Academic literature on the topic 'Heat waves (Meteorology) – Health aspects'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat waves (Meteorology) – Health aspects.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Heat waves (Meteorology) – Health aspects"

1

Simon, F., G. Lopez-Abente, E. Ballester, and F. Martinez. "Mortality in Spain during the heat waves of summer 2003." Eurosurveillance 10, no. 7 (July 1, 2005): 9–10. http://dx.doi.org/10.2807/esm.10.07.00555-en.

Full text
Abstract:
The effect of the elevated temperatures on mortality experienced in Europe during the summer of 2003 was observed in several countries. This study, carried out in Spain, describes mortality between 1 June and 31 August and evaluates the effect of the heat wave on mortality. Observed deaths were obtained from official death registers from 50 provincial capitals. Observed deaths were compared with the expected number, estimated by applying a Poisson regression model to historical mortality series and adjusting for the upward trend and seasonality observed. Meteorological information was provided by the Instituto Nacional de Meteorología (National Institute of Meteorology). Spain experienced three heat waves in 2003. The total associated excess deaths were 8% (43 212 observed deaths compared with 40 046 expected deaths). Excess deaths were only observed in those aged 75 years and over (15% more deaths than expected for the age group 75 to 84 and 29% for those aged 85 or over). This phenomenon (heat-associated excess mortality) is an emerging public health problem because of its increasing attributable risk, the aging of the Spanish population and its forecasted increasing frequency due to global warming. The implementation of alert and response systems based on monitoring of climate-related risks, emergency room activity and mortality, and strengthening the response capacity of the social and health services should be considered.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Xiaochen, Zhan Tian, Laixiang Sun, Junguo Liu, Wei Wu, Hanqing Xu, Landong Sun, and Chunfang Wang. "Mitigating heat-related mortality risk in Shanghai, China: system dynamics modeling simulations." Environmental Geochemistry and Health 42, no. 10 (April 29, 2020): 3171–84. http://dx.doi.org/10.1007/s10653-020-00556-9.

Full text
Abstract:
Abstract Numerous studies in epidemiology, meteorology, and climate change research have demonstrated a significant association between abnormal ambient temperature and mortality. However, there is a shortage of research attention to a systematic assessment of potential mitigation measures which could effectively reduce the heat-related morbidity and mortality risks. This study first illustrates a conceptualization of a systems analysis version of urban framework for climate service (UFCS). It then constructs a system dynamics (SD) model for the UFCS and employs this model to quantify the impacts of heat waves on public health system in Shanghai and to evaluate the performances of two mitigation measures in the context of a real heat wave event in July 2013 in the city. Simulation results show that in comparison with the baseline without mitigation measures, if the hospital system could prepare 20% of beds available for emergency response to heat waves once receiving the warning in advance, the number of daily deaths could be reduced by 40–60 (15.8–19.5%) on the 2 days of day 7 and day 8; if increasing the minimum living allowance of 790 RMB/month in 2013 by 20%, the number of daily deaths could be reduced by 50–70 (17.7–21.9%) on the 2 days of day 8 and day 12. This tool can help policy makers systematically evaluate adaptation and mitigation options based on performance assessment, thus strengthening urban resilience to changing climate.
APA, Harvard, Vancouver, ISO, and other styles
3

Rocha, Alfredo, Susana C. Pereira, Carolina Viceto, Rui Silva, Jorge Neto, and Martinho Marta-Almeida. "A Consistent Methodology to Evaluate Temperature and Heat Wave Future Projections for Cities: A Case Study for Lisbon." Applied Sciences 10, no. 3 (February 8, 2020): 1149. http://dx.doi.org/10.3390/app10031149.

Full text
Abstract:
Heat waves are large-scale atmospheric phenomena that may cause heat stress in ecosystems and socio-economic activities. In cities, morbidity and mortality may increase during a heat wave, overloading health and emergency services. In the face of climate change and associated warming, cities need to adapt and mitigate the effects of heat waves. This study suggests a new method to evaluate heat waves’ impacts on cities by considering some aspects of heat waves that are not usually considered in other similar studies. The method devises heat wave quantities that are easy to calculate; it is relevant to assessing their impacts and permits the development of adaptation measures. This study applies the suggested method to quantify various aspects of heat waves in Lisbon for future climate projections considering future mid-term (2046–2065) and long-term (2081–2100) climates under the RCP8.5 greenhouse emission scenario. This is achieved through the analysis of various regional climate simulations performed with the WRF model and an ensemble of EURO-CORDEX models. This allows an estimation of uncertainty and confidence of the projections. To evaluate the climate change properties of heat waves, statistics for future climates are compared to those for a reference recent climate. Simulated temperatures are first bias corrected to minimize the model systematic errors relative to observations. The temperature for mid and long-term futures is expected to increase relative to the present by 1.6 °C and 3.6 °C, respectively, with late summer months registering the highest increases. The number of heat wave days per year will increase on average from 10, in the present climate, to 38 and 63 in mid and long-term climates, respectively. Heat wave duration, intensity, average maximum temperature, and accumulated temperature during a heat wave will also increase. Heat waves account for an annual average of accumulated temperature of 358 °C·day in the present climate, while in the mid and long-term, future climates account for 1270 °C·day and 2078 °C·day, respectively. The largest increases are expected to occur from July to October. Extreme intensity and long-duration heat waves with an average maximum temperature of more than 40 °C are expected to occur in the future climates.
APA, Harvard, Vancouver, ISO, and other styles
4

Liang, X., S. Miao, J. Li, R. Bornstein, X. Zhang, Y. Gao, F. Chen, et al. "SURF: Understanding and Predicting Urban Convection and Haze." Bulletin of the American Meteorological Society 99, no. 7 (July 2018): 1391–413. http://dx.doi.org/10.1175/bams-d-16-0178.1.

Full text
Abstract:
AbstractUrbanization modifies atmospheric energy and moisture balances, forming distinct features [e.g., urban heat islands (UHIs) and enhanced or decreased precipitation]. These produce significant challenges to science and society, including rapid and intense flooding, heat waves strengthened by UHIs, and air pollutant haze. The Study of Urban Impacts on Rainfall and Fog/Haze (SURF) has brought together international expertise on observations and modeling, meteorology and atmospheric chemistry, and research and operational forecasting. The SURF overall science objective is a better understanding of urban, terrain, convection, and aerosol interactions for improved forecast accuracy. Specific objectives include a) promoting cooperative international research to improve understanding of urban summer convective precipitation and winter particulate episodes via extensive field studies, b) improving high-resolution urban weather and air quality forecast models, and c) enhancing urban weather forecasts for societal applications (e.g., health, energy, hydrologic, climate change, air quality, planning, and emergency response management). Preliminary SURF observational and modeling results are shown (i.e., turbulent PBL structure, bifurcating thunderstorms, haze events, urban canopy model development, and model forecast evaluation).
APA, Harvard, Vancouver, ISO, and other styles
5

Lindemann, Ulrich, Dawn A. Skelton, Juha Oksa, Nina Beyer, Kilian Rapp, Clemens Becker, and Jochen Klenk. "Social participation and heat-related behavior in older adults during heat waves and on other days." Zeitschrift für Gerontologie und Geriatrie 51, no. 5 (November 6, 2017): 543–49. http://dx.doi.org/10.1007/s00391-017-1338-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Macassa, Gloria, Ana Isabel Ribeiro, Anneli Marttila, Frida Stål, José Pedro Silva, Michelle Rydback, Mamunur Rashid, and Henrique Barros. "Public Health Aspects of Climate Change Adaptation in Three Cities: A Qualitative Study." International Journal of Environmental Research and Public Health 19, no. 16 (August 18, 2022): 10292. http://dx.doi.org/10.3390/ijerph191610292.

Full text
Abstract:
Climate change presents an unprecedented public health challenge as it has a great impact on population health outcomes across the global population. The key to addressing these health challenges is adaptation carried out in cities through collaboration between institutions, including public health ones. Through semi-structured interviews (n = 16), this study investigated experiences and perceptions of what public health aspects are considered by urban and public health planners and researchers when planning climate change adaptation in the coastal cities of Söderhamn (Sweden), Porto (Portugal) and Navotas (the Philippines). Results of the thematic analysis indicated that participating stakeholders were aware of the main climate risks threatening their cities (rising water levels and flooding, extreme temperatures, and air pollution). In addition, the interviewees talked about collaboration with other sectors, including the public health sector, in implementing climate change adaptation plans. However, the inclusion of the public health sector as a partner in the process was identified in only two cities, Navotas and Porto. Furthermore, the study found that there were few aspects pertaining to public health (water and sanitation, prevention of heat-related and water-borne diseases, and prevention of the consequences associated with heat waves in vulnerable groups such as children and elderly persons) in the latest climate change adaptation plans posted on each city’s website. Moreover, participants pointed to different difficulties: insufficient financial resources, limited intersectoral collaboration for climate change adaptation, and lack of involvement of the public health sector in the adaptation processes, especially in one of the cities in which climate change adaptation was solely the responsibility of the urban planners. Studies using larger samples of stakeholders in larger cities are needed to better understand why the public health sector is still almost absent in efforts to adapt to climate change.
APA, Harvard, Vancouver, ISO, and other styles
7

Ly, Pham Thi, and Hoang Luu Thu Thuy. "Spatial distribution of hot days in north central region, Vietnam in the period of 1980-2013." VIETNAM JOURNAL OF EARTH SCIENCES 41, no. 1 (January 8, 2019): 36–45. http://dx.doi.org/10.15625/0866-7187/41/1/13544.

Full text
Abstract:
Based on the data of daily maximum temperature in 26 meteorological stations in the North Center Region, Vietnam over the period of 1980 to 2013, the authors conducted the research on the spatial distribution of the number of hot days. The initial result shows that in general, in the north of the study area, the large number of hot days occurred in the plain, and tended to decrease westward and eastward. In the south, this number tends to increase from the west to the east. Especially, the largest number occurred in two areas: The Ma and Ca River's valleys (Thanh Hoa and Nghe An provinces) and the coastal areas (Thua Thien Hue province), creating two heat centers in Tuong Duong district, Nghe An province and Nam Dong district, Thua Thien Hue province.ReferencesAdina-Eliza Croitoru, Adrian Piticar, Antoniu-Flavius Ciupertea, Cristina FlorinaRosca, 2016 Changes in heat wave indices in Romania over the period 1961-2015. Global and Plantary Change 146. Journal homepage: www. Elsevier.com/locate/gloplacha.Chu Thi Thu Huong et al., 2010. Variations and trends in hot event in Vietnam from 1961-2007, VNU Journal of Science and Technology, 26(3S).Climate Council, 2014a. Angry Summer 2013/2014. Accessed at http://www.climatecouncil.org.au/ angry-summer.Climate Council, 2014b. Angry Summer 2013/2014. Accessed at http://www.climatecouncil.org.au/ angry-summer.CSIRO and BoM, 2012. State of the Climate 2012.CSIRO and Bureau of Meteorology, Melbourne.Accessed at http://www.csiro.au/Outcomes/ Climate/Understanding/State-of-the-Climate-2012.aspx.D'Ippoliti D., Michelozzi P., Marino C., De'Donato F., Menne B., Katsouyanni K., Kirchmayer U., Analitis A., Medina-Ramon M., Paldy A., Atkinson R., Kovats S., Bisanti L., Schneider A., Lefranc A., Iñiguez C., Perucci C., 2010. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ. Health 9, 37. http://dx.doi.org/10.1186/1476-069X-9-37.Gerald A. Meehl, 1992. Effect of tropical topography on global climate, Ann. Rev. Earth Planet. Sci., 20, 85-112.Hayhoe K., Cayan D., Field C.B., Frumhoff P.C., Maurer E.P., Miller N.L., Moser S.C., Schneider S.H., Cahill K.N., Cleland E.E., Dale L., Drapek R., Hanemann R.M., lkstein L.S., Lenihan J., Lunch C.K., Neilson R.P., Sheridan S.C., Verville J.H., 2004. Emissions pathways, climate change, and impacts on California. PNAS, 101(34), 12422-12427.Ho Thi Minh Ha, Phan Van Tan, 2009. Trends and variations of extreme temperature in Vietnam in the period from 1961 to 2007, VNU Journal of Science and Technology, 25(3S).IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri R.K and Reisinger A. (eds.)]. IPCC, Geneva, Switzerland, 104p.IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151p.Liu G., Zhang L., He B., Jin X., Zhang Q., Razafindrabe B., You H., 2015. Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China. Nat. Hazards, 76, 1415–1430. http://dx.doi.org/10.1007/s11069-014-1556-y.Manton M.J et al., 2001. Trends in extreme daily temperature in Southeast Asia Rainfall ad and the South Pacific, J. Climatol. 21.Nairn J.R., Fawcett R.J.B., 2015. Int. J. Environ. Res. Public Health 12, 227–253. http://dx.doi.org/10.3390/ijerph120100227.Nguyen Duc Ngu, 2009. Climate Change Challenges to development, Journal of Economy and Environment, No. 1.Perkins S.E., Alexander L.V., 2013. On the measurement of heat waves. J. Clim. 26, 4500–4517. http://dx.doi.org/10.1175/JCLI-D-12-00383.1.Peterson T.C., Heim Jr. R.R., Hirsch R., Kaiser D.P., Brooks H., Diffenbaugh N.S., Dole R.M., Giovannettone J.P., Guirguis K., Karl T.R., Katz R.W., Kunkel K., Lettenmaier D., McCabe G.J., Paciorek C.J., Ryberg K.R., Schubert S., Silva V.B.S., Stewart B.C., Vecchia A.V., Villarini G., Vose R.S., Walsh J., Wehner M., Wolock D., Wolter K., Woodhouse C.A., Wuebbles D., 2013. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull. Amer. Meteor. Soc., 94, 821–834.Pham Thi Ly, Hoang Luu Thu Thuy, 2015. Variation of heat waves in the North Central Region over the period of 1980-2013, Journal of natural resources and environment, 9, 81-89.Phan Van Tan et al., 2010. Study impact of global climate change on extreme weather phenomena and factors in Vietnam, prediction and adaptation strategies. Project final report, KC 08.29/06-10, Hanoi University of Science.Spinoni J., Lakatos M., Szentimrey T., Bihari Z., Szalai S., Vogt J., Antofie T., 2015. Heat and cold waves trends in Carpathian Region from 1961 to 2010. Int. J. Climatol, 35, 4197–4209. http://dx.doi.org/10.1002/joc.4279.Toreti A., Desiato F., 2008.Temperature trends over Italy from 1961 to 2004, Theor. Appl. Climatol 91.Tran Cong Minh, 2007. Principle of meteorology and climate, Book, Public House of Hanoi National University.Tran Quang Duc, Trinh Lan Phuong, 2013. Changes of Hot day and Fohn Activities at Ha Tinh- Central Vietnam, VNU Journal of Science, Science and Technology, 29(2S).Trewin B., Smalley R., 2013.Changes in extreme temperature in Australia, 1910 to 2011. In: 19th AMOS National Conference, Melbourne, 11-13.Unal Y.S., Tan E., Mentes S.S., 2013. Summer heat waves over western Turkey between 1965 and 2006.Theor. Appl. Climatol, 112, 339–350. http://dx.doi.org/10.1007/s00704-012-0704-0.Will Steffen, 2015. Quantifying the impact of climate change on extreme heat in Australia. Published by the Climate Council of Australia Limited. ISBN: 978-0-9942453-1-1 (print) 978-0-9942453-0-4 (web).
APA, Harvard, Vancouver, ISO, and other styles
8

Analitis, Antonis, Francesca de’ Donato, Matteo Scortichini, Timo Lanki, Xavier Basagana, Ferran Ballester, Christopher Astrom, et al. "Synergistic Effects of Ambient Temperature and Air Pollution on Health in Europe: Results from the PHASE Project." International Journal of Environmental Research and Public Health 15, no. 9 (August 28, 2018): 1856. http://dx.doi.org/10.3390/ijerph15091856.

Full text
Abstract:
We studied the potential synergy between air pollution and meteorology and their impact on mortality in nine European cities with data from 2004 to 2010. We used daily series of Apparent Temperature (AT), measurements of particulate matter (PM10), ozone (O3), and nitrogen dioxide (NO2) and total non-accidental, cardiovascular, and respiratory deaths. We applied Poisson regression for city-specific analysis and random effects meta-analysis to combine city-specific results, separately for the warm and cold seasons. In the warm season, the percentage increase in all deaths from natural causes per °C increase in AT tended to be greater during high ozone days, although this was only significant for all ages when all causes were considered. On low ozone days, the increase in the total daily number of deaths was 1.84% (95% CI 0.87, 2.82), whilst it was 2.20% (95% CI 1.28, 3.13) in the high ozone days per 1 °C increase in AT. Interaction with PM10 was significant for cardiovascular (CVD) causes of death for all ages (2.24% on low PM10 days (95% CI 1.01, 3.47) whilst it is 2.63% (95% CI 1.57, 3.71) on high PM10 days) and for ages 75+. In days with heat waves, no consistent pattern of interaction was observed. For the cold period, no evidence for synergy was found. In conclusion, some evidence of interactive effects between hot temperature and the levels of ozone and PM10 was found, but no consistent synergy could be identified during the cold season.
APA, Harvard, Vancouver, ISO, and other styles
9

Buzan, Jonathan R., and Matthew Huber. "Moist Heat Stress on a Hotter Earth." Annual Review of Earth and Planetary Sciences 48, no. 1 (May 30, 2020): 623–55. http://dx.doi.org/10.1146/annurev-earth-053018-060100.

Full text
Abstract:
As the world overheats—potentially to conditions warmer than during the three million years over which modern humans evolved—suffering from heat stress will become widespread. Fundamental questions about humans’ thermal tolerance limits are pressing. Understanding heat stress as a process requires linking a network of disciplines, from human health and evolutionary theory to planetary atmospheres and economic modeling. The practical implications of heat stress are equally transdisciplinary, requiring technological, engineering, social, and political decisions to be made in the coming century. Yet relative to the importance of the issue, many of heat stress's crucial aspects, including the relationship between its underlying atmospheric drivers—temperature, moisture, and radiation—remain poorly understood. This review focuses on moist heat stress, describing a theoretical and modeling framework that enables robust prediction of the averaged properties of moist heat stress extremes and their spatial distribution in the future, and draws some implications for human and natural systems from this framework. ▪ Moist heat stress affects society; we summarize drivers of moist heat stress and assess future impacts on societal and global scales. ▪ Moist heat stress pattern scaling of climate models allows research on future heat waves, infrastructure planning, and economic productivity.
APA, Harvard, Vancouver, ISO, and other styles
10

Xiong, L., and B.-J. He. "Analytical framework for the analysis of co-benefits, conflicts and trade-offs of urban heat mitigation strategies." IOP Conference Series: Earth and Environmental Science 1078, no. 1 (September 1, 2022): 012133. http://dx.doi.org/10.1088/1755-1315/1078/1/012133.

Full text
Abstract:
Abstract Many cities are undergoing urban heat challenges because of heat waves and urban heat islands (UHIs). During urban planning and design, properly adding cooling interventions, namely urban heat mitigation strategies, into cities and communities are essential to address urban heat challenges. However, cities are required to provide a variety of functions (e.g., buildings, transportation, park) and meet the requirements convenience, safety, health, comfort and wellbeing. Such functions and requirements result in some co-benefits, conflicts and trade-offs, promoting and constraining the application of urban heat mitigation strategies. However, the possible co-benefits, conflicts and trade-offs have not been well documented, where the improper use of cooling strategies may lead to unintended consequences. Therefore, it is essential to understand the co-benefits, conflicts and trade-offs of different cooling interventions. In particular, this study aims to develop an analytical framework for the analysis of the co-benefits, conflicts and trade-offs of different mitigation techniques. Mitigation techniques considered includes four clusters such as green infrastructure, blue infrastructure, white/grey infrastructure and urban design. The scope of urban functions and requirements, related to urban lives and urban operation, in ten aspects including economy, policy, ecology, environment, technology, space, urban beauty, practicality, culture, and transportation. The analytical framework was further applied to analyze the co-benefits, conflicts and trade-offs of cooling strategies in ten aspects of urban functions. Furthermore, it was used in environmental functions (e.g. local temperature regulation, stormwater regulation, waste treatment, air quality regulation, pollination, and recreation & aesthetic appreciation) and space functions (e.g. activity venue/entertainment venue, neighborhood vitality, resident satisfaction, space utilization and city identity), respectively. The results reveal that green infrastructure can provide the most aspects of benefits in ten aspects, and also in environmental and space aspect. Green infrastructure was followed by blue infrastructure, urban design and then white/grey infrastructure. Overall, the analytical framework offers a new perspective of the feasibility analysis of urban heat mitigation strategy and provides a reference for urban planners and designers to select proper urban heat mitigation techniques, with possible additional benefits of addressing other urban challenges.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Heat waves (Meteorology) – Health aspects"

1

Porter, Raymond E. "Public perception and response to extreme heat events." Thesis, 2014. http://hdl.handle.net/1805/3802.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
In the United States extreme heat events have grown in size and stature over the past 20 years. Urban Heat Islands exacerbate these extreme heat events leaving a sizable portion of people at risk for heat related fatalities. The evidence of this is seen in the Chicago heat wave of 1995 which killed 500 people over the course of a week and the European heat wave of 2003 which killed 7,000 people in the course of a month. The main guiding questions then become how government and the media can most effectively warn people about the occurrence of extreme heat events? Should extreme heat warnings be issued by T.V., newspaper or by radio? Even if warnings are issued will the population at large still change their behavior? Another possible question is whether people most vulnerable to extreme heat will change their behavior? A survey in 2010 by NASA will be the main basis for this analysis. This survey set out to see how well people in Phoenix, Philadelphia, and Dayton responded to extreme heat alerts by changing their behavior.
APA, Harvard, Vancouver, ISO, and other styles
2

Beerval, Ravichandra Kavya Urs. "Spatiotemporal analysis of extreme heat events in Indianapolis and Philadelphia for the years 2010 and 2011." Thesis, 2014. http://hdl.handle.net/1805/4083.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Over the past two decades, northern parts of the United States have experienced extreme heat conditions. Some of the notable heat wave impacts have occurred in Chicago in 1995 with over 600 reported deaths and in Philadelphia in 1993 with over 180 reported deaths. The distribution of extreme heat events in Indianapolis has varied since the year 2000. The Urban Heat Island effect has caused the temperatures to rise unusually high during the summer months. Although the number of reported deaths in Indianapolis is smaller when compared to Chicago and Philadelphia, the heat wave in the year 2010 affected primarily the vulnerable population comprised of the elderly and the lower socio-economic groups. Studying the spatial distribution of high temperatures in the vulnerable areas helps determine not only the extent of the heat affected areas, but also to devise strategies and methods to plan, mitigate, and tackle extreme heat. In addition, examining spatial patterns of vulnerability can aid in development of a heat warning system to alert the populations at risk during extreme heat events. This study focuses on the qualitative and quantitative methods used to measure extreme heat events. Land surface temperatures obtained from the Landsat TM images provide useful means by which the spatial distribution of temperatures can be studied in relation to the temporal changes and socioeconomic vulnerability. The percentile method used, helps to determine the vulnerable areas and their extents. The maximum temperatures measured using LST conversion of the original digital number values of the Landsat TM images is reliable in terms of identifying the heat-affected regions.
APA, Harvard, Vancouver, ISO, and other styles
3

Simmons, Kenneth Rulon. "EXTREME HEAT EVENT RISK MAP CREATION USING A RULE-BASED CLASSIFICATION APPROACH." Thesis, 2012. http://hdl.handle.net/1805/2762.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
During a 2011 summer dominated by headlines about an earthquake and a hurricane along the East Coast, extreme heat that silently killed scores of Americans largely went unnoticed by the media and public. However, despite a violent spasm of tornadic activity that claimed over 500 lives during the spring of the same year, heat-related mortality annually ranks as the top cause of death incident to weather. Two major data groups used in researching vulnerability to extreme heat events (EHE) include socioeconomic indicators of risk and factors incident to urban living environments. Socioeconomic determinants such as household income levels, age, race, and others can be analyzed in a geographic information system (GIS) when formatted as vector data, while environmental factors such as land surface temperature are often measured via raster data retrieved from satellite sensors. The current research sought to combine the insights of both types of data in a comprehensive examination of heat susceptibility using knowledge-based classification. The use of knowledge classifiers is a non-parametric approach to research involving the creation of decision trees that seek to classify units of analysis by whether they meet specific rules defining the phenomenon being studied. In this extreme heat vulnerability study, data relevant to the deadly July 1995 heat wave in Chicago’s Cook County was incorporated into decision trees for 13 different experimental conditions. Populations vulnerable to heat were identified in five of the 13 conditions, with predominantly low-income African-American communities being particularly at-risk. Implications for the results of this study are given, along with direction for future research in the area of extreme heat event vulnerability.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Heat waves (Meteorology) – Health aspects"

1

Deschênes, Olivier. Extreme weather events, mortality and migration. Cambridge, Mass: National Bureau of Economic Research, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hot time in the old town: The catastrophic heat wave that devastated Gilded Age New York. New York, NY: Basic Books, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Victoria. Department of Health. Heatwave plan for Victoria: Protecting health and reducing harm from heatwaves. Melbourne, Victoria: Department of Health, Health Protection Branch, Victorian Government, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Matthies, Franziska. Heat-health action plans: Guidance. Copenhagen, Denmark: World Health Organization, Europe, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spud. Boutique of Quality Books Publishing Company, Inc., 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

(Editor), W. Kirch, B. Menne (Editor), and R. Bertollini (Editor), eds. Extreme Weather Events and Public Health Responses. Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kirch, Wilhelm, B. Menne, and R. Bertollini. Extreme Weather Events and Public Health Responses. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Heat waves (Meteorology) – Health aspects"

1

Hussain, Saddam, Sobia Siddique, and Ashfaq Ahmad Shah. "Climate Change and Health Impacts in Pakistan." In Advances in Environmental Engineering and Green Technologies, 1–18. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2197-7.ch001.

Full text
Abstract:
Conferring to the Global Risk Index, Pakistan is ranked as the 7th most susceptible country to the inexorable influence of climate change. Before this century ends, the annual mean temperature in Pakistan is expected to rise from 3°C to 5°C for a focal worldwide discharge situation. Usually, annual precipitation is not relied upon to have a critical long haul pattern. Ocean level is relied upon to ascend further by 60 centimeters. All these climatic events are likely to disrupt the economy, lives, and the socio-political aspects of human life. Pakistan has already witnessed massive loss in terms of human, infrastructural, and economic aspects. The chapter is designed to understand both the direct and indirect health risks associated with frequent climatic events like floods, drought, and heat waves in Pakistan. After analyzing the available literature, it was observed that floods and drought have direct and indirect health risks associated with them while in case of heat waves, health risks cannot be established precisely as multiple variables are involved, playing a significant role.
APA, Harvard, Vancouver, ISO, and other styles
2

Hussain, Saddam, Sobia Siddique, and Ashfaq Ahmad Shah. "Climate Change and Health Impacts in Pakistan." In Research Anthology on Environmental and Societal Impacts of Climate Change, 1765–78. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-3686-8.ch087.

Full text
Abstract:
Conferring to the Global Risk Index, Pakistan is ranked as the 7th most susceptible country to the inexorable influence of climate change. Before this century ends, the annual mean temperature in Pakistan is expected to rise from 3°C to 5°C for a focal worldwide discharge situation. Usually, annual precipitation is not relied upon to have a critical long haul pattern. Ocean level is relied upon to ascend further by 60 centimeters. All these climatic events are likely to disrupt the economy, lives, and the socio-political aspects of human life. Pakistan has already witnessed massive loss in terms of human, infrastructural, and economic aspects. The chapter is designed to understand both the direct and indirect health risks associated with frequent climatic events like floods, drought, and heat waves in Pakistan. After analyzing the available literature, it was observed that floods and drought have direct and indirect health risks associated with them while in case of heat waves, health risks cannot be established precisely as multiple variables are involved, playing a significant role.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography