Academic literature on the topic 'Heat source identification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat source identification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat source identification"
Kriegsmann, G. A., and W. E. Olmstead. "Source identification for the heat equation." Applied Mathematics Letters 1, no. 3 (1988): 241–45. http://dx.doi.org/10.1016/0893-9659(88)90084-5.
Full textMomose, Kazunari, Tetsuya Murai, Toshihiko Asami, and Yoshinobu Hosokawa. "Identification of Heat-Source Using Neural Network." Transactions of the Japan Society of Mechanical Engineers Series C 59, no. 567 (1993): 3431–36. http://dx.doi.org/10.1299/kikaic.59.3431.
Full textErdem, A., D. Lesnic, and A. Hasanov. "Identification of a spacewise dependent heat source." Applied Mathematical Modelling 37, no. 24 (December 2013): 10231–44. http://dx.doi.org/10.1016/j.apm.2013.06.006.
Full textXie, Yanmei, Caihong Ma, Yindi Zhao, Dongmei Yan, Bo Cheng, Xiaolin Hou, Hongyu Chen, Bihong Fu, and Guangtong Wan. "The Potential of Using SDGSAT-1 TIS Data to Identify Industrial Heat Sources in the Beijing–Tianjin–Hebei Region." Remote Sensing 16, no. 5 (February 22, 2024): 768. http://dx.doi.org/10.3390/rs16050768.
Full textTsai, Richard, Stanley Osher, and Yingying Li. "Heat source identification based on $l_1$ constrained minimization." Inverse Problems and Imaging 8, no. 1 (March 2014): 199–221. http://dx.doi.org/10.3934/ipi.2014.8.199.
Full textEremin, A. V., E. V. Stefanyuk, and L. S. Abisheva. "HEAT SOURCE IDENTIFICATION BASED ON ANALYTICAL SOLUTIONS OF THE HEAT-CONDUCTION PROBLEM." Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy 59, no. 5 (January 1, 2016): 339–46. http://dx.doi.org/10.17073/0368-0797-2016-5-339-346.
Full textKUBO, Shiro, Kohzaburo OHNAKA, and Kiyotsugu OHJI. "Identification of heat-source and force using boundary integrals." Transactions of the Japan Society of Mechanical Engineers Series A 54, no. 503 (1988): 1329–34. http://dx.doi.org/10.1299/kikaia.54.1329.
Full textHettlich, F., and W. Rundell. "Identification of a discontinuous source in the heat equation." Inverse Problems 17, no. 5 (September 7, 2001): 1465–82. http://dx.doi.org/10.1088/0266-5611/17/5/315.
Full textLing, Leevan, Masahiro Yamamoto, Y. C. Hon, and Tomoya Takeuchi. "Identification of source locations in two-dimensional heat equations." Inverse Problems 22, no. 4 (June 26, 2006): 1289–305. http://dx.doi.org/10.1088/0266-5611/22/4/011.
Full textLu, Zhong-Rong, Tiancheng Pan, and Li Wang. "A sparse regularization approach to inverse heat source identification." International Journal of Heat and Mass Transfer 142 (October 2019): 118430. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.07.080.
Full textDissertations / Theses on the topic "Heat source identification"
Branscome, Ewell Caleb. "A Multidisciplinary Approach to the Identification and Evaluation of Novel Concepts for Deeply Buried Hardened Target Defeat." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14092.
Full textMohamad, Salman. "EVALUATING THE ORGANIC RANKINE CYCLE (ORC) FOR HEAT TO POWER : Feasibility and parameter identification of the ORC cycle at different working fluid with district waste heat as a main source." Thesis, Mälardalens högskola, Framtidens energi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-38573.
Full textNej
Dupuis, Quentin. "Identification des caractéristiques d'une carte électronique et de ses composants, et modélisation de leurs comportements thermiques." Electronic Thesis or Diss., Paris 10, 2023. http://www.theses.fr/2023PA100131.
Full textThe work presented in this thesis is a contribution to the identification via experimental measurements of critical parameters for the thermal modelling of an electronic board and its components.First, the study of the temporal evolution of the junction temperature of an electronic component stimulated by a constant thermal power is proposed, based on the graphical analysis of its Cumulative Structure Function. All the steps involved in the construction of this function are presented in detail, together with an analysis of the various sensitive parameters. Absolute identification of the thermal parameters of the different materials of an electronic component is not feasible, but a relative study is presented to enable the calibration of its detailed numerical model.The second part of this thesis is devoted to the identification, using inverse methods, of the characteristics of a component embedded in an electronic board, namely its position, its dimensions, and its dissipated thermal power. To achieve this objective, a 3D numerical model based on the finite volume method was implemented to calculate the transient conductive heat transfer within the structure of study. The conjugate gradient algorithm with adjoint variable calculation is used to estimate the dissipated heat power density, while its coupling with a one-dimensional minimisation function permits to identify the position of the heat sources according to the depth of the structure. The application of this procedure to data from numerical simulations and experimental measurements has enabled to validate the inversion method
Bouzarour, Amina. "Auto-échauffement d'un lit ventilé de matériaux carbonés : cas du bois torréfié Experimental study of torrefied wood fixed bed: Thermal analysis and source term identification." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2019. http://www.theses.fr/2019EMAC0012.
Full textTorrefaction is one of the thermo-chemical pretreatment processes of lignocellulosic biomass that facilitates both the storage and transport of the material and increases the energy value of the product. However, as the torrefied substrate is more reactive, it is more prone to spontaneous exothermic mechanisms that can lead to self-heating of the material. This issue is not well investigated in the case of torrefied wood since its industrial application is mainly in the test phase. For this reason, this topic is further studied throughout this thesis. Indeed, the aim was to understand the phenomena responsible for the self-heating of a bed of biomass ventilated with oxidizing gas at low temperature. To do this, self-heating scenarios of torrefied wood chips were created under an oxidizing atmosphere. Pilot-scale experiments were conducted in a 12 L fixed-bed reactor. During these tests, we demonstrated that self-heating is intensified when the oxidizing gas flow rate is low and under a high oxygen fraction. In addition, the heat produced during the self-heating of the wooden bed was estimated on the basis of a heat balance and thermal data. Then, the source term was correlated to the oxygen fraction and temperature in a simplified model. The apparent kinetic parameters and heat of reaction associated with self-heating were derived from this. On the other hand, in order to understand the exothermic phenomena characterizing self-heating, low temperature oxidation tests are carried out on a small scale (ATG/ATD). On the basis of these analyses, kinetic models were developed to distinguish and quantify the mechanisms identified experimentally. These two approaches have made it possible to highlight three main mechanisms involved in low-temperature oxidation: chemical adsorption of oxygen on the reagent, decomposition of the oxygen complexes formed during adsorption and a direct oxidation reaction. In a more problem-oriented approach to industrial-scale self-heating, a numerical model coupling chemical kinetics and mass and heat transfers was designed at the scale of the particle bed. This model provided a reasonable prediction of the thermal performance of the torrefied wood bed under high ventilation flow. It was then extrapolated to an industrial scale to simulate the thermal behaviour of a storage silo undergoing self-heating
Frisk, Malin, and Elise Ramqvist. "Identification of waste heat sources in Uppsala - with potential use in Bergsbrunna as a case study." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245231.
Full textAtt hushålla med jordens resurser är en av det viktigaste faktorerna för en hållbar framtid. Tillvaratagande av spillvärme kan vara ett sätt att öka energieffektiviteten och utnyttjandegraden av resurserna. Uppsala kommun har som mål att vara en klimatpositiv kommun år 2050, vilket innebär negativa utsläpp av koldioxid. Spillvärmetillvaratagande presenteras som en potentiell åtgärd för att uppnå visionen om en klimatpositiv kommun. Vattenfall AB är värme-, kyl-, ång- och eldistributör i Uppsala och har ett starkt mål inom hållbarhet. Vattenfall är en samarbetspartner till Uppsala och ser ett intresse i möjligheterna för spillvärme i ett framtida energisystem. Det här examensarbetet undersöker vilka spillvärmekällor som finns i Uppsala kommun och approximerar den teoretiska mängden lågtempererad spillvärme från typiska verksamheter med spillvärmegenererande processer. Dessutom undersöks hur stor mängd av spillvärmen som kan nyttjas i den planerade stadsdelen Bergsbrunna och hur stor del av värmebehovet i stadsdelen som spillvärmen kan täcka genom ett lågtempererat fjärrvärmenät. I syfte att undersöka hur mycket och i vilken form spillvärme samt vilka spillvärmealstrande processer som förekommer inom olika verksamheter i Uppsala kommun skapades en enkät, vilken skickades ut till totalt 374 olika verksamheter. Urvalet av de olika verksamhetstyperna baserades på den spillvärmepotential som tidigare studier visat samt begränsades av tillgänglig kontaktinformation till de identifierade verksamheterna. Timbaserade spillvärmeprofiler togs fram för ett antal verksamheter, vilka är livsmedelsbutiker, hotell och restauranger samt ishallar och simhallar. Dessa profiler kan nyttjas som bas när spillvärmepotentialen ska approximeras i ett område där en eller flera av dessa verksamheter finns. Dessutom togs en bedömningsmatris fram som förslagsvis används då spillvärmekällans olika parametrar ska summeras och potentialen jämföras med andra spillvärmekällor. Utifrån de framtagna spillvärmeprofilerna kunde en teoretisk potential av de låggradiga spillvärmekällorna i Uppsala kommun beräknas. Resultaten visar att det approximativt finns 62 GWh tillgänglig låggradig spillvärme årligen inom kommunen samt att dess temperatur varierar mellan 22°C och 55°C. Spillvärmeprofilerna visar dessutom att en livsmedelsbutik har en årlig spillvärmepotential mellan 1 200 och 3 500 MWh, beroende på butikens storlek. En restaurang och ett hotell skulle potentiellt kunna leverera 90 MWh respektive 80 MWh spillvärme årligen. En ishall har en potential att leverera 1 400 MWh spillvärme medan en simhall har en årlig spillvärmepotential på 600 MWh. I den planerade stadsdelen Bergsbrunna kan spillvärmemängden från 14 spillvärmekällor i form av livsmedelsbutiker, en ishall, en simhall, ett hotell och restauranger täcka nästan 14% av det årliga värmebehovet om spillvärmetemperaturen höjs till 65°C med värmepumpar. Dessutom höjdes temperaturen av spillvärmen till 85°C för att kunna användas i dagens fjärrvärmenät. Den ekonomiska analysen visar att den lägsta produktionskostnaden uppgår till ungefär 0.34 SEK/kWh för temperaturhöjning till 65°C, jämfört med den lägsta produktionskostnaden som uppgår till ungefär 0.39 SEK/kWh för temperaturhöjning till 85°C. Flera antaganden har gjorts för att beräkna spillvärmepotentialen i Uppsala. Det viktigaste antagandet är att andrahandsdata av medelenergiförbrukning i olika typer av verksamheter kan användas för att beräkna spillvärmepotentialen. Dessa mätvärden var inte initialt uppmätta för att beräkna spillvärmepotentialen. Stadsplaneringen av Bergsbrunna är också baserat på flera antaganden och därav är det inte säkert att den representerar den framtida stadsdelen eller ett annat område av samma storlek. Slutligen, de ekonomiska beräkningarna inkluderar endast investerings- och installationskostnaderna av värmepumpen och elkostnaden för att höja spillvärmetemperaturen, som är baserad på historisk data.
Yu, Jianbin. "Identification of new sources and mapping of QTL for FHB resistance in Asian wheat Germplasm." Diss., Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/258.
Full textHo, Tzu-Hsin, and 何子炘. "PDE Parameters Identification of a Copper Rod Heat Conduction System with a Boundary Heat Source." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/89904218248416359208.
Full text國立中興大學
電機工程學系所
98
This thesis is on PDE parameters identification of a heat conductive copper rod with a boundary heat source. A copper rod, 400mm in length and 38mm in diameter, is heated by an electrical heater with a pulse-width-modulated (PWM) solid state relay (SSR) control module from one boundary point. The temperature distribution of the copper rod is sampled and collected into a TMS320LF 2407A digital signal processor (DSP) manufactured by Texas Instruments (TI). The data is then plotted and analyzed by using Matlab software packages. In addition, the copper heat conduction equation and the derived dynamic model in Chapter IV will be applied to the conversion process of the continuous-time boundary control into the discrete-time sampled-data representation by using the Zero-Order-Hold (Z.O.H) process. The boundary conditions of the heat conduction equation are converted into homogeneous boundary conditions before applying the Matlab pdepe.m simulation functions. Finally, the experimental data are compared against the simulation data for confirmation of the PDE system parameters identification for the copper rod heat conduction system.
Chang, Chih-Wen, and 張致文. "Applications of Novel Approaches to Backward Heat Conduction Problems and Groundwater Pollution Source Identification Problems." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/82818224428386201487.
Full text國立臺灣海洋大學
系統工程暨造船學系
97
This dissertation investigates two inverse problems of parabolic equations using four different numerical methods. These problems are ill-posed because the solution、if it exists、does not depend continuously on the measured data. Even many researchers have proposed lots of methods to overcome these ill-posed problems; however、an effective numerical scheme to tackle these problems is still pending. The backward heat conduction problem (BHCP) and the groundwater pollution source identification problem governed by the backward advection-dispersion equation (ADE) are tackled by the backward group preserving scheme (BGPS)、the Lie-group shooting method (LGSM)、the quasi-boundary semi-analytical method、and the fictitious time integration method (FTIM)、respectively. First、these two ill-posed problems are analyzed by considering the stable semi-discretization numerical schemes and then、the resulting ordinary differential equations at the discretized spaces are numerically integrated towards the time direction by using the BGPS. Nevertheless、the LGSM is employed to find the unknown initial conditions. The key point is based on the erection of a one-step Lie group element G(T) and the formation of a generalized mid-point Lie group element G(r). Then、by imposing G(T) = G(r) we can seek the missing initial conditions through a minimum discrepancy of the target in terms of the weighting factor In addition、the Fourier series expansion technique is used to calculate the temperature field and the concentration field by using the quasi-boundary semi-analytical method. Then、we consider a direct regularization by adding an extra term or in the final time condition to obtain a second kind Fredholm integral equation for u(x、y、0) or C(x、y、0). The termwise separable property of the kernel function allows us to transform the backward problem into a two-point boundary value problem and therefore、a closed-form solution is derived. After that、by using the FTIM、we transform the original parabolic equation into another parabolic type evolution equation by introducing a fictitious time variable、and adding a fictitious viscous damping coefficient to enhance the stability of numerical integrations of the discretized equations by employing a group preserving scheme. Since four new computational algorithms are based on a concrete theoretical foundation、they offer effective approaches for solving these inverse problems. At last、several designed numerical examples especially with noisy data will be carefully discussed and validate these proposed methods.
Al-Khalidy, Nehad A. Hussen. "Applying inverse techniques for identification of thermal effects during welding process with moving heat source." Rozprawa doktorska, 1996. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=3118.
Full textAl-Khalidy, Nehad A. Hussen. "Applying inverse techniques for identification of thermal effects during welding process with moving heat source." Rozprawa doktorska, 1996. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=3118.
Full textBooks on the topic "Heat source identification"
Blasi, Francesco, and Paolo Tarsia. Therapeutic approach in haemoptysis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0127.
Full textRossi, Michael. James Herriot. Greenwood Publishing Group, Inc., 1997. http://dx.doi.org/10.5040/9798400673535.
Full textBook chapters on the topic "Heat source identification"
Vasil’ev, V. I., V. V. Popov, and A. M. Kardashevsky. "Conjugate Gradient Method for Identification of a Spacewise Heat Source." In Large-Scale Scientific Computing, 600–607. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73441-5_66.
Full textBeaubier, B., K. Lavernhe-Taillard, R. Billardon, C. Boucq, P. Laloue, and B. Darciaux. "Identification of Welding Heat Sources from Infrared Temperature Measurements." In Conference Proceedings of the Society for Experimental Mechanics Series, 199–206. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00876-9_24.
Full textCharlès, S., and J.-B. Le Cam. "Hyperelastic model identification from heat source fields." In Constitutive Models for Rubber XI, 183–87. CRC Press, 2019. http://dx.doi.org/10.1201/9780429324710-33.
Full textLin, Feng-Tsai, and John C.-C. "Modelling of Transient Ground Surface Displacements Due to a Point Heat Source." In Modelling, Simulation and Identification. Sciyo, 2010. http://dx.doi.org/10.5772/10024.
Full textLin, Feng-Tsai, and John C.-C. "Closed-Form Solutions of the Cross-Anisotropic Stratum Due to a Point Heat Source." In Modelling, Simulation and Identification. Sciyo, 2010. http://dx.doi.org/10.5772/10023.
Full textLiu, Xiaolong, Jushang Li, Ruitong Zhang, Hongjie Jiang, Xikuan Chen, Jihao Cheng, and Fucheng Liu. "Transient Quantitative Identification Algorithm Based on Laser Impulse Response." In Proceedings of the 2022 International Conference on Smart Manufacturing and Material Processing (SMMP2022). IOS Press, 2022. http://dx.doi.org/10.3233/atde220835.
Full textV. Ioganson, Elena, Marat I. Timerzianov, Marina V. Perelman, and Olga A. Kravtsova. "Reliability and Reproducibility of DNA Profiling from Degraded Samples in Forensic Genetics." In Forensic Analysis [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98300.
Full textBawa, Vanya, and Sunil Kumar Rai. "Nature of Importance of Various Parameters for Ideal Biofuel Crops: Special Reference to Rapeseed Mustard." In Oilseed Crops - Biology, Production and Processing [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107102.
Full textMomose, K., and H. Kimoto. "Identification of phase change interface using imaginary heat sources." In Inverse Problems in Engineering Mechanics, 17–26. Elsevier, 1998. http://dx.doi.org/10.1016/b978-008043319-6/50006-6.
Full textMee, Nicholas. "The Gorgon’s Head!" In The Cosmic Mystery Tour, 161–66. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198831860.003.0021.
Full textConference papers on the topic "Heat source identification"
Lu, J. C. C., M. Q. Chen, and F. T. Lin. "Modelling of Cross-Anisotropic Thermoelastic Stratum due to a Point Heat Source." In Modelling, Identification, and Control. Calgary,AB,Canada: ACTAPRESS, 2010. http://dx.doi.org/10.2316/p.2010.702-084.
Full textVaddi, Jyani S., and Stephen D. Holland. "Identification of heat source distribution in vibrothermography." In 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865020.
Full textAzimi, Aziz, and Ehsan Daneshgar. "Identification of Indoor Contaminant Source by Inverse Zonal Method." In International Conference of Fluid Flow, Heat and Mass Transfer. Avestia Publishing, 2016. http://dx.doi.org/10.11159/ffhmt16.125.
Full textChakraborty, Shubhankar, and P. K. Das. "IDENTIFICATION OF TRANSIENT INTERNAL HEAT SOURCE USING MODIFIED LEVENBERG-MARQUARDT ALGORITHM." In Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017). Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihmtc-2017.1390.
Full textribeiro, sidney, Gabriela Oliveira, and Gilmar Guimaraes. "ANALITYCAL IMPULSE RESPONSE IDENTIFICATION FOR A MOVING HEAT SOURCE PROBLEM USING GREEN’S FUNCTIONS." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-1388.
Full textKose, Ahmet, and Eduard Petlenkov. "Identification, implementation and simulation of Ground Source Heat Pump with ground temperature modeling." In 2016 15th Biennial Baltic Electronics Conference (BEC). IEEE, 2016. http://dx.doi.org/10.1109/bec.2016.7743754.
Full textYaparova, N. M., and A. D. Drozin. "Method for internal heat source identification in a rod based on indirect temperature measurements." In 2017 2nd International Ural Conference on Measurements (UralCon). IEEE, 2017. http://dx.doi.org/10.1109/uralcon.2017.8120693.
Full textZakaria, M. F. "Identification of Heat Source and Alteration Zone of Parangwedang Geothermal System using Magnetic Method." In EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience and Engineering. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800342.
Full textBenard, Christine, Beatrice Guerrier, and Marie-Minerve Rosset. "IDENTIFICATION OR CONTROL OF THE BOUNDARY INPUT OF A LINEAR THERMAL SYSTEM WITH NO INTRUSIVE MEASUREMENTS, IN THE PRESENCE OF INTERNAL HEAT SOURCE DISTURBANCES." In International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.330.
Full textKose, Ahmet, and Eduard Petlenkov. "System identification models and using neural networks for Ground Source Heat Pump with Ground Temperature Modeling." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727559.
Full textReports on the topic "Heat source identification"
Cohen, Yuval, Christopher A. Cullis, and Uri Lavi. Molecular Analyses of Soma-clonal Variation in Date Palm and Banana for Early Identification and Control of Off-types Generation. United States Department of Agriculture, October 2010. http://dx.doi.org/10.32747/2010.7592124.bard.
Full textKingston, A. W., O. H. Ardakani, and R A Stern. Tracing the subsurface sulfur cycle using isotopic and elemental fingerprinting: from the micro to the macro scale. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329789.
Full textO'Connell, Kelly, David Burdick, Melissa Vaccarino, Colin Lock, Greg Zimmerman, and Yakuta Bhagat. Coral species inventory at War in the Pacific National Historical Park: Final report. National Park Service, 2024. http://dx.doi.org/10.36967/2302040.
Full text