Academic literature on the topic 'Heat storage devices Testing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat storage devices Testing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat storage devices Testing"
Bolufawi, Omonayo, Annadanesh Shellikeri, and Jim P. Zheng. "Lithium-Ion Capacitor Safety Testing for Commercial Application." Batteries 5, no. 4 (December 7, 2019): 74. http://dx.doi.org/10.3390/batteries5040074.
Full textSupak, Kevin, Steve Green, and Amy McCleney. "Using Tapered Channels to Improve LAD Performance for Cryogenic Fluids: Suborbital Testing Results." Gravitational and Space Research 9, no. 1 (January 1, 2021): 115–20. http://dx.doi.org/10.2478/gsr-2021-0009.
Full textVasta, Salvatore, Valeria Palomba, Davide La Rosa, and Antonino Bonanno. "Adsorption Cold Storage for Mobile Applications." Applied Sciences 10, no. 6 (March 18, 2020): 2044. http://dx.doi.org/10.3390/app10062044.
Full textCheng, Zhenjing, Lu Wang, Yaodong Cheng, and Gang Chen. "Heat Prediction of High Energy Physical Data Based on LSTM Recurrent Neural Network." EPJ Web of Conferences 245 (2020): 04002. http://dx.doi.org/10.1051/epjconf/202024504002.
Full textBart, G. C. J., C. J. Hoogendoorn, and P. B. J. Schaareman. "A Characteristic Dimensionless Time in Phase Change Problems." Journal of Solar Energy Engineering 108, no. 4 (November 1, 1986): 310–15. http://dx.doi.org/10.1115/1.3268111.
Full textLi, Yang, Caixia Wang, Jun Zong, Jien Ma, and Youtong Fang. "Experimental Research of the Heat Storage Performance of a Magnesium Nitrate Hexahydrate-Based Phase Change Material for Building Heating." Energies 14, no. 21 (November 1, 2021): 7108. http://dx.doi.org/10.3390/en14217108.
Full textManix, Thomas, Michael R. Gunderson, and Geoffrey C. Garth. "Comparison of Prehospital Cervical Immobilization Devices Using Video and Electromyography." Prehospital and Disaster Medicine 10, no. 4 (December 1995): 232–37. http://dx.doi.org/10.1017/s1049023x00042096.
Full textLee, Kong Weng, Lei Xu, and Jay Skidmore. "Thick Copper and Aluminum Wire Bonding Technology for High Power Laser Devices." International Symposium on Microelectronics 2013, no. 1 (January 1, 2013): 000336–40. http://dx.doi.org/10.4071/isom-2013-tp46.
Full textHegner, Lukas, Stefan Krimmel, Rebecca Ravotti, Dominic Festini, Jörg Worlitschek, and Anastasia Stamatiou. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material." Energies 14, no. 2 (January 19, 2021): 511. http://dx.doi.org/10.3390/en14020511.
Full textNazir, Muhammad Shahzad, Sami ud Din, Wahab Ali Shah, Majid Ali, Ali Yousaf Kharal, Ahmad N. Abdalla, and Padmanaban Sanjeevikumar. "Optimal Economic Modelling of Hybrid Combined Cooling, Heating, and Energy Storage System Based on Gravitational Search Algorithm-Random Forest Regression." Complexity 2021 (May 13, 2021): 1–13. http://dx.doi.org/10.1155/2021/5539284.
Full textDissertations / Theses on the topic "Heat storage devices Testing"
Sözen, Zeki Ziya. "Thermal energy storage by agitated capsules of phase change material." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25974.
Full textApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Benne, Kyle S. "Transient performance of closed loop thermosyphons incorporating thermal storage." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.umr.edu/thesis/pdf/Benne_09007dcc803c9096.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed December 3, 2007) Includes bibliographical references.
Piechowski, Miroslaw. "A ground coupled heat pump system with energy storage /." Connect to thesis, 1996. http://eprints.unimelb.edu.au/archive/00000724.
Full textKota, Krishna M. "Design and experimental study of an integrated vapor chamber thermal energy storage system." Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002332.
Full textPaulsen, Ronald Ray 1951. "DESIGN AND BUILD OF A STORAGE SYSTEM FOR STRESS TESTING (WORD GENERATOR, SIGNAL SOURCE)." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/291237.
Full textCohen, Donald Kenneth. "Analysis of methods for detecting focus error in optical data storage systems." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184257.
Full textMalan, Daniel Johannes. "Latent heat thermal energy storage for solar water heating using flat heat pipes and aluminum fins as heat transfer enhancers." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96140.
Full textENGLISH ABSTRACT: Solar energy is a time dependent, high-temperature radiant energy resource. The utility of a solar thermal energy system increases if the hot temperature source is available when it is needed most. This is realized by the thermal storage of the solar energy. Thermal storage gives greater versatility to a solar energy system by decoupling the heat source from the heat sink. A large quantity of energy may be stored during the melting process in a phase change material (PCM) within a small temperature range. This molten PCM can then deliver its absorbed heat at a constant temperature in a heating application. In this study a phase change storage system (PCS) is developed and proposed for a solar water heating application. This PCS system stores more heat per unit mass than would be possible with water across the same temperature range. The heat transfer rate in and out of many PCMs is slow because of the low thermal conductivity of the PCM. However, heat transfer enhancers (HTE), such as heat pipes and fins may be added to enhance heat absorption and heat removal rates. Heat pipes have the inherent capability to transfer heat at high rates across large distances, even where the temperature difference is small. In this thesis a description is given of a PCS system consisting of paraffin wax as the PCM and which uses rectangular heat pipes in conjunction with aluminium fins to enhance heat transfer. The storage design is modular and each module has the characteristic that enhanced heat transfer in and out of the PCM is possible when the module is heated or cooled. It also has the capability to quickly absorb or alternatively to supply heat at a nearly constant temperature during the phase change of the module. A rectangular module was designed and built. The module was then analysed under controlled heat absorption and heat removal cycles. The heat up experiment involved an electrical kettle as the hot temperature source. The heat sink was a mains water heat exchanger. The experimental results were compared to those of a transient numerical model, which calculates theoretically how the module will perform thermally under the given test conditions. The numerical model of the experimental set-up was validated when it was found that the numerical model results resemble the experimental results. The numerical model was then adapted to simulate a novel solar water heater (SWH) with an additional PCS container. The improvement over previous designs is that the additional storage container can be heated to a higher temperature than the allowable geyser temperature. The system also heats up and cools down at a faster rate than would be possible without the HTEs. From the numerical simulation the size and performance of such a system is determined. This numerical analysis indicated that a phase change storage system in a SWH application will increase the hot water delivered by a given solar collector and geyser by increasing the storage capacity and by heating up the geyser overnight for early morning hot water use.
AFRIKKANSE OPSOMMING: Son energie is ‘n tyd afhanklike, hoë temperatuur radiasie energiebron. Die bruikbaarheid van ‘n sontermiese energie sisteem verhoog indien die hoë temperatuur bron beskikbaar is wanneer dit die meeste benodig word. Dit kan verwesenlik word deur die sonenergie termies te stoor. Termiese storing bied groter veelsydigheid aan ‘n sontermiese stelsel deur effektief die hittebron te ontkoppel van die hitte sink. ‘n Groot hoeveelheid energie kan, gedurende die smeltingsproses in ‘n faseveranderingsmateriaal binne ‘n nou temperatuurband gestoor word. Hierdie gesmelte materiaal kan weer op sy beurt in die waterverhittingstoepassing, die geabsorbeerde hitte teen ‘n konstante temperatuur oordra. In hierdie studie word ‘n sonwaterverwarmer stelsel wat aangepas is deur ‘n addisionele latente hittestoor daaraan te heg, voorgestel. Hierdie faseverandering hittestoor kan meer hitte stoor as wat water in dieselfde temperatuur band sou kon. Die hitteoordrag tempo na en van baie van die faseveranderingsmateriale (FVM) is egter as gevolg van die lae termiese geleidingskoëfisient, stadig. Hierdie eienskap kan gelukkig verbeter word deur hittepype en hitteoordrag verhogings materiaal soos vinne by te voeg. Hittepype het die inherente eienskap om hitte teen ‘n hoë tempo oor groot afstande, oor te dra, selfs oor ‘n klein temperatuurverskil. In hierdie tesis word ‘n ondersoek rakende ‘n faseverandering storingsisteem wat bestaan uit paraffien was as die FVM en reghoekige hittepype wat te same met met aluminium finne gebruik word om die hitteoordragtempo te verhoog, beskryf. Die stoorontwerp is modulêr en elke module het die kenmerk van hoë hitteoordrag na en van die FVM. Die module het verder ook die eienskap om vining hitte te absorbeer of hitte af te gee. Dit gebeur teen ‘n konstante temperatuur gedurende die faseverandering van die FVM. Presies so ‘n reghoekige module is ontwerp en gebou en onder beheerde hitte absorbering- en hitte verwyderingsiklusse analiseer. Tydens die verhittings eksperiment is ‘n elektriese ketel van gebruik gemaak wat gedien het as die hoë temperatuur bron. Die hitte sink was ‘n hitteruiler wat kraanwater van ‘n konstante hoogte tenk ontvang het. Die resultate van die volledige toets is met die resultate van tydafhanklike numeriese model vergelyk. Hierdie numeriese model bereken teoreties wat die module se storing verrigting onder gegewe toets omstandighede sal wees. Die numeriese model se resultate het goed vergelyk met die resultate van die eksperimente. Die numeriese model van die module is toe aangepas om ‘n sonwaterverwarmer met addisionele stoortenk wat fase verandering materiaal gebruik, te simuleer. Hierdie ontwerp is anders as vorige ontwerpe in die sin dat hoër temperature as wat die warmwatertoestel kan hanteer, in die faseverandering storingstenk, bereik kan word. Die sisteem kan ook as gevolg van die hitteoordrag verhoging materiaal, vinniger verhit of afkoel en teen ‘n vinniger tempo. Die simulasie van die sonwaterverwarmer met FVM word gebruik om die grootte en verrigting van die sisteem te bepaal. Hierdie numeriese model toon aan dat wanneer ‘n addisionele faseverandering storingstelsel in ‘n sonwaterverwarmer toepassing gebruik word, die warm water wat die verbruiker uit die sisteem kan verkry, kan verhoog. Die rede hiervoor is dat meer hitte gestoor kan word, wat beskikbaar gemaak word aan die warm water tenk.
Lefebvre, Dominique. "Thermal Energy Storage Using Adsorption Processes for Solar and Waste Heat Applications: Material Synthesis, Testing and Modeling." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34173.
Full textHüttermann, Lars [Verfasser], Roland [Gutachter] Span, and Viktor [Gutachter] Scherer. "Thermodynamic analysis of liquid air energy storage systems and associated heat storage devices / Lars Hüttermann ; Gutachter: Roland Span, Viktor Scherer ; Fakultät für Maschinenbau." Bochum : Ruhr-Universität Bochum, 2019. http://d-nb.info/1177364417/34.
Full textAugspurger, Michael. "Improving the performance of finned latent heat thermal storage devices using a Cartesian grid solver and machine-learning optimization techniques." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6048.
Full textBooks on the topic "Heat storage devices Testing"
H, Visser, Dijk, H. A. L. van., and Commission of the European Communities., eds. Test procedures for short term thermal stores. Dordrecht: Kluwer Academic Publishers, 1991.
Find full textSharma, Ashok K. Semiconductor memories: Technology, testing, and reliability. Piscataway, N.J: IEEE Press, 1997.
Find full textAdams, R. Dean. High performance memory testing: Design principles, fault modeling, and self-test. Boston: Kluwer Academic, 2003.
Find full textTesting semiconductor memories: Theory and practice. Chichester: J. Wiley & Sons, 1991.
Find full textIEEE International Workshop on Memory Technology, Design, and Testing (1998 San Jose, California). Memory technology, design and testing: Proceedings : International Workshop on Memory Technology, Design, and Testing. Los Alamitos, California: IEEE Computer Society Press, 1998.
Find full textSharma, Ashok K. Semiconductor memories: Technology, testing, and reliability. New York: IEEE, the Institute of Electrical and Electronics Engineers, 1997.
Find full textReeves, George. Electric thermal storage applications guide and product directory. Palo Alto, Calif: EPRI, 1990.
Find full textIEEE International Workshop on Memory Technology, Design, and Testing (1997 San Jose, Calif.). Proceedings: International Workshop on Memory Technology, Design, and Testing. Los Alamitos, Calif: IEEE Computer Society Press, 1997.
Find full textHamdioui, Said. Testing static random access memories: Defects, fault models, and test patterns. Boston: Kluwer Academic, 2004.
Find full textAndersson, Olof. Scaling and corrosion: Annex VI : environmental and chemical aspects of thermal energy storage in aquifers. Stockholm, Sweden: Swedish Council for Building Research, 1992.
Find full textBook chapters on the topic "Heat storage devices Testing"
Li, Chuan, Peikun Zhang, Qi Li, Liqe Tong, Li Wang, and Yulong Ding. "Chapter 10. Latent Heat Storage Devices." In Thermal Energy Storage, 265–328. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788019842-00265.
Full textSun, Feng, Xin Wen, Wei Fan, Gang Wang, Kai Gao, Jiajue Li, and Hao Liu. "Optimal Scheduling and Benefit Analysis of Solid Heat Storage Devices in Cold Regions." In Advances in Intelligent Information Hiding and Multimedia Signal Processing, 13–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9710-3_2.
Full textHuber, Ch, A. Jossen, and R. Kuhn. "Novel Latent Heat Storage Devices for Thermal Management of Electric Vehicle Battery Systems." In Sustainable Automotive Technologies 2013, 243–49. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01884-3_25.
Full text"Design of Adsorptive Heat Storage Devices." In Technology Development for Adsorptive Heat Energy Converters, 89–123. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4432-7.ch004.
Full text"Performance of Adsorptive Heat Storage Devices for Heat Supply." In Technology Development for Adsorptive Heat Energy Converters, 124–73. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4432-7.ch005.
Full textKularatna, Nihal. "Supercapacitors in a rapid heat transfer application." In Energy Storage Devices for Electronic Systems, 245–55. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-407947-2.00008-0.
Full textKularatna, Nihal, and Kosala Gunawardane. "Supercapacitors in a rapid heat transfer application." In Energy Storage Devices for Renewable Energy-Based Systems, 395–405. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820778-9.00010-3.
Full textStoy, Bernd. "SOLAR COOKING, ROASTING AND BAKING DEVICES WITH PROCESS HEAT STORAGE." In Advances In Solar Energy Technology, 2708–12. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-034315-0.50500-0.
Full textPrakash, Ravi, Sunil Kumar, and Pralay Maiti. "Carbon Nanotube Based Nanomaterials for Solar Energy Storage Devices." In Current and Future Developments in Nanomaterials and Carbon Nanotubes, 1–18. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050714122030004.
Full textE. Afshan, Mahboob, and Anna Gowsalya Lucas. "Technology in Design of Heat Exchangers for Thermal Energy Storage." In Phase Change Materials - Technology and Applications. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108462.
Full textConference papers on the topic "Heat storage devices Testing"
Wert, Sarah, Cynthia A. Cruickshank, and Dominic Groulx. "Characterization of an Air-PCM Energy Storage Design for Air Handling Unit Applications." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4845.
Full textHockins, Addison, Samantha Moretti, Mahboobe Mahdavi, and Saeed Tiari. "Experimental and Numerical Study of a Latent Heat Thermal Energy Storage Unit Enhanced by Fins." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24024.
Full textChukwu, S., E. Ogbonnaya, and L. Weiss. "Fabrication, Testing, and Enhancement of a Thermal Energy Storage Device Utilizing Phase Change Materials." In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and M. ASME, 2012. http://dx.doi.org/10.1115/ht2012-58309.
Full textBorquist, E., E. Ogbonnaya, S. Thapa, D. Wood, and L. Weiss. "Copper Plated Microchannel Heat Exchanger for MEMS Application." In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21927.
Full textKazmierczak, Michael J., Sreenidhi Krishnamoorthy, and Abhishek Gupta. "Experimental Testing of a Thermoelectric-Based Hydronic Cooling and Heating Device With Transient Charging of Sensible Thermal Energy Storage Water Tank." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-69235.
Full textTheroff, Zachary M., Dre Helmns, and Van P. Carey. "Exploration of Variable Conductance Effects During Input and Extraction of Heat From Phase Change Thermal Storage." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88078.
Full textRahangdale, Unique, Pavan Rajmane, Abel Misrak, and Dereje Agonafer. "A Computational Approach to Study the Impact of PCB Thickness on QFN Assembly Under Drop Testing With Package Power Supply." In ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ipack2017-74278.
Full textÖzdemir, Ozan Ç., Taylor N. Suess, Todd M. Letcher, and Stephen P. Gent. "Investigating the Structural Properties of Corn Stover at Macro and Fiber Levels." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18164.
Full textSaad, Messiha, Darryl Baker, and Rhys Reaves. "Thermal Characterization of Carbon-Carbon Composites." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64061.
Full textManzanas, Carlos, Xiao Jiang, John A. Lednicky, and Z. Hugh Fan. "Development of Ball-Enabled Miniaturized Valves for Sample Preparation and Microheaters for Pathogen Detection." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20379.
Full textReports on the topic "Heat storage devices Testing"
Harding, D. C., J. G. Bobbe, D. R. Stenberg, and M. Arviso. Radiant heat testing of the H1224A shipping/storage container. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10155125.
Full textKelly, Michael, Paul Hlava, and Douglas Brosseau. Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/919178.
Full text