To see the other types of publications on this topic, follow the link: Heat-transfer; Aerospace gas turbines.

Dissertations / Theses on the topic 'Heat-transfer; Aerospace gas turbines'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Heat-transfer; Aerospace gas turbines.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Fletcher, Daniel Alden. "Internal cooling of turbine blades : the matrix cooling method." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krumanaker, Matthew Lee. "Aerodynamics and Heat Transfer for a Modern Stage and One-Half Turbine." The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1039538775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kulkarni, Aditya Narayan. "Computational and Experimental Investigation of Internal Cooling Passages for Gas Turbine Applications." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1590591363859471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lawson, Hannah. "Development of an Infrared Thermography Technique for Measuring Heat Transfer to a Flat Plate in a Blowdown Facility." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429721463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reding, Brian D. II. "Tubular and Sector Heat Pipes with Interconnected Branches for Gas Turbine and/or Compressor Cooling." FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/969.

Full text
Abstract:
Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.
APA, Harvard, Vancouver, ISO, and other styles
6

Nickol, Jeremy B. "Heat Transfer Measurements and Comparisons for a Film Cooled Flat Plate with Realistic Hole Pattern in a Medium Duration Blowdown Facility." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1365421507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Agricola, Lucas. "Nozzle Guide Vane Sweeping Jet Impingement Cooling." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1525436077557298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nickol, Jeremy B. "Airfoil, Platform, and Cooling Passage Measurements on a Rotating Transonic High-Pressure Turbine." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1459857581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Janakiraman, S. V. "Fluid flow and heat transfer in transonic turbine cascades." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06112009-063614/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scheepers, Gerard. "An experimental and numerical study of heat transfer augmentation near the entrance to a film cooling hole." Pretoria : [s.n.], 2007. http://upetd.up.ac.za/thesis/available/etd-08272008-163851/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ravi, Bharath Viswanath. "Heat Transfer Performance Improvement Technologies for Hot Gas Path Components in Gas Turbines." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71352.

Full text
Abstract:
In the past few decades, the operating temperatures of gas turbine engines have increased significantly with a view towards increasing the overall thermal efficiency and specific power output. As a result of increased turbine inlet temperatures, the hot gas path components downstream of the combustor section are subjected to high heat loads. Though materials with improved temperature capabilities are used in the construction of the hot gas path components, in order to ensure safe and durable operation, the hot gas path components are additionally supplemented with thermal barrier coatings (TBCs) and sophisticated cooling techniques. The present study focusses on two aspects of gas turbine cooling, namely augmented internal cooling and external film cooling. One of the commonly used methods for cooling the vanes involves passing coolant air bled from the compressor through serpentine passages inside the airfoils. The walls of the internal cooling passages are usually roughened with turbulence promoters like ribs to enhance heat transfer. Though the ribs help in augmenting the heat transfer, they have an associated pressure penalty as well. Therefore, it is important to study the thermal-hydraulic performance of ribbed internal cooling passages. The first section of the thesis deals with the numerical investigation of flow and heat transfer characteristics in a ribbed two-pass channel. Four different rib shapes- 45° angled, V-shaped, W-shaped and M-shaped, were studied. This study further aims at exploring the performance of different rib-shapes at a large rib pitch-to-height ratio (p/e=16) which has potential applications in land-based gas turbines operating at high Reynolds numbers. Detailed flow and heat transfer analysis have been presented to illustrate how the innate flow physics associated with the bend region and the different rib shapes contribute to heat transfer enhancement in the two-pass channel. The bend-induced secondary flows were observed to significantly affect the flow and heat transfer distribution in the 2nd pass. The thermal-hydraulic performance of V-shaped and 45° angled ribs were better than W-shaped and M-shaped ribs. The second section of the study deals with the analysis of film cooling performance of different hole configurations on the endwall upstream of a first stage nozzle guide vane. The flow along the endwall of the airfoils is highly complex, dominated by 3-dimensional secondary flows. The presence of complex secondary flows makes the cooling of the airfoil endwalls challenging. These secondary flows strongly influence endwall film cooling and the associated heat transfer. In this study, three different cooling configurations- slot, cylindrical holes and tripod holes were studied. Steady-state experiments were conducted in a low speed, linear cascade wind tunnel. The adiabatic film cooling effectiveness on the endwall was computed based on the spatially resolved temperature data obtained from the infrared camera. The effect of mass flow ratio on the film cooling performance of the different configurations was also explored. For all the configurations, the coolant jets were unable to overcome the strong secondary flows inside the passage at low mass flow ratios. However, the coolant jets were observed to provide much better film coverage at higher mass flow ratios. In case of cylindrical ejection, the effectiveness values were observed to be very low which could be because of jet lift-off. The effectiveness of tripod ejection was comparable to slot ejection at mass flow ratios between 0.5-1.5, while at higher mass flow ratios, slot ejection was observed to outperform tripod ejection.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
12

Gratton, Andrew Robert. "Measurements and Predictions of Heat Transfer for a First Vane Design." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/30854.

Full text
Abstract:
Turbine manufacturers continually seek to gain efficiency by increasing operating temperatures well above the maximum temperature of component alloys. This increase in temperature must be accounted for in the cooling of components by examining the heat transfer from these crucial components. This study specifically examines the effect of a contoured endwall on the heat transfer of a scaled-up stator vane. Understanding the three-dimensional effects of contoured endwalls on vane heat transfer can lead to prolonging blade life. The results of a combined experimental and computational study of heat transfer along the surface of a turbine vane that incorporates a contoured endwall are discussed in detail. A commercially available computational fluid dynamics code was used to design a contoured endwall and simulate an engine representative pressure distribution for a turbine vane cascade placed in a low-speed wind tunnel. A significant flow acceleration caused by the contour increased heat transfer over 40% of the vane span compared to the vane far from the contoured endwall. The effects of freestream turbulence with respect to the contour were examined. Results showed a significant increase in heat transfer at elevated freestream turbulence levels at each span location. The effects of the contour were minimal compared to the effects of increased turbulence. The boundary layer transition location moved further upstream with increasing turbulence. Trip wires were used to model the effect of film-cooling holes on the boundary layer development. The heat transfer increased locally at the trip and either remained elevated if the boundary layer remained turbulent or the heat transfer decreased as the boundary layer relaminarized due to flow acceleration. These results are beneficial to turbine manufacturers interested in effective placement of film-cooling holes.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
13

Ling, John Paul Chi Wai. "Development of heat transfer measurement techniques and cooling strategies for gas turbines." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ong, C.-L. "Computation of fluid flow and heat transfer in rotating disc-systems." Thesis, University of Sussex, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ieronymidis, Ioannis. "Flow and heat transfer measurements in a gas turbine wall cooling passage." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hilditch, Mary Anne. "Unsteady heat transfer measurements in a rotating gas turbine stage." Thesis, University of Oxford, 1989. http://ora.ox.ac.uk/objects/uuid:2d3e6d7a-1f55-4536-b863-e9ccc9a281eb.

Full text
Abstract:
As the performance required of high pressure turbines continues to increase, there is a need to investigate many details of the flow which occur in a gas turbine stage that were previously overlooked. These include the effects of rotation and three-dimensional flow as well as unsteady effects due to the relative motion of the blade rows. In order to obtain a better understanding of the turbine flowfield a new transient facility has been commissioned in which aerodynamic and heat transfer measurements can be undertaken in a full stage turbine at engine representative conditions. The previously used technique of measuring the heat transfer rate by mounting thin film gauges on models manufactured from machineable glass ceramic was not suitable for use on the rotor blade because of the high stress levels involved. An alternative technique has been developed in which a metal turbine blade is coated with an insulating layer of enamel and thin film gauges painted on top. The developments in signal processing and calibrations which were necessary for the use of this type of thin film gauge are discussed in detail. Signal conditioning electronics have been developed which permit amplification of the thin film gauge output to a higher level within the rotating frame before transmission through a slipring. Extensive tests have been undertaken, in a purpose built spinning rig, to establish the effects of rotation on the performance and mechanical integrity of the instrumentation and associated electronics. The heat transfer measurements recorded in the rotor facility to date are presented and compared with data from a previous two-dimensional simulation of wake passing flow on the mid-height section of the same blade.
APA, Harvard, Vancouver, ISO, and other styles
17

Salazar, Santiago. "Conjugate heat transfer on a gas turbine blade." Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4546.

Full text
Abstract:
Clearances between gas turbine casings and rotating blades is of quite importance on turbo machines since a significant loss of efficiency can occur if the clearances are not predicted accordingly. The radial thermal growths of the blade may be over or under predicted if poor assumptions are made on calculating the metal temperatures of the surfaces exposed to the fluid. The external surface of the blade is exposed to hot gas temperatures and it is internally cooled with air coming from the compressor. This cold air enters the radial channels at the root of the blade and then exists at the tip. To obtain close to realistic metal temperatures on the blade, the Conjugate Heat Transfer (CHT) approach would be utilized in this research. The radial thermal growth of the blade would be then compared to the initial guess. This work focuses on the interaction between the external boundary conditions obtained from the commercial Computational Fluid Dynamics software package CFX, the internal boundary conditions along the channels from a 1D flow solver proprietary to Siemens Energy, and the 3D metal temperatures and deformation of the blade predicted using the commercial Solid Mechanics software package ANSYS. An iterative technique to solve CHT problems is demonstrated and discussed. The results of this work help to highlight the importance of CHT in predicting metal temperatures and the implications it has in other aspect of the gas turbine design such as the tip clearances.
ID: 029049805; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.M.S.E.)--University of Central Florida, 2010.; Includes bibliographical references (p. 44-46).
M.S.M.S.E.
Masters
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
18

Rahman, Faisal. "Numerical modelling of heat transfer and thermal stresses in gas turbine guide vanes." Pretoria : [s.n.], 2003. http://upetd.up.ac.za/thesis/available/etd-05302005-103404/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lyall, Michael Eric. "Heat Transfer from Low Aspect Ratio Pin Fins." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33470.

Full text
Abstract:
The performance of many engineering devices from power electronics to gas turbines is limited by thermal management. Pin fins are commonly used to augment heat transfer by increasing surface area and increasing turbulence. The present research is focused on but not limited to internal cooling of turbine airfoils using pin fins. Although the pin fins are not limited to a single shape, circular cross-sections are most common. The present study examines heat transfer from a single row of circular pin fins with the row oriented perpendicular to the flow. The configurations studied have spanwise spacing to pin diameter ratios of two, four, and eight. Low aspect ratio pin fins were studied whereby the channel height to pin diameter was unity. The experiments are carried out for a Reynolds number range of 5000 to 30,000. Heat transfer measurements are taken on both the pin and on the endwall covering several pin diameters upstream and downstream of the pin row. The results show that the heat transfer augmentation relative to open channel flow is highest for the smallest spanwise spacing for the lowest Reynolds number flows. The results also indicate that the pin fin heat transfer is higher than on the endwall.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
20

Aubry, James R. "Non-contacting shaft seals for gas and steam turbines." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:84b3dd8d-24e6-459a-8144-8dca191cef4b.

Full text
Abstract:
Improvements upon current gas turbine sealing technology performance are essential for decreasing specific fuel consumption to meet stringent future efficiency targets. The clearances between rotating and static components of a gas turbine, which need to be sealed, vary over a flight cycle. Hence, a seal which can passively maintain an optimum clearance, whilst preventing contact between itself and the rotor, is extremely desirable. Various configurations of a Rolls Royce (RR) seal concept, the Large Axial Movement Face Seal (LAMFS), use static pressure forces to locate face seals. Prototypes were tested experimentally at the Osney Thermofluids Laboratory, Oxford. Firstly a proof-of concept rig (simulating a 2-D seal cross-section) manufactured by RR was re-commissioned. The simplest configuration using parallel seal faces induced an unstable seal housing behaviour. The author used this result, CFD, and analytical methods to improve the design and provide a self-centring ability. A fully annular test rig of this new seal concept was then manufactured to simulate a 3D engine representative seal. The full annulus eliminated leakage paths unavoidable in the simpler rig. A parametric program of experiments was designed to identify geometries and conditions which favoured best-practice design. The new seal design is in the process of being patented by Rolls Royce. A 'fluidic' seal was also investigated, showing very promising results. A test rig was manufactured so that a row of jets could be directed across a leakage cross-flow. An experimental program identified parameters which could achieve a combined lower leakage mass flow rate compared with the original leakage. Influence of jet spanwise spacing, injection angle, jet to mainstream pressure ratio, mainstream pressure difference and channel height were analysed. It is hoped this thesis can be used as a tool to further improve these seal concepts from the parametric trends which were identified experimentally.
APA, Harvard, Vancouver, ISO, and other styles
21

Bellows, Benjamin Davis. "Characterization of nonlinear heat release-acoustic interactions in gas turbine combustors." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-03262006-205604/.

Full text
Abstract:
Thesis (Ph. D.)--Aerospace Engineering, Georgia Institute of Technology, 2006.
Dr. Jeffrey Cohen, Committee Member ; Dr. Jerry Seitzman, Committee Member ; Dr. Jeff Jagoda, Committee Member ; Dr. Ben Zinn, Committee Member ; Dr. Tim Lieuwen, Committee Chair.
APA, Harvard, Vancouver, ISO, and other styles
22

Doorly, Jane E. "The development of a heat transfer measurement technique for application to rotating turbine blades." Thesis, University of Oxford, 1985. http://ora.ox.ac.uk/objects/uuid:36bbf5b6-8978-4aae-920e-06ce0b96194e.

Full text
Abstract:
The successful design of a long-lived and efficient gas turbine engine requires a good knowledge of the thermal and aerodynamic performances of the components of the turbine. Of particular importance, is the heat transfer rate from the hot gases to the cooled turbine blades, since this limits the maximum turbine entry temperatures which can be obtained. Much gas turbine research is concentrated on experimental modelling and measurements to assist in the development of improved theoretical prediction techniques. The difficulties of instrumenting fully rotational rigs, which are necessary for a full understanding of the complex three dimensional flow in the turbine, have, however, to a large extent, limited most experimental research to stationary facilities. A technique is described which will allow heat transfer rate measurements to be made on fully rotating test facilities using mutlilayered model turbine blades comprising an electrical insulator on a metal base. An accurate and computationally efficient method for determining the surface heat flux to a multi-layered model turbine blade is developed theoretically, together with a method for calibrating the thermal properties of the multi-layered system. This method allows the existing successful heat flux measurement technique, which utilises electronic analogue circuitry in conjunction with thin film surface thermometers on a model made from a thermal insulator, to be extended for application to multi-layered models. The production of test models by the application of a vitreous enamel (as an electrical insulator), to a mild steel, is identified as the most suitable coating technique for experimental application. Radiant and wind tunnel testing of multi-layered cylindrical models are described, which confirm that the method is both practical and accurate.
APA, Harvard, Vancouver, ISO, and other styles
23

Deshpande, Samruddhi Aniruddha. "Numerical Investigation of Various Heat Transfer Performance Enhancement Configurations for Energy Harvesting Applications." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72129.

Full text
Abstract:
Conventional understanding of quality of energy suggests that heat is a low grade form of energy. Hence converting this energy into useful form of work was assumed difficult. However, this understanding was challenged by researchers over the last few decades. With advances in solar, thermal and geothermal energy harvesting, they believed that these sources of energy had great potential to operate as dependable avenues for electrical power. In recent times, waste heat from automobiles, oil and gas and manufacturing industries were employed to harness power. Statistics show that US alone has a potential of generating 120,000 GWh/year of electricity from oil , gas and manufacturing industries, while automobiles can contribute upto 15,900 GWh/year. Thermoelectric generators (TEGs) can be employed to capture some of this otherwise wasted heat and to convert this heat into useful electrical energy. This field of research as compared to gas turbine industry has emerged recently over past 30 decades. Researchers have shown that efficiency of these TEGs modules can be improved by integrating heat transfer augmentation features on the hot side of these modules. Gas turbines employ advanced technologies for internal and external cooling. These technologies have applications over wide range of applications, one of which is thermoelectricity. Hence, making use of gas turbine technologies in thermoelectrics would surely improve the efficiency of existing TEGs. This study makes an effort to develop innovative technologies for gas turbine as well as thermoelectric applications. The first part of the study analyzes heat transfer augmentation from four different configurations for low aspect ratio channels and the second part deal with characterizing improvement in efficiency of TEGs due to the heat transfer augmentation techniques.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
24

Puttock-Brown, Mark Richard. "Experimental and numerical investigation of flow structure and heat transfer in gas turbine HP compressor secondary air systems." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/75214/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lawson, Seth Augustus. "Heat Transfer from Multiple Row Arrays of Low Aspect Ratio Pin Fins." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/31190.

Full text
Abstract:
The heat transfer characteristics through arrays of pin fins were studied for the further development of internal cooling methods for turbine airfoils. Low aspect ratio pin fin arrays were tested through a range of Reynolds numbers between 5000 and 30,000 to determine the effects of pin spacing as well as aspect ratio on pin and endwall heat transfer. Experiments were also conducted to determine the independent effects of pin spacing and aspect ratio on arrays with different flow incidence angles. The pin Nusselt numbers showed almost no dependence on pin spacing or flow incidence angle. Using an infrared thermogaphy technique, spatially-resolved Nusselt numbers were measured along the endwalls of each array. The endwall results showed that streamwise spacing had a larger effect than spanwise spacing on array-averaged Nusselt numbers. Endwall heat transfer patterns showed that arrays with flow incidence angles experienced less wake interaction between pins than arrays with perpendicular flow, which caused a slight decrease in heat transfer in arrays with flow incidence angles. The effect of flow incidence angle on array-average Nusselt number was greater at tighter pin spacings. Even though the pin Nusselt number was independent of pin spacing, the ratio of pin-to-endwall Nusselt number was dependent on flow conditions as well as pin spacing. The pin aspect ratio had little effect on the array-average Nusselt number for arrays with perpendicular flow; however, the effect of flow incidence angle on array-average Nusselt number increased as aspect ratio decreased.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
26

Lynch, Stephen P. "Endwall Heat Transfer and Shear Stress for a Nozzle Guide Vane with Fillets and a Leakage Interface." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/31912.

Full text
Abstract:
Increasing the combustion temperatures in a gas turbine engine to achieve higher efficiency and power output also results in high heat loads to turbine components downstream of the combustor. The challenge of adequately cooling the nozzle guide vane directly downstream of the combustor is compounded by a complex vortical secondary flow at the junction of the endwall and the airfoil. This flow tends to increase local heat transfer rates and sweep coolant away from component surfaces, as well as decrease the turbine aerodynamic efficiency. Past research has shown that a large fillet at the endwall-airfoil junction can reduce or eliminate the secondary flow. Also, leakage flow from the interface gap between the combustor and the turbine can provide some cooling to the endwall. This study examines the individual and combined effects of a large fillet and realistic combustor-turbine interface gap leakage flow for a nozzle guide vane. The first study focuses on the effect of leakage flow from the interface gap on the endwall upstream of the vane. The second study addresses the influence of large fillets at the endwall-airfoil junction, with and without upstream leakage flow. Both studies were performed in a large low-speed wind tunnel with the same vane geometry. Endwall shear stress measurements were obtained for various endwall-airfoil junction geometries without upstream leakage flow. Endwall heat transfer and cooling effectiveness were measured for various leakage flow rates and leakage gap widths, with a variety of endwall-airfoil junction geometries.

Results from these studies indicate that the secondary flow has a large influence on the coverage area of the leakage coolant. Increased leakage flow rates resulted in better cooling effectiveness and coverage, but also higher heat transfer rates. The two fillet geometries tested affected coolant coverage by displacing coolant around the base of the fillet, which could result in undesirably high gradients in endwall temperature. The addition of a large fillet to the endwall-airfoil junction, however, reduced heat transfer, even when upstream leakage flow was present.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
27

Elder, Erin N. "Internal Heat Transfer and External Effectiveness Measurements for a Novel Turbine Blade Cooling Design." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/77004.

Full text
Abstract:
Efficiency and power output of gas turbines improve with an increase in turbine inlet temperatures, and blade designers continually seek out new methods of increasing these temperatures. Increases in turbine inlet temperatures are achieved by utilizing a combination of internal convective cooling and external film-cooling. This study will evaluate several novel cooling schemes for turbine airfoils, called microcircuits. Microcircuits are placed inside the turbine blade wall, and the features turbulate the air and increase heat transfer surface area, thereby augmenting convective cooling. The coolant flow then exits internal cooling passages to the external side of the blade. Here the coolant forms a protective layer along the external surface of the blade to protect the blade from the heated mainstream flow. In the current study, a low-speed large-scale wind tunnel facility was developed to measure internal heat transfer coefficients and external adiabatic effectiveness, using thermal liquid crystallography and infrared thermography. This test facility is unique in that it can be used to test the effects of internal cooling features on external film cooling. Results show that the highest augmentations in internal heat transfer were seen at the lowest Reynolds numbers. Internal features affected the shapes of external film-cooling contours, but the magnitudes of the spanwise averaged values did not change significantly with changes in internal geometry.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
28

Barringer, Michael David. "Developing and Testing a Combustor Simulator For Investigating High Pressure Turbine Aerodynamics and Heat Transfer." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/79726.

Full text
Abstract:
Within a gas turbine engine, the turbine nozzle guide vanes are subjected to very harsh conditions from the highly turbulent and hot gases exiting the combustor. The temperature and pressure fields exiting combustors are highly nonuniform and dictate the heat transfer and aero losses that occur in the turbine passages. To better understand these effects, the goal of this work was to develop an adjustable combustor exit profile simulator for the Turbine Research Facility (TRF) at the Air Force Research Laboratory. The TRF is a high temperature, high pressure, short duration blow-down test facility that is capable of matching several aerodynamic and thermal nondimensional engine parameters including Reynolds number, Mach number, pressure ratio, corrected mass flow, gas to metal temperature ratio, and corrected speed. The primary research objective was to design, install, and verify a non-reacting simulator device that can provide representative combustor exit total pressure and temperature profiles to the inlet of the TRF turbine test section. This required the upstream section of the facility to be redesigned into multiple concentric annuli that serve the purpose of injecting high momentum dilution jets and low momentum film cooling jets into a central annular chamber, similar to a turbine engine combustor. The design of the section allows for variations in injection levels to generate different pressure profiles with elevated turbulence. The dilution and film cooling temperatures can also be varied to create a variety of exit temperature profiles similar to real combustors. The impact of the generated temperature and pressure profiles on turbine heat transfer and secondary flow development was ultimately investigated. Proposed optimal inlet conditions for the turbine tested in this research effort were determined based on the measured data corresponding to the combustor simulator exit profiles that minimized vane heat transfer and total pressure loss.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
29

Morris, Angela. "Experimental and Computational Study of Heat Transfer on a Turbine Blade Tip with a Shelf." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/76906.

Full text
Abstract:
Cooling of turbine parts in a gas turbine engine is necessary for operation as the temperature of combustion gases is higher than the melting temperature of the turbine materials. The gap between rotating turbine blades and the stationary shroud provides an unintended flow path for hot gases. Gases that flow through the tip region cause pressure losses in the turbine section and high heat loads to the blade tip. This thesis studies the heat transfer on an innovative tip geometry intended to help reduce aerodynamic losses. The blade tip has a depression (shelf) on the tip surface along much of the pressure side of the blade and film-cooling holes along the depression. This research experimentally measured the effect of the shelf, coolant flow and tip gap on heat transfer on the blade tip. Stationary experiments were performed in a low speed wind tunnel on a linear cascade with two different tip gaps and multiple coolant flow rates through the film-cooling holes. Tests showed that baseline Nusselt numbers on the tip surface were reduced with the shelf tip compared with a flat tip. Measurements indicated that film-cooling was more effective with a small tip gap than with a large tip gap. Experimental and computational results demonstrated a lack of coolant spreading that was detrimental to regions between the film-cooling holes. While the coolant was effective on the blade tip, the leading and trailing edge regions were found to have high heat transfer coefficients with little available cooling.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
30

Hodak, Matthew Paul. "Quantification of Fourth Generation Kapton Heat Flux Gauge Calibration Performance." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1285038898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Prausa, Jeffrey Nathaniel. "Heat Transfer Coefficient and Adiabatic Effectiveness Measurements for an Internal Turbine Vane Cooling Feature." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/76790.

Full text
Abstract:
Aircraft engine manufacturers strive for greater performance and efficiency by continually increasing the turbine inlet temperature. High turbine inlet temperatures significantly degrade the lifetime of components in the turbine. Modern gas turbines operate with turbine inlet temperatures well above the melting temperature of key turbine components. Without active cooling schemes, modern turbines would fail catastrophically. This study will evaluate a novel cooling scheme for turbine airfoils, called microcircuit cooling, in which small cooling channels are located extremely close to the surface of a turbine airfoil. Coolant bled from the compressor passes through the microcircuits and exits through film cooling slots. On further cooling benefit is that the microcircuit passages are filled with irregular pin fin features that serve to increase convective cooling through the channels. Results from this study indicate a strong interaction between the internal microcircuit features and the external film-cooling from the slot exit. Asymmetric cooling patterns downstream of the slot resulted from the asymmetric pin fin design within the microcircuit. Adiabatic effectiveness levels were found to be optimum for the slot design at a blowing ratio of 0.37. The pin fin arrangement along with the impingement cooling at the microcircuit entrance increased the area-averaged heat transfer by a factor of three, relative to an obstructed channel, over a Reynolds range of 5,000 to 15,000.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
32

Miller, Mark W. "Heat transfer in a coupled impingement-effusion cooling system." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4807.

Full text
Abstract:
The efficiency of air-breathing gas turbine engines improves as the combustion temperature increases. Therefore, modern gas turbines operate at temperatures greater than the melting temperature of hot-gas-path components, and cooling must be introduced in order to maintain mechanical integrity of those components. Two highly effective techniques used in modern designs for this purpose are impingement cooling and use of coolant film on hot-gas-path surface introduced through discrete film or effusion holes. In this study, these two mechanisms are coupled into a single prototype cooling system. The heat transfer capability of this system is experimentally determined for a variety of different geometries and coolant flow rates. This study utilizes Temperature Sensitive Paint (TSP) in order to measure temperature distribution over a surface, which allowed for local impingement Nusselt number, film cooling effectiveness, and film cooling heat transfer enhancement profiles to be obtained. In addition to providing quantitative heat transfer data, this method allowed for qualitative investigation of the flow behavior near the test surface. Impinging jet-to-target-plate spacing was varied over a large range, including several tall impingement scenarios outside the published limits. Additionally, both in-line and staggered effusion arrangements were studied, and results for normal injection were compared to full coverage film cooling with inclined- and compound-angle injection. Effects of impingement and effusion cooling were combined to determine the overall cooling effectiveness of the system. It is shown that low impingement heights produce the highest Nusselt number, and that large jet-to-jet spacing reduces coolant flow rate while maintaining moderate to high heat transfer rates. Staggered effusion configurations exhibit superior performance to in-line configurations, as jet interference is reduced and surface area coverage is improved. Coolant to mainstream flow mass flux ratios greater than unity result in jet blow-off and reduced effectiveness. The convective heat transfer coefficient on the film cooled surface is higher than a similar surface without coolant injection due to the generation of turbulence associated with jet-cross flow interaction.
ID: 030646180; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; .; Thesis (M.S.M.E.)--University of Central Florida, 2011.; Includes bibliographical references (p. 171-176).
M.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Thermo-Fluids Track
APA, Harvard, Vancouver, ISO, and other styles
33

Yang, Timothy T. "An experimental investigation of turbine blade tip heat transfer and tip gap flows in the supersonic regime." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-07112009-040445/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Christophel, Jesse Reuben. "Comparison of the Thermal Performance of Several Tip Cooling Designs for a Turbine Blade." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/76870.

Full text
Abstract:
Gas turbine blades are subject to harsh operating conditions that require innovative cooling techniques to insure reliable operation of parts. Film-cooling and internal cooling techniques can prolong blade life and allow for higher engine temperatures. This study examines several unique methods of cooling the turbine blade tip. The first method employs holes placed directly in the tip which inject coolant onto the blade tip. The second and third methods used holes placed on the pressure side of a blade near the tip representative of two different manufacturing techniques. The fourth method is a novel cooling technique called a microcircuit, which combines internal convection and injection from the pressure side near a turbine blade tip. Wind tunnel tests are used to observe how effectively these designs cool the tip through adiabatic effectiveness measurements and convective heat transfer measurements. Tip gap size and blowing ratio are varied for the different tip cooling configurations. Results from these studies show that coolant injection from either the tip surface or from the pressure side near the tip are viable cooling methods. All of these studies showed better cooling could be achieved at small tip gaps than large tip gaps. The results in which the two different manufacturing techniques were compared indicated that the technique producing more of a diffused hole provided better cooling on the tip. When comparing the thermal performance of all the cooling schemes investigated, the added benefit of the internal convective cooling shows that the microcircuit outperforms the other designs.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
35

Abraham, Santosh. "Aerodynamic Performance of High Turning Airfoils and the Effect of Endwall Contouring on Turbine Performance." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77196.

Full text
Abstract:
Gas turbine companies are always focused on reducing capital costs and increasing overall efficiency. There are numerous advantages in reducing the number of airfoils per stage in the turbine section. While increased airfoil loading offers great advantages like low cost and weight, they also result in increased aerodynamic losses and associated issues. The strength of secondary flows is influenced by the upstream boundary layer thickness as well as the overall flow turning angle through the blade row. Secondary flows result in stagnation pressure loss which accounts for a considerable portion of the total stagnation pressure loss occurring in a turbine passage. A turbine designer strives to minimize these aerodynamic losses through design changes and geometrical effects. Performance of airfoils with varying loading levels and turning angles at transonic flow conditions are investigated in this study. The pressure difference between the pressure side and suction side of an airfoil gives an indication of the loading level of that airfoil. Secondary loss generation and the 3D flow near the endwalls of turbine blades are studied in detail. Detailed aerodynamic loss measurements, both in the pitchwise as well as spanwise directions, are conducted at 0.1 axial chord and 1.0 axial chord locations downstream of the trailing edge. Static pressure measurements on the airfoil surface and endwall pressure measurements were carried out in addition to downstream loss measurements. The application of endwall contouring to reduce secondary losses is investigated to try and understand when contouring can be beneficial. A detailed study was conducted on the effectiveness of endwall contouring on two different blades with varying airfoil spacing. Heat transfer experiments on the endwall were also conducted to determine the effect of endwall contouring on surface heat transfer distributions. Heat transfer behavior has significant effect on the cooling flow needs and associated aerodynamic problems of coolant-mainstream mixing. One of the primary objectives of this study is to provide data under transonic conditions that can be used to confirm/refine loss predictions for the effect of various Mach numbers and gas turning. The cascade exit Mach numbers were varied within a range from 0.6 to 1.1. A published experimental study on the effect of end wall contouring on such high turning blades at high exit Mach numbers is not available in open literature. Hence, the need to understand the parametric effects of endwall contouring on aerodynamic and heat transfer performance under these conditions.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
36

La, Rosa Rivero Renzo Josue. "Effects on Heat Transfer Coefficient and Adiabatic Effectiveness in Combined Backside and Film Cooling with Short-Hole Geometry." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/97010.

Full text
Abstract:
Heat transfer experiments were done on a flat plate to study the effect of internal counter-flow backside cooling on adiabatic film cooling effectiveness and heat transfer coefficient. In addition, the effects of density ratio (DR), blowing ratio (BR), diagonal length over diameter (L/D) ratio, and Reynolds number were studied using this new configuration. The results are compared to a conventional plenum fed case. Data were collected up to X/D =23 where X=0 at the holes, an S/D = 1.65 and L/D=1,2. Testing was done at low L/D ratios since short holes are normally found in double wall cooling applications in turbine components. A DR of 2 was used in order to simulate engine-like conditions and this was compared to a DR of 0.92 since relevant research is done at similar low DR. The BR range of 0.5 to 1.5 was chosen to simulate turbine conditions as well. In addition, previous research shows that peak effectiveness is found within this range. Infrared (IR) thermography was used to capture temperature contours on the surface of interest and the images were calibrated using a thermocouple and data analyzed through MATLAB software. A heated secondary fluid was used as 'coolant' in the present study. A steady state heat transfer model was used to perform the data reduction procedure. Results show that backside cooling configuration has a higher adiabatic film cooling effectiveness when compared to plenum fed configurations at the same conditions. In addition, the trend for effectiveness with varying BR is reversed when compared with traditional plenum fed cases. Yarn flow visualization tests show that flow exiting the holes in the backside cooling configuration is significantly different when compared to flow exiting the plenum fed holes. We hypothesize that backside cooling configuration has flow exiting the holes in various directions, including laterally, and behaving similar to slot film cooling, explaining the differences in trends. Increasing DR at constant BR shows an increase in adiabatic effectiveness and HTC in both backside cooling and plenum fed configurations due to the decreased momentum of the coolant, making film attachment to the surface more probable. The effects of L/D ratio in this study were negligible since both ratios used were small. This shows that the coolant flow is still underdeveloped at both L/D ratios. The study also showed that increasing turbulence through increasing Reynolds number decreased adiabatic effectiveness.
MS
APA, Harvard, Vancouver, ISO, and other styles
37

Mhetras, Shantanu. "Experimental study of gas turbine blade film cooling and internal turbulated heat transfer at large Reynolds numbers." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Panchal, Kapil V. "Development of a robust numerical optimization methodology for turbine endwalls and effect of endwall contouring on turbine passage performance." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77242.

Full text
Abstract:
Airfoil endwall contouring has been widely studied during the past two decades for the reduction of secondary losses in turbine passages. Although many endwall contouring methods have been suggested by researchers, an analytical tool based on the passage design parameters is still not available for designers. Hence, the best endwall contour shape is usually decided through an optimization study. Moreover, a general guideline for the endwall shape variation can be extrapolated from the existing literature. It has not been validated whether the optimum endwall shape for one passage can be fitted to other similar passage geometry to achieve, least of all a non-optimum but a definite, reduction in losses. Most published studies were conducted at low exit Mach numbers and only recently some studies on the effect of endwall contouring on aerodynamics performance of a turbine passage at high exit Mach numbers have been published. There is, however, no study available in the open literature for a very high turning blade with a transonic design exit Mach number and the effect of endwall contouring on the heat transfer performance of a turbine passage. During the present study, a robust, aerodynamic performance based numerical optimization methodology for turbine endwall contouring has been developed. The methodology is also adaptable to a range of geometry optimization problems in turbomachinery. It is also possible to use the same methodology for multi-objective aero-thermal optimization. The methodology was applied to a high turning transonic turbine blade passage to achieve a geometry based on minimum total pressure loss criterion. The geometry was then compared with two other endwall geometries. The first geometry is based on minimum secondary kinetic energy value instead of minimum total pressure loss criterion. The second geometry is based on a curve combination based geometry generation method found in the literature. A normalized contoured surface topology was extracted from a previous study that has similar blade design parameters. This surface was then fitted to the turbine passage under study in order to investigate the effect of such trend based surface fitting. Aerodynamic response of these geometries has been compared in detail with the baseline case without any endwall contouring. A new non-contoured baseline design and two contoured endwall designs were provided by Siemens Energy, Inc. The pitch length for these designs is about 25% higher than the turbine passage used for the endwall optimization study. The aerodynamic performance of these endwalls was studied through numerical simulations. Heat transfer performance of these endwall geometries was experimentally investigated in the transonic turbine cascade facility at Virginia Tech. One of the contoured geometries was based on optimum aerodynamic loss reduction criterion while the other was based on optimum heat transfer performance criterion. All the three geometries were experimentally tested at design and off-design Mach number conditions. The study revealed that endwall contouring results in significant performance benefit from the heat transfer performance point of view.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
39

Couch, Eric L. "Measurements of Cooling Effectiveness Along the Tip of a Turbine Blade." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/76815.

Full text
Abstract:
In a gas turbine engine, turbine blades are exposed to temperatures above their melting point. Film-cooling and internal cooling techniques can prolong blade life and allow for higher engine temperatures. This study examines a novel cooling technique called a microcircuit, which combines internal convection and pressure side injection on a turbine blade tip. Holes on the tip called dirt purge holes expel dirt from the blade, so other holes are not clogged. Wind tunnel tests are used to observe how effectively dirt purge and microcircuit designs cool the tip. Tip gap size and blowing ratio are varied for different tip cooling configurations. Results show that the dirt purge holes provide significant film cooling on the leading edge with a small tip gap. Coolant injected from these holes impacts the shroud and floods the tip gap reducing tip leakage flow. With the addition of a microcircuit, coolant is delivered to a larger area of the tip. In all cases, cooling levels are higher for a small tip gap than a large tip gap. Increased blowing ratio does not have a dramatic effect on microcircuit film-cooling at the midchord but does improve internal cooling from the microcircuit. While the combined dirt purge holes and microcircuit cool the leading edge and midchord areas, there remains a small portion of the trailing edge that is not cooled. Also, results suggest that blowing from the microcircuit diminishes the tip leakage vortex. Overall, the microcircuit appears to be a feasible method for prolonging blade life.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
40

Ragab, Reda M. "Experimental Investigation of Mist Film Cooling and Feasibility Study of Mist Transport in Gas Turbines." ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1762.

Full text
Abstract:
In the modern advanced gas turbines, the turbine inlet temperature may exceed 1500°C as a requirement to increase power output and thermal efficiency. Therefore, it is imperative that the blades and vanes are cooled so they can withstand these extreme temperatures. Film cooling is a cooling technique widely used in high-performance gas turbines. However, the film cooling effectiveness has almost reached plateau, resulting in a bottleneck for continuous improvement of gas turbines' efficiency. In this study, an innovative cooling scheme, mist film cooling is investigated through experiments. A small amount of tiny water droplets with an average diameter about 10-15 µm (mist) is injected into the cooling air to enhance the cooling performance. A Phase Doppler Particle Analyzer (PDPA) system is used for droplet measurements. Mist film cooling performance is evaluated and compared against air-only film cooling. This study continues the previous work by (a) adding fan-shaped holes and comparing their cooling performance with the round holes, (b) extending the length of the test section to study the performance farther downstream the injection holds, and (c) using computational simulation to investigate the feasibility of transporting mist to the film cooling holes through gas turbine inside passages. The results show that, with an appropriate blowing ratio, the fan-shaped holes performs about 200% better than round holes in cooling effectiveness and adding 10% (wt.) mist can further enhance cooling effectiveness 170% in average. Farther downstream away from the injection holes (X/D> 50), mist cooling enhancement prevails and actually increases significantly. PDPA measurements have shed lights to the fundamental physics of droplet dynamics and their interactions with thermo-flow fields. These experimental results lead to either using lower amount of cooling air or use fewer number of cooing holes rows. This means higher gas turbine power output, higher thermal efficiency, and longer components life which will reflect as a cheaper electricity bill. Computational Fluid Dynamics (CFD) showed that it is feasible to transport the water mist, with initial diameters ranging from 30 µm-50 µm and mist ratio of 10-15%, to the cooling holes on the surface of the turbine vanes and rotors to provide the desired film cooling. Key words: Gas Turbines, Heat Transfer, Film / mist Cooling, Experimental Study, Mist Transport, CFD, PDPA.
APA, Harvard, Vancouver, ISO, and other styles
41

Mayo, David Earl Jr. "The Effect of Combustor Exit to Nozzle Guide Vane Platform Misalignment on Heat Transfer over an Axisymmetric Endwall at Transonic Conditions." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/78110.

Full text
Abstract:
This paper presents details of an experimental and computational investigation on the effect of misalignment between the combustor exit and nozzle guide vane endwall on the heat transfer distribution across an axisymmetric converging endwall. The axisymmetric converging endwall investigated was representative of that found on the shroud side of a first stage turbine nozzle section. The experiment was conducted at a nominal exit M of 0.85 and exit Re 1.5 x 10⁶ with an inlet turbulence intensity of 16%. The experiment was conducted in a blowdown transonic linear cascade wind tunnel. Two different inlet configurations were investigated. The first configuration, Case I, was representative of a combustor exit aligned to the nozzle platform, with a gap located at the interface of the tow components. The second configuration, Case II, the endwall platform was offset in the span-wise direction to create a backward facing step at the inlet. This step is representative of a misalignment between the combustor exit and the NGV platform. An infrared camera was used to capture the temperature history on the endwall, from which the endwall heat transfer distribution was determined. A numerical study was also conducted by solving RANS equations using ANSYS Fluent v.15. The numerical results provided insight into the passage flow field which explained the observed heat transfer characteristics. Case I showed the typical characteristics of transonic vane cascade flow, such as the separation line, saddle point, and horseshoe vortices. The presence of a gap at the combustor-nozzle interface facilitated the formation of a separated flow which propagated through the passage. This flow feature caused the passage vortex reattach to the SS vane at 0.44 x/C. The addition of the platform misalignment in Case II caused the flow reattachment region to occur near the vane LE plane. The separated flow which formed at the inlet step, merged with the recirculation region on the endwall platform, forming two counter-rotating auxiliary vortices. These vortices significantly delayed migration of the passage vortex, causing it to reattach on the SS vane at 0.85 x/C. These two flow features also had a significant effect on the endwall heat transfer characteristics. The heat transfer levels on the endwall platform, from -0.50 to +0.50 Cx relative to the vane LE, had an average increase of ~40%. However, downstream of the vane mid-passage, the heat transfer levels showed no appreciable heat transfer augmentation due to flow acceleration through the passage throat.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
42

Hohlfeld, Erik Max. "Film Cooling Predictions Along the Tip and Platform of a Turbine Blade." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/76781.

Full text
Abstract:
Turbine airfoils are exposed to the hottest temperatures in the gas turbine with temperatures typically exceeding the melting point of the blade material. Cooling methods investigated in this computational study included parasitic cooling flow losses, which are inherent to engines, and microcircuit channels. Parasitic losses included dirt purge holes, located along the blade tip, and platform leakage flow, which result from gaps between various turbine components. Microcircuits are a novel cooling technique involving small air passages placed near the airfoil surface to enhance internal cooling. This study evaluated the benefit of external film-cooling flow exhausted from strategically placed microcircuits. Along the blade tip, predictions showed mid-chord cooling was independent of the blowing from microcircuit exits. The formation of a pressure side vortex was found to develop for most microcircuit film-cooling cases. Significant leading edge cooling was obtained from coolant exiting from dirt purge holes with a small tip gap while little cooling was seen with a large tip gap. Along the blade platform, the migration of coolant from the front leakage was shown to cool a considerable part of the platform. Several hot spots were predicted along the platform, which were circumvented through the placement of microcircuit channels. Ingestion of hot mainstream gas was predicted along the aft portion of the gutter and agreed with distress exhibited by actual gas turbine engines.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
43

Nasir, Shakeel. "Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/28560.

Full text
Abstract:
One way to increase cycle efficiency of a gas turbine engine is to operate at higher turbine inlet temperature (TIT). In most engines, the turbine inlet temperatures have increased to be well above the metallurgical limit of engine components. Film cooling of gas turbine components (blades and vanes) is a widely used technique that allows higher turbine inlet temperatures by maintaining material temperatures within acceptable limits. In this cooling method, air is extracted from the compressor and forced through internal cooling passages within turbine blades and vanes before being ejected through discrete cooling holes on the surfaces of these airfoils. The air leaving these cooling holes forms a film of cool air on the component surface which protects the part from hot gas exiting the combustor. Design optimization of the airfoil film cooling system on an engine scale is a key as increasing the amount of coolant supplied yields a cooler airfoil that will last longer, but decreases engine core flowâ diminishing overall cycle efficiency. Interestingly, when contemplating the physics of film cooling, optimization is also a key to developing an effective design. The film cooling process is shown to be a complex function of at least two important mechanisms: Increasing the amount of coolant injected reduces the driving temperature (adiabatic wall temperature) of convective heat transferâ reducing heat load to the airfoil, but coolant injection also disturbs boundary layer and augments convective heat transfer coefficient due to local increase in freestream turbulence. Accurate numerical modeling of airfoil film cooling performance is a challenge as it is complicated by several factors such as film cooling hole shape, coolant-to-freestream blowing ratio, coolant-to-freestream momentum ratio, surface curvature, approaching boundary layer state, Reynolds number, Mach number, combustor-generated high freestream turbulence, turbulence length scale, and secondary flows just to name a few. Until computational methods are able to accurately simulate these factors affecting film cooling performance, experimental studies are required to assist engineers in designing effective film cooling schemes. The unique contribution of this research work is to experimentally and numerically investigate the effects of coolant injection rate or blowing ratio and exit Reynolds number/Mach number on the film cooling performance of a showerhead film cooled first stage turbine vane at high freestream turbulence (Tu = 16%) and engine representative exit flow conditions. The vane was arranged in a two-dimensional, linear cascade in a heated, transonic, blow-down wind tunnel. The same facility was also used to conduct experimental and numerical study of the effects of freestream turbulence, and Reynolds number on smooth (without film cooling holes) turbine blade and vane heat transfer at engine representative exit flow conditions. The showerhead film cooled vane was instrumented with single-sided platinum thin film gauges to experimentally determine the Nusselt number and film cooling effectiveness distributions over the surface from a single transient-temperature run. Showerhead film cooling was found to augment Nusselt number and reduce adiabatic wall temperature downstream of injection. The adiabatic effectiveness trend on the suction surface was also found to be influenced by a favorable pressure gradient due to Mach number and boundary layer transition region at all blowing ratio and exit Mach number conditions. The experimental study was also complimented with a 3-D CFD effort to calculate and explain adiabatic film cooling effectiveness and Nusselt number distributions downstream of the showerhead film cooling rows of a turbine vane at high freestream turbulence (Tu = 16%) and engine design exit flow condition (Mex = 0.76). The research work presents a new three-simulations technique to calculate vane surface recovery temperature, adiabatic wall temperature, and surface Nusselt number to completely characterize film cooling performance in a high speed flow. The RANS based v2-f turbulence model was used in all numerical calculations. CFD calculations performed with experiment-matched boundary conditions showed an overall good trend agreement with experimental adiabatic film cooling effectiveness and Nusselt number distributions downstream of the showerhead film cooling rows of the vane.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
44

Pearce, Robert. "Internal cooling for HP turbine blades." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:832038c9-e934-413d-bbb5-336ab4775055.

Full text
Abstract:
Modern gas turbine engines run at extremely high temperatures which require the high pressure turbine blades to be extensively cooled in order to reach life requirements. This must be done using the minimum amount of coolant in order to reduce the negative impacts on the cycle efficiency. In the design process the cooling configuration and stress distribution must be carefully considered before verification of the design is conducted. Improvements to all three of these blade design areas are presented in this thesis which investigates internal cooling systems in the form of ribbed, radial passages and leading edge impingement systems. The effect of rotation on the heat transfer distribution in ribbed radial passages is investigated. An engine representative triple-pass serpentine passage, typical of a gas turbine mid-chord HP blade passage, is simulated using common industrial RANS CFD methodology with the results compared to those from the RHTR, a rotating experimental facility. The simulations are found to perform well under stationary conditions with the rotational cases proving more challenging. Further study and simulations of radial passages are undertaken in order to understand the salient flow and heat transfer features found, namely the inlet velocity profile and rib orientation relative to the mainstream flow. A consistent rib direction gives improved heat transfer characteristics whilst careful design of inlet conditions could give an optimised heat transfer distribution. The effect of rotation on the heat transfer distribution in leading edge impingement systems is investigated. As for the radial passages, RANS CFD simulations are compared and validated against experimental data from a rotating heat transfer rig. The simulations provide accurate average heat transfer levels under stationary and rotating conditions. The full target surface heat transfer in an engine realistic leading edge impingement system is investigated. Experimental data is compared to RANS CFD simulations. Experimental results are in line with previous studies and the simulations provide reasonable heat transfer predictions. A new method of combined thermal and mechanical analysis is presented and validated for a leading edge impingement system. Conjugate CFD simulations are used to provide a metal temperature distribution for a mechanical analysis. The effect of changes to the geometry and temperature profile on stress levels are studied and methods to improve blade stress levels are presented. The thermal FEA model is used to quantify the effect of HTC alterations on different surfaces within a leading edge impingement system, in terms of both temperature and stress distributions. These are then used to provide improved target HTC distributions in order to increase blade life. A new method using Gaussian process regression for thermal matching is presented and validated for a leading edge impingement case. A simplified model is matched to a full conjugate CFD solution to test the method's quality and reliability. It is then applied to two real engine blades and matched to data from thermal paint tests. The matches obtained are very close, well within experimental accuracy levels, and offer consistency and speed improvements over current methodologies.
APA, Harvard, Vancouver, ISO, and other styles
45

Arisi, Allan Nyairo. "Heat Transfer and Flow Characteristics on the Rotor Tip and Endwall Platform Regions in a Transonic Turbine Cascade." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/64501.

Full text
Abstract:
This dissertation presents a detailed experimental and numerical analysis of the aerothermal characteristics of the turbine extremity regions i.e. the blade tip and endwall regions. The heat transfer and secondary flow characteristics were analyzed for different engine relevant configurations and exit Mach/Reynolds number conditions. The experiments were conducted in a linear blowdown cascade at transonic high turbulence conditions of Mexit ~ 0.85, 0.60 and 1.0, with an inlet turbulence intensity of 16% and 12% for the vane and blade cascade respectively. Transient infrared (IR) thermography technique and surface pressure measurement were used to map out the surface heat transfer coefficient and aerodynamic characteristics. The experiments were complemented with computational modeling using the commercial RANS equation solver ANSYS Fluent. The CFD results provided further insight into the local flow characteristics in order to elucidate the flow physics which govern the measured heat transfer characteristics. The results reveal that the highest heat transfer exists in regions with local flow reattachment and new-boundary layer formation. Conversely, the lowest heat transfer occurs in regions with boundary layer thickening and separation/lift-off flow. However, boundary layer separation results in additional secondary flow vortices, such as the squealer cavity vortices and endwall auxiliary vortex system, which significantly increase the stage aerodynamic losses. Furthermore, these vortices result in a low film-cooling effectiveness as was observed on a squealer tip cavity with purge flow. Finally, the importance of transonic experiments in analyzing the turbine section heat transfer and flow characteristics was underlined by the significant shock-boundary layer interactions that occur at high exit Mach number conditions.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
46

Xue, Song. "Fan-Shaped Hole Film Cooling on Turbine Blade and Vane in a Transonic Cascade with High Freestream Turbulence: Experimental and CFD Studies." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77979.

Full text
Abstract:
The contribution of present research work is to experimentally investigate the effects of blowing ratio and mainstream Mach number/Reynolds number (from 0.6/8.5X10⁵ to 1.0/1.4X10⁶) on the performance of the fan-shaped hole injected turbine blade and vane. The study was operated with high freestream turbulence intensity (12% at the inlet) and large turbulence length scales (0.26 for blade, 0.28 for vane, normalized by the cascade pitch of 58.4mm and 83.3mm respectively). Both convective heat transfer coefficient, in terms of Nusselt number, and adiabatic effectiveness are provided in the results. Present research work also numerically investigates the shock/film cooling interaction. A detailed analysis on the physics of the shock/film cooling interaction in the blade cascade is provided. The results of present research suggests the following major conclusions. Compared to the showerhead only vane, the addition of fan-shaped hole injection on the turbine Nozzle Guide Vane (NGV) increases the Net Heat Flux Reduction (NHFR) 2.6 times while consuming 1.6 times more coolant. For the blade, combined with the surface curvature effect, the increase of Mach number/Reynolds number results in an improved film cooling effectiveness on the blade suction side, but a compromised cooling performance on the blade pressure side. A quick drop of cooling effectiveness occurs at the shock impingement on the blade suction side near the trailing edge. The CFD results indicate that this adiabatic effectiveness drop was caused by the strong secondary flow after shock impingement, which lifts coolant away from the SS surface, and increases the mixing. This secondary flow is related to the spanwise non-uniform of the shock impingement.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
47

Newman, Andrew Samuel. "Performance of a Showerhead and Shaped Hole Film Cooled Vane at High Freestream Turbulence and Transonic Conditions." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/76778.

Full text
Abstract:
An experimental study was performed to measure surface Nusselt number and film cooling effectiveness on a film cooled first stage nozzle guide vane using a transient thin film gauge (TFG) technique. The information presented attempts to further characterize the performance of shaped hole film cooling by taking measurements on a row of shaped holes downstream of leading edge showerhead injection on both the pressure and suction surfaces (hereafter PS and SS) of a 1st stage NGV. Tests were performed at engine representative Mach and Reynolds numbers and high inlet turbulence intensity and large length scale at the Virginia Tech Transonic Cascade facility. Three exit Mach/Reynolds number conditions were tested: 1.0/1,400,000; 0.85/1,150,000; and 0.60/850,000 where Reynolds number is based on exit conditions and vane chord. At Mach/Reynolds numbers of 1.0/1,450,000 and 0.85/1,150,000 three blowing ratio conditions were tested: BR = 1.0, 1.5, and 2.0. At a Mach/Reynolds number of 0.60/850,000, two blowing ratio conditions were tested: BR = 1.5 and 2.0. All tests were performed at inlet turbulence intensity of 12% and length scale normalized by leading edge diameter of 0.28. Film cooling effectiveness and heat transfer results compared well with previously published data, showing a marked effectiveness improvement (up to 2.5x) over the showerhead only NGV and agreement with published showerhead-shaped hole data. NHFR was shown to increase substantially (average 2.6x increase) with the addition of shaped holes, with only a small increase (average 1.6x increase) in required coolant mass flow. Heat transfer and effectiveness augmentation with increasing blowing ratio was shown on the pressure side, however the suction side was shown to be less sensitive to changing blowing ratio. Boundary layer transition location was shown to be within a consistent region on the suction side regardless of blowing ratio and exit Mach number.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
48

Pereira, Roger Michael. "The I2T5 : Enhancement of the Thermal Design of an Iodine Cold Gas Thruster." Thesis, Luleå tekniska universitet, Rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80702.

Full text
Abstract:
The I2T5, an iodine-propelled, cold gas thruster, developed by ThrustMe, France, is the first of its kind to make it successfully to space. Due to its simple, reliable and cost-effective design, it is a suitable propulsion system for CubeSat missions with low delta-V (ΔV) requirements. To ensure that the I2T5 performs at its peak, it is crucial to maintain good thermal control of the thruster, to keep it within the operational temperature range. The first flight measurements of the I2T5 provided insight into its thermal performance. It was observed that the required temperature to sublimate the iodine propellant was not reached within the expected time frame, which led to a longer warm-up period, and a reduction in thrust. The problem arose due to an unforeseen conductive thermal contact between the tank and the thruster walls. This thesis delves deeper into this issue, and focuses on alleviating the total conductive heat loss from the tank to the satellite frame, where the I2T5 is integrated. The insulating washer-bolt configuration of the I2T5 side panels is observed to be responsible for the conductive heat transfer. A preliminary analysis is performed to obtain an initial maximum for the conductive heat flux lost to the satellite frame. A plan of action is then determined to optimise the geometry, material or configuration of the insulating washers to lower the maximum heat flux value. Following this, an experiment was conducted with a new washer-bolt configuration to determine the heat flux values. A case study is performed for the orbital environment heat fluxes that the I2T5 would receive if it were integrated to a CubeSat in sun-synchronous orbit. An overview of results shows that, for the thermal simulations, all the methods employed to reduce the conductive heat loss at the frame were effective. The experiment provided neutral results, and would need to be repeated with different experimental parameters to have a clear perspective of the heat losses. In reality, the satellite frame receives radiative fluxes in addition to conductive heat fluxes, but radiation is not considered for this thesis, and is suggested as a prospective study.
APA, Harvard, Vancouver, ISO, and other styles
49

Wammack, James Edward. "Evolution of Turbine Blade Deposits in an Accelerated Deposition Facility: Roughness and Thermal Analysis." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1067.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Blot, Dorian Matthew. "Aerodynamics of Endwall Contouring with Discrete Holes and an Upstream Purge Slot Under Transonic Conditions with and without Blowing." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/19257.

Full text
Abstract:
Endwall contouring has been widely studied as an effective measure to improve aerodynamic performance by reducing secondary flow strength. The effects of endwall contouring with discrete holes and an upstream purge slot for a high turning (127") airfoil passage under transonic conditions are investigated. The total pressure loss and secondary flow field were measured for two endwall geometries. The non-axisymmetric endwall was developed through an optimization study [1] to minimize secondary losses and is compared to a baseline planar endwall. The blade inlet span increased by 13 degrees with respect to the inlet in order to match engine representative inlet/exit Mach number loading in a HP turbine.  The experiments were performed in a quasi-2D linear cascade with measurements at design exit Mach number 0.88 and incidence angle. Four cases were analyzed for each endwall -- the effect of slot presence (with/without coolant) and the effect of discrete holes (with/without coolant) without slot injection. The coolant to mainstream mass flow ratio was set at 1.0% and 0.25% for upstream purge slot and discrete holes, respectively.  Aerodynamic loss coefficient is calculated with the measured exit total pressure at 0.1 Cax downstream of the blade trailing edge. CFD studies were conducted in compliment. The aero-optimized endwall yielded lower losses than baseline without the presence of the slot. However, in presence of the slot, losses increased due to formation of additional vortices. For both endwall geometries, results reveal that the slot has increased losses, while the addition of coolant further influences secondary flow development.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography