01 the fluctuations develop an unusual energy dependence, characterized by an exponent α = 0.75, which persist over the entire Brillouin zone, provoking an unexpected local non Fermi liquid behavior. The same unusual exponent derived from E/T scaling determines the H/T scaling of the uniform magnetization. Recent neutron scattering data in magnetic fields further confirm this picture of nearly free local magnetic moments (modified by α) emerging at the antiferromagnetic QCP in this strongly correlated electron system.
APA, Harvard, Vancouver, ISO, and other styles
18

Manakova, L. A. "Heavy-fermion states in non-Fermi-liquid impurity metals." Journal of Experimental and Theoretical Physics Letters 71, no. 5 (March 2000): 187–90. http://dx.doi.org/10.1134/1.568311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schroeder, A., G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. von Loehneysen, E. Bucher, R. Ramazashvili, and P. Coleman. "ChemInform Abstract: Onset of Antiferromagnetism in Heavy-Fermion Metals." ChemInform 31, no. 50 (December 12, 2000): no. http://dx.doi.org/10.1002/chin.200050006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

LUO, M. J. "ANOMALOUS LOCAL CRITICALITY IN HEAVY FERMION METALS FROM HOLOGRAPHY." Modern Physics Letters B 28, no. 01 (December 23, 2013): 1450005. http://dx.doi.org/10.1142/s0217984914500055.

Full text
Abstract:
In this paper, we propose a holographic theory to explain a number of anomalous critical phenomena observed in certain heavy fermion metals, e.g. CeCu 5.9 Au 0.1 and YbRh 2( Si 0.95 Ge 0.05)2, which are incompatible with any conventional spin-density-wave quantum critical point theory. We show that the non-Gaussian nature of the fixed point from holography plays an essential role in the physics of these materials near a quantum critical point, which is not in the same universality class of the spin-density-wave type fixed point. The critical spin fluctuations at the non-Gaussian fixed point are strongly anisotropic, localized in spatial directions and critical in temporal direction with critical exponent 2/3 in frequency over temperature dependence at low temperature. The local critical exponent tends to unity which leads to a constant spin relaxation rate in the quantum critical regime at high temperature. The stability of the fixed point is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
21

Shaginyan, V. R., A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel. "General properties of phase diagrams of heavy-fermion metals." EPL (Europhysics Letters) 106, no. 3 (May 1, 2014): 37001. http://dx.doi.org/10.1209/0295-5075/106/37001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ramshaw, B. J., Arkady Shekhter, Ross D. McDonald, Jon B. Betts, J. N. Mitchell, P. H. Tobash, C. H. Mielke, E. D. Bauer, and Albert Migliori. "Avoided valence transition in a plutonium superconductor." Proceedings of the National Academy of Sciences 112, no. 11 (March 3, 2015): 3285–89. http://dx.doi.org/10.1073/pnas.1421174112.

Full text
Abstract:
The d and f electrons in correlated metals are often neither fully localized around their host nuclei nor fully itinerant. This localized/itinerant duality underlies the correlated electronic states of the high-Tc cuprate superconductors and the heavy-fermion intermetallics and is nowhere more apparent than in the 5f valence electrons of plutonium. Here, we report the full set of symmetry-resolved elastic moduli of PuCoGa5—the highest Tc superconductor of the heavy fermions (Tc = 18.5 K)—and find that the bulk modulus softens anomalously over a wide range in temperature above Tc. The elastic symmetry channel in which this softening occurs is characteristic of a valence instability—therefore, we identify the elastic softening with fluctuations of the plutonium 5f mixed-valence state. These valence fluctuations disappear when the superconducting gap opens at Tc, suggesting that electrons near the Fermi surface play an essential role in the mixed-valence physics of this system and that PuCoGa5 avoids a valence transition by entering the superconducting state. The lack of magnetism in PuCoGa5 has made it difficult to reconcile with most other heavy-fermion superconductors, where superconductivity is generally believed to be mediated by magnetic fluctuations. Our observations suggest that valence fluctuations play a critical role in the unusually high Tc of PuCoGa5.
APA, Harvard, Vancouver, ISO, and other styles
23

Irkhin, Valentin Yu. "Ideas by S.V. Vonsovsky and Modern Model Treatment of Magnetism." Solid State Phenomena 168-169 (December 2010): 3–11. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.3.

Full text
Abstract:
A review of fundamental works by Shubin and Vonsovsky on the formulation of the polar and s–d(f) exchange models is given. Their ideas are compared with subsequent developments in the theory of magnetism in d- and f-metals and their compounds. Modern approaches including various slave-boson and slave-fermion representations, formation of exotic quasiparticles etc. are discussed. Internal connections between different many-electron models (the Heisenberg, Hubbard, t–J, Anderson Hamiltonians) are presented. Description of anomalous rare-earth and actinide compounds (Kondo lattices, systems with heavy fermions and non-Fermi-liquid behavior) within the framework of the s–d(f) exchange model and related models is considered.
APA, Harvard, Vancouver, ISO, and other styles
24

Shaginyan, V. R., A. Z. Msezane, K. G. Popov, and V. A. Khodel. "Scaling in dynamic susceptibility of herbertsmithite and heavy-fermion metals." Physics Letters A 376, no. 38-39 (August 2012): 2622–26. http://dx.doi.org/10.1016/j.physleta.2012.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Steglich, F., C. Geibel, F. M. Grosche, M. Loewenhaupt, O. Stockert, S. Wirth, and H. Q. Yuan. "Experimental evidence for unconventional BCS states in heavy-fermion metals." Physica B: Condensed Matter 403, no. 5-9 (April 2008): 968–72. http://dx.doi.org/10.1016/j.physb.2007.10.273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Steglich, F., N. Sato, T. Tayama, T. Lühmann, C. Langhammer, P. Gegenwart, P. Hinze, et al. "Unconventional normal-state properties and superconductivity in heavy-fermion metals." Physica C: Superconductivity 341-348 (November 2000): 691–94. http://dx.doi.org/10.1016/s0921-4534(00)00652-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Si, Qimiao, and Silke Paschen. "Quantum phase transitions in heavy fermion metals and Kondo insulators." physica status solidi (b) 250, no. 3 (March 2013): 425–38. http://dx.doi.org/10.1002/pssb.201300005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gloos, K., F. Martin, C. Schank, C. Geibel, and F. Steglich. "Reflexion of ballistic electrons at interfaces with heavy-fermion metals." Physica B: Condensed Matter 206-207 (February 1995): 282–84. http://dx.doi.org/10.1016/0921-4526(94)00434-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gloos, K., D. Düllmann, M. Weis, P. C. Canfield, G. Sparn, and F. Steglich. "Microcontacts of heavy fermion CeCu2Ge2 with simple metals at 0.1K." Physica B: Condensed Matter 194-196 (February 1994): 2019–20. http://dx.doi.org/10.1016/0921-4526(94)91509-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Steglich, F., P. Gegenwart, C. Geibel, R. Helfrich, P. Hellmann, M. Lang, A. Link, et al. "New observations concerning magnetism and superconductivity in heavy-fermion metals." Physica B: Condensed Matter 223-224 (June 1996): 1–8. http://dx.doi.org/10.1016/0921-4526(96)00026-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mathur, N. D., and C. D. Frost. "CeIr2Ge2, a new heavy fermion compound." Journal of Alloys and Compounds 215, no. 1-2 (November 1994): 325–28. http://dx.doi.org/10.1016/0925-8388(94)90861-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kusunose, Hiroaki, Satoshi Yotsuhashi, and Kazumasa Miyake. "Heavy Fermion State ind-band Metals Due to Inter-Orbital Interactions." Journal of the Physical Society of Japan 71, Suppl (January 2002): 220–22. http://dx.doi.org/10.1143/jpsjs.71s.220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shaginyan, V. R. "Universal behavior of heavy-fermion metals near a quantum critical point." Journal of Experimental and Theoretical Physics Letters 79, no. 6 (March 2004): 286–92. http://dx.doi.org/10.1134/1.1759411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Senthil, T. "On non-Fermi liquid quantum critical points in heavy fermion metals." Annals of Physics 321, no. 7 (July 2006): 1669–81. http://dx.doi.org/10.1016/j.aop.2006.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bachmann, Maja D., G. M. Ferguson, Florian Theuss, Tobias Meng, Carsten Putzke, Toni Helm, K. R. Shirer, et al. "Spatial control of heavy-fermion superconductivity in CeIrIn5." Science 366, no. 6462 (October 10, 2019): 221–26. http://dx.doi.org/10.1126/science.aao6640.

Full text
Abstract:
Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn5. We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain. These results showcase a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter without compromising the cleanliness, stoichiometry, or mean free path.
APA, Harvard, Vancouver, ISO, and other styles
36

Lucas, Andrew, and Sean A. Hartnoll. "Resistivity bound for hydrodynamic bad metals." Proceedings of the National Academy of Sciences 114, no. 43 (October 10, 2017): 11344–49. http://dx.doi.org/10.1073/pnas.1711414114.

Full text
Abstract:
We obtain a rigorous upper bound on the resistivity ρ of an electron fluid whose electronic mean free path is short compared with the scale of spatial inhomogeneities. When such a hydrodynamic electron fluid supports a nonthermal diffusion process—such as an imbalance mode between different bands—we show that the resistivity bound becomes ρ≲AΓ. The coefficient A is independent of temperature and inhomogeneity lengthscale, and Γ is a microscopic momentum-preserving scattering rate. In this way, we obtain a unified mechanism—without umklapp—for ρ∼T2 in a Fermi liquid and the crossover to ρ∼T in quantum critical regimes. This behavior is widely observed in transition metal oxides, organic metals, pnictides, and heavy fermion compounds and has presented a long-standing challenge to transport theory. Our hydrodynamic bound allows phonon contributions to diffusion constants, including thermal diffusion, to directly affect the electrical resistivity.
APA, Harvard, Vancouver, ISO, and other styles
37

Shaginyan, V. R., A. Z. Msezane, and M. Ya Amusia. "Quasiparticles and order parameter near quantum phase transition in heavy fermion metals." Physics Letters A 338, no. 3-5 (May 2005): 393–401. http://dx.doi.org/10.1016/j.physleta.2005.02.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shaginyan, V. R. "Quasiparticles and order parameter near quantum phase transition in heavy fermion metals." Physica B: Condensed Matter 378-380 (May 2006): 127–28. http://dx.doi.org/10.1016/j.physb.2006.01.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Si, Qimiao. "Global magnetic phase diagram and local quantum criticality in heavy fermion metals." Physica B: Condensed Matter 378-380 (May 2006): 23–27. http://dx.doi.org/10.1016/j.physb.2006.01.156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Steglich, F. "Superconductivity, magnetic ordering and non-Fermi-liquid effects in heavy-fermion metals." Journal of Magnetism and Magnetic Materials 226-230 (May 2001): 1–4. http://dx.doi.org/10.1016/s0304-8853(00)00601-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Si, Qimiao, and Silke Paschen. "ChemInform Abstract: Quantum Phase Transitions in Heavy Fermion Metals and Kondo Insulators." ChemInform 45, no. 26 (June 12, 2014): no. http://dx.doi.org/10.1002/chin.201426277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Steglich, F., J. Arndt, O. Stockert, S. Friedemann, M. Brando, C. Klingner, C. Krellner, et al. "Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metals." Journal of Physics: Condensed Matter 24, no. 29 (July 6, 2012): 294201. http://dx.doi.org/10.1088/0953-8984/24/29/294201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sachdev, Subir, Max A. Metlitski, and Matthias Punk. "Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials." Journal of Physics: Condensed Matter 24, no. 29 (July 6, 2012): 294205. http://dx.doi.org/10.1088/0953-8984/24/29/294205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Volkov, Pavel A., Snir Gazit, and Jedediah H. Pixley. "Magnon Bose–Einstein condensation and superconductivity in a frustrated Kondo lattice." Proceedings of the National Academy of Sciences 117, no. 34 (August 11, 2020): 20462–67. http://dx.doi.org/10.1073/pnas.2000501117.

Full text
Abstract:
Motivated by recent experiments on magnetically frustrated heavy fermion metals, we theoretically study the phase diagram of the Kondo lattice model with a nonmagnetic valence bond solid ground state on a ladder. A similar physical setting may be naturally occurring inYbAl3C3,CeAgBi2, andTmB4compounds. In the insulating limit, the application of a magnetic field drives a quantum phase transition to an easy-plane antiferromagnet, which is described by a Bose–Einstein condensation of magnons. Using a combination of field theoretical techniques and density matrix renormalization group calculations we demonstrate that in one dimension this transition is stable in the presence of a metallic Fermi sea, and its universality class in the local magnetic response is unaffected by the itinerant gapless fermions. Moreover, we find that fluctuations about the valence bond solid ground state can mediate an attractive interaction that drives unconventional superconducting correlations. We discuss the extensions of our findings to higher dimensions and argue that depending on the filling of conduction electrons, the magnon Bose–Einstein condensation transition can remain stable in a metal also in dimensions two and three.
APA, Harvard, Vancouver, ISO, and other styles
45

Sechovský, V., and L. Havela. "Heavy fermion behaviour in lanthanide and actinide materials." Journal of Alloys and Compounds 225, no. 1-2 (July 1995): 444–55. http://dx.doi.org/10.1016/0925-8388(94)07050-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mentink, S. A. M., B. J. van Rossum, G. J. Nieuwenhuys, J. A. Mydosh, and K. H. J. Buschow. "Resistivity anomalies in heavy-fermion CeCu2Sb2 and CeNi2Sb2." Journal of Alloys and Compounds 216, no. 1 (December 1994): 131–34. http://dx.doi.org/10.1016/0925-8388(94)91054-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fisk, Zachary, and M. Brian Maple. "On the existence of heavy fermion ytterbium compounds." Journal of Alloys and Compounds 183 (May 1992): 303–11. http://dx.doi.org/10.1016/0925-8388(92)90754-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Auerbach, A., Ju H. Kim, K. Levin, and M. R. Norman. "Theory of antiferromagnetic correlations and neutron-scattering cross section in heavy-fermion metals." Physical Review Letters 60, no. 7 (February 15, 1988): 623–26. http://dx.doi.org/10.1103/physrevlett.60.623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Watanabe, Shinji, and Kazumasa Miyake. "Roles of critical valence fluctuations in Ce- and Yb-based heavy fermion metals." Journal of Physics: Condensed Matter 23, no. 9 (February 17, 2011): 094217. http://dx.doi.org/10.1088/0953-8984/23/9/094217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Miyake, K., and S. Watanabe. "Ubiquity of unconventional phenomena associated with critical valence fluctuations in heavy fermion metals." Philosophical Magazine 97, no. 36 (April 25, 2017): 3495–516. http://dx.doi.org/10.1080/14786435.2017.1314561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography