Academic literature on the topic 'Heat recovery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat recovery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat recovery"
Ion, Ion V., Antoaneta Ene, and Gabriel Mocanu. "Boiler blowdown recovery." Annals of the ”Dunarea de Jos” University of Galati Fascicle II Mathematics Physics Theoretical Mechanics 44, no. 2 (December 29, 2021): 98–102. http://dx.doi.org/10.35219/ann-ugal-math-phys-mec.2021.2.03.
Full textSAARI, JUSSI, JUHA KAIKKO, EKATERINA SERMYAGINA, MARCELO HAMAGUCHI, MARCELO CARDOSO, ESA VAKKILAINEN, and MARKUS HAIDER. "Recovery boiler back-end heat recovery." March 2023 22, no. 3 (April 1, 2023): 174–83. http://dx.doi.org/10.32964/tj22.3.174.
Full textVannoni, Alberto, Alessandro Sorce, Sven Bosser, and Torsten Buddenberg. "Heat recovery from Combined Cycle Power Plants for Heat Pumps." E3S Web of Conferences 113 (2019): 01011. http://dx.doi.org/10.1051/e3sconf/201911301011.
Full textVivek, P., and P. Vijaya kumar. "Heat Recovery Steam Generator by Using Cogeneration." International Journal of Engineering Research 3, no. 8 (August 1, 2014): 512–16. http://dx.doi.org/10.17950/ijer/v3s8/808.
Full textKim, Yurim, Jonghun Lim, Jae Yun Shim, Seokil Hong, Heedong Lee, and Hyungtae Cho. "Optimization of Heat Exchanger Network via Pinch Analysis in Heat Pump-Assisted Textile Industry Wastewater Heat Recovery System." Energies 15, no. 9 (April 23, 2022): 3090. http://dx.doi.org/10.3390/en15093090.
Full textLosnegard, Thomas, Martin Andersen, Matt Spencer, and Jostein Hallén. "Effects of Active Versus Passive Recovery in Sprint Cross-Country Skiing." International Journal of Sports Physiology and Performance 10, no. 5 (July 2015): 630–35. http://dx.doi.org/10.1123/ijspp.2014-0218.
Full textŁokietek, Tomasz, Wojciech Tuchowski, Dorota Leciej-Pirczewska, and Anna Głowacka. "Heat Recovery from a Wastewater Treatment Process—Case Study." Energies 16, no. 1 (December 21, 2022): 44. http://dx.doi.org/10.3390/en16010044.
Full textSoundararajan, Srinath, and Mahalingam Selvaraj. "Investigations of protracted finned double pipe heat exchanger system for waste heat recovery from diesel engine exhaust." Thermal Science, no. 00 (2023): 143. http://dx.doi.org/10.2298/tsci230212143s.
Full textMcFARLAND, IAN. "Heat Recovery Apparatus." Heat Transfer Engineering 8, no. 4 (January 1987): 33–35. http://dx.doi.org/10.1080/01457638708962814.
Full textZolkowski, Jerry T. "Waste Heat Recovery." Energy Engineering 106, no. 5 (September 2009): 63–74. http://dx.doi.org/10.1080/01998590909594544.
Full textDissertations / Theses on the topic "Heat recovery"
Currie, John S. "Absorption heat recovery." Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/13527.
Full textRazavinia, Nasimalsadat. "Waste heat recovery with heat pipe technology." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94983.
Full textL'énergie d'haut grade de nos jours est produite principalement à base de combustion d'hydrocarbure et les réserves de cette énergie deviennent de plus en plus rare, mais certaines énergies alternatives connues gagnent des forces parmi les marchés incluant les sources d'énergie renouvelables et recyclées. Les usines pyrométallurgiques sont des consommateurs significatifs d'énergie d'haut grade. Ces procédés industriels relâches un montant important de chaleurs (perte) à l'environnement sans aucune récupération. Le but du projet est de concentrer, capturer et convertir cette chaleur résiduelle de basse qualité en énergie valable. Par contre, l'objectif principal du projet comme tel est de développer et de perfectionner un caloduc capable d'extraire cette chaleur parvenant des gaz effluents. Le point d'ébullition d'une substance (vapeur) est utilisé comme moyen de concentrer l'énergie contenu dans les effluents avec la technologie des caloducs. Pour maximiser les gains énergétiques, la conception de ce caloduc en particulier utilise des canaux de retour indépendant ainsi qu'un modificateur de débit dans l'évaporateur, lui permettant d'extraire un niveau supérieur de chaleur. Pendant les essais lors du projet, les éléments limitants des systèmes de caloducs ont été identifiés. Les configurations du système ont été ajustées et modifiés dans la phase expérimentale d'essai pour surmonter ces limitations et maximiser l'extraction de chaleur.
Rojas, Tena Fernando, and Reber Kadir. "Waste Heat Recovery Modellering." Thesis, KTH, Förbränningsmotorteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39923.
Full textAbstractIn a previous project, made in the spring of 2010, a steam generator was modelled and simulated in GT-SUITE, in order to analyze and compare with engine measurements. This was made at the Royal Institute of Technology in Stockholm, on behalf of the company that introduced this idea, Ranotor. The concept was to replace the EGR-cooler in a heavy duty engine and with help of the Rankine cycle, try to improve its efficiency. The steam generator consists of 48 micro tubes, all containing high pressured water, which in turn is heated by the warm exhausts that are led into the steam generator. This causes the water in the tubes to evaporate which propels an expander that will unload the engine.The main focus of this thesis is to model, study and analyze the performance of the steam generator built in the simulation program GT-SUITE. The steam generator, called Heat Recovery Steam Generator (HRSG), is modelled from scratch with the specifications of the manufacturer. An elementary model was initially made to highlight the behaviour of the flow inside the micro tubes and what parameters affect the outcome of the simulations. Finally a complete identical model was made of the actual steam generator. The model was used in an ESC-cycle and also for a transient cycle, where all the input data is gathered on engine measurements of the actual HRSG, mounted on a DS1301, 6-cylinder 12 litre Scania diesel engine. In order to improve the simulation of the complete model a downsized model, only containing two tubes, was made. This model has the same dimensions and properties as the complete model but the advantage of this double-tube model is the shortened simulation time.The inlet parameters to the model such as water mass flow, steam pressure, exhaust mass flow and exhaust temperature were taken from actual engine measurements. All the parameters vary due to time; this makes a comparison possible between the real steam generator and the modelled one. Steam temperature, exhaust temperature and pressure drop along the HRSG are the main parameters from the simulations that are compared to the actual measurements. The engine measurements are made based on the ESC-cycle, European Stationary Cycle, which contains twelve load points and one idle point. During comparison between the complete model and the engine measurements following is observed, in the best case the steam temperature differs ~ 5 %, equalling 10°C. In the worst case the temperature difference is ~20 %, which is approximately 40°C, the rest of the load points shows a margin of error between 5-10 % equalling 10-35 °C. Pressure drop along the HRSG is less accurate;this is due to an error during the measurement where some filters where clogged. Disparity in pressure drop is ~1% in best case, which is almost identical and ~70% in worst case, corresponding to approximately 10 bar, where rest of the load points shows a margin of error between 10-15% equalling 1-4 bar.The double-tube model behaves like the complete model; the difference between the models is 1-5 % in most cases ~5-15°C, where the difference is mostly closer to the measurements. Heat transfer, Reynolds number and steam power are taken and studied from the double tube model. Analyses of the models reviles that ~40-55 % of the heat transfer is in the transition phase, which is surprisingly much and Reynolds number increases by ~450% in the same region, from 1500 to ~6500 which indicates a flow transition phase. Steam power varies between 5-23 kW depending on load point.The final model shows satisfying result and therefore assumed to be good enough for further analyse.
Veijola, T. (Tommi). "Domestic wastewater heat recovery." Bachelor's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201704271600.
Full textHua, Lihong. "Heat exchanger development for waste water heat recovery." Thesis, University of Canterbury. Mechanical Engineering, 2005. http://hdl.handle.net/10092/6459.
Full textNyholm, Joakim. "Horizontal wastewater heat recovery heat exchanger, a model." Thesis, KTH, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263618.
Full textByggnads och servicesektorn står för cirka 40 procent av Sveriges energibehov. Av de 40 procenten består 90% av energibehov ifrån hushåll och kontorsbyggnader. Totalt sett 80 TWh används för uppvärmning av byggnader samt varmvatten. Då uppvärmning alltid varit en stor del av energibehovet i Sverige är det naturligt att det skett en rad förbättringar på vägen. Det finns en ny anläggning på Pennfäktaren 11 i Stockholm, en horisontell värmeväxlare för avloppsvatten. Den här uppsatsen fokuserar på att skapa en modell i TRNSYS av en värmeväxlare där parametrar som vattenflöde, temperatur, och mer kan användas för att bedöma den tekniska aspekten av en installation av värmeväxlare i en byggnad. Modellen kan simulera prestandan av en ensam värmeväxlare, med endast ett fåtal parametrar som behövs. Modellen baseras på mätdata ifrån anläggningen på Pennfäktaren, denna mätdata har sedan använts för att beräkna först massflödet av avloppsvatten men också för att bestämma hur mycket värme som är möjligt att återvinna utan att överskrida det byggnaden faktiskt kan använda. Då det bara finns data ifrån en källa fick den anses som korrekt, dock gjordes en del ändringar där data helt enkelt var omöjligt, t.ex. negativa avloppsflöden och flödesmängder så höga att de inte ska kunna vara möjliga. Den färdiga modellen använder mätdata tillsammans med de beräknade värdena. Detta används för att genom modellen beräkna temperaturvärden för utgående vatten och avlopp samt den totala mängden återvunnen värme. I referensscenariot kunde totalt 25,3 MWh värme återvinnas men det bästa scenariot med ökad avloppstemperatur och avloppsflöde kunde närmare 47,2 MWh återvinnas, nästan det dubbla från referensvärdet. För att sammanfatta ger modellens simulationer rimliga värden för värmeväxlaren. Det bör därför vara fullt möjligt att använda modellen för att bedöma ett hus rimlighet till en värmeväxlarinstallation.
Gillott, Mark C. "A novel mechanical ventilation heat recovery/heat pump system." Thesis, University of Nottingham, 2000. http://eprints.nottingham.ac.uk/12148/.
Full textGrundén, Emma, and Max Grischek. "Testing the Heat Transfer of a Drain Water Heat Recovery Heat Exchanger." Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190188.
Full textDenna studie undersöker den ökade termiska resistansen i avloppsrör på grund av beläggningar. Idag lägg stor vikt vid bra isolering och energieffektiv utrustning i nybyggda hus, vilket även sätter press på värmeåtervinning av avloppsvatten. Värmeåtervinningen av avloppsvatten är mindre viktig i äldre hus, då den relativa värmeförlusten av avloppsvatten är lägre än i nybyggda hus, men bör likväl tas i akt vid utvärderingen av värmeanvändning. I ett svenskt flerfamiljshus byggt före 1940 stod värmeförlusten på grund av varmt avloppsvatten för 17 % av den totala värmeförlusten (Ekelin et al., 2006). Den genomsnittliga temperaturen för svartvatten ligger på 23 °C till 26 °C (Seybold & Brunk, 2013), varav delar av värmen kan återvinnas i värmeväxlare. Detta bidrar till att det kalla ingående vattnet till värmepumpen förvärms av värmen från avloppsvattnet. Beroende på system och material kan 30 % till 75 % av värmen från avloppsvatten återvinnas (Zaloum et al., 2007b). Ett hot mot prestandan av värmeväxlare är att beläggning formas på de värmeöverförande ytorna i värmeväxlaren. Detta bidrar till en ökad termisk resistans och kan vara mycket kostsam på grund av minskning av värmeöverföring och nödvändig rengöring av anordningen. För att undersöka omfattningen av den ökade termiska resistansen utfördes en rad experiment i en klimatkammare på Brinellvägen 66. En jämförande metod användes där ett aluminiumrör, som tidigare installerats i avloppssystemet från herrarnas toalett i korridoren på Brinellvägen 64B, jämfördes med ett identiskt rör av samma tillverkare. Rören var tätade och fyllda med 20-gradigt kranvatten. Termoelement användes för att, över tid, mäta minskningen av vattentemperaturen i rören. Temperaturskillnaden användes för att beskriva skillnaden i termisk resistans genom att utföra kurvanpassning och tillämpa Lumped Capacitance Method. Skillnaden i termisk resistans mellan de båda rören antogs vara lika med beläggningens motstånd för värmeöverföring. Två huvudsakliga resultat kom av studien. Det första var att beläggning bidrar till ökad termisk resistans av aluminiumrör. Den andra var att korrosion tillsammans med andra externa faktorer orsakar en märkbar minskning av rörens termiska resistans. Totalt sett orsakade beläggningen tillsammans med korrosion en minskning av 14 % av den termiska resistansen i provröret, jämfört med den termiska resistansen vid installationstillfället. Vidare låg minskningen i termisk resistans på grund av korrosion i teströret på 44 % jämfört med den termiska resistansen vid installationstillfället och den genomsnittliga termiska resistansen av det rengjorda teströret låg på 51 % lägre än den genomsnittliga resistansen av teströret innan rengöring. Den beräknade resistansen för ett 0.81 mm tjockt lager av beläggning var 0.03068 m2K/W.
Aguilar, Alex. "Harnessing thermoacoustics for waste heat recovery." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/130213.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 25-26).
Environmental concerns and economic incentives have created a push for a reduction in emissions and an increase in efficiency. The U.S. Department of Energy estimates that 20 to 50% of the energy consumed in manufacturing processes is lost in some form to waste heat. The purpose of this study is to review the waste heat recovery technologies currently available in both commercial and research applications to determine how thermoacoustics may serve a role in furthering the use of waste heat recovery units. A literary review of the most common waste heat recovery units was compiled to determine the advantages and disadvantages of the different technologies by comparing components and their governing processes. An existing model of a thermoacoustic converter (TAC) was reviewed and a conceptual analysis written to suggest improvements for future experimental designs.
by Alex Aguilar.
S.B.
S.B. Massachusetts Institute of Technology, Department of Mechanical Engineering
Finger, Erik J. "Two-stage heat engine for converting waste heat to useful work." online access from Digital Dissertation Consortium, 2005. http://libweb.cityu.edu.hk/cgi-bin/er/db/ddcdiss.pl?3186905.
Full textBooks on the topic "Heat recovery"
Council, Electricity, ed. Heat recovery with heat exchangers. [London]: [Electricity Council], 1986.
Find full textCanada, Canada Natural Resources, and Canada. Office of Energy Efficiency., eds. Heat recovery ventilator. 2nd ed. Ottawa: Natural Resources Canada, 2006.
Find full textZhang, Li-Zhi. Total heat recovery: Heat & moisture recovery from ventilation air. New York: Nova Science Publishers, 2009.
Find full textCouncil, Electricity, ed. Heat recovery with electric heat pumps. [London]: [Electricity Council], 1986.
Find full textLewis, Roger. Domestic heat recovery ventilation. Portsmouth: University of Portsmouth, 2004.
Find full textGoldstick, Robert. Principles of waste heat recovery. Atlanta, Ga: Fairmont Press, 1986.
Find full textMeeting, American Society of Mechanical Engineers Winter. Heat transfer in waste heat recovery and heat rejection systems. New York (345 E. 47th St., New York 10017): ASME, 1986.
Find full textDorgan, Chad B. Chiller heat recovery application guide. Atlanta, Ga: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 1999.
Find full textChartered Institution of Building Services Engineers., ed. Air-to-air heat recovery. London: CIBSE, 1995.
Find full textAlbert, Thumann, ed. Principles of waste heat recovery. Hemel Hempstead: Prentice-Hall, 1986.
Find full textBook chapters on the topic "Heat recovery"
Vaillencourt, Richard. "Heat Recovery." In Simple Solutions to Energy Calculations, 139–48. 6th ed. New York: River Publishers, 2021. http://dx.doi.org/10.1201/9781003207320-9.
Full textHirschbichler, Franz. "Exhaust Heat Recovery." In Handbook of Diesel Engines, 401–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-89083-6_14.
Full textGolwalkar, Kiran. "Heat Recovery Equipments." In Process Equipment Procurement in the Chemical and Related Industries, 135–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12078-2_11.
Full textMehta, D. Paul. "Waste Heat Recovery." In Energy Management Handbook, 209–32. Ninth edition. | Louisville, Kentucky : Fairmont Press, Inc., [2018]: River Publishers, 2020. http://dx.doi.org/10.1201/9781003151364-8.
Full textKaya, Durmuş, Fatma Çanka Kılıç, and Hasan Hüseyin Öztürk. "Waste Heat Recovery." In Energy Management and Energy Efficiency in Industry, 463–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-25995-2_17.
Full textGülen, S. Can. "Waste Heat Recovery." In Applied Second Law Analysis of Heat Engine Cycles, 127–47. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003247418-8.
Full textThulukkanam, Kuppan. "Regenerators and Waste Heat Recovery Devices." In Heat Exchangers, 495–567. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003352044-6.
Full textSengupta, Piyali, S. K. Dutta, and B. K. Choudhury. "Waste Heat Recovery Policy." In Energy, Environment, and Sustainability, 185–205. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7509-4_11.
Full textZeyi, Jiang, and Xu Kuangdi. "Flue Gas Heat Recovery." In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0740-1_281-1.
Full textNover, L. "Recovery of Gene Expression Patterns." In Heat Shock Response, 335–44. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780367811730-16.
Full textConference papers on the topic "Heat recovery"
Malcho, Milan, Richard Lenhard, Katarína Kaduchová, Dávid Hečko, and Stanislav Gavlas. "Heat recovery systems." In 38TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114757.
Full textMcCullough, Charles R., Scott M. Thompson, and Heejin Cho. "Heat Recovery With Oscillating Heat Pipes." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66241.
Full textPierobon, Leonardo, Rambabu Kandepu, and Fredrik Haglind. "Waste Heat Recovery for Offshore Applications." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86254.
Full textThada, Shantanu, Yash T. Rajan, A. M. Pradeep, and Arunkumar Sridharan. "Thermodynamic Analysis of Waste Heat Recovery Systems in Large Waste Heat Generating Industries." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59194.
Full textYazawa, Kazuaki, and Ali Shakouri. "Heat transfer modeling for bio-heat recovery." In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016. http://dx.doi.org/10.1109/itherm.2016.7517723.
Full textGlavachka, V., V. G. Kiselev, Yu N. Matveev, M. I. Rabetsky, and P. Schtulz. "UNIFIED HEAT PIPE HEAT EXCHANGERS USED FOR HEAT RECOVERY." In Heat Pipe Technology: Volume 2. Materials and Applications. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ihpc1990v2.570.
Full textZhou, Xian, Hua Liu, Lin Fu, and Shigang Zhang. "Experimental Study of Natural Gas Combustion Flue Gas Waste Heat Recovery System Based on Direct Contact Heat Transfer and Absorption Heat Pump." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18316.
Full textHunter, Bill, and Allen Ray. "Cement plant waste heat recovery heat-to-horsepower." In 2016 IEEE-IAS/PCA Cement Industry Technical Conference. IEEE, 2016. http://dx.doi.org/10.1109/citcon.2016.7742661.
Full textVesely, Ladislav, Jayanta Kapat, Cleverson Bringhenti, Guilherme B. Ribeiro, and Jesuíno T. Tomita. "Innovative Design of Waste Heat Recovery Heat Exchangers." In AIAA SCITECH 2024 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2024. http://dx.doi.org/10.2514/6.2024-2757.
Full textBoziuk, T. R., Bojan Vukasinovic, and Ari Glezer. "Acoustically-enhanced condensation heat recovery in heat exchangers." In 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ichmt.thmt-23.280.
Full textReports on the topic "Heat recovery"
Taylor, Zachary T. Residential Heat Recovery Ventilation. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1488935.
Full textFowler, Jim. Togiak Heat Recovery Project. Office of Scientific and Technical Information (OSTI), December 2023. http://dx.doi.org/10.2172/2281022.
Full textGrieco, A. (Waste water heat recovery system). Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6839699.
Full textKeiser, James R., Joseph R. Kish, Preet M. Singh, Gorti B. Sarma, Jerry Yuan, J. Peter Gorog, Laurie A. Frederick, Francois R. Jette, Roberta A. Meisner, and Douglas L. Singbeil. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/921898.
Full textKeiser, James R., W. B. A. (Sandy) Sharp, Douglas Singbeil, Preet M. Singh, Laurie A. Frederick, and Joseph Meyer. Improving Heat Recovery In Biomass-Fired Boilers. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1093743.
Full textHerschel, B. Modular apparatus for laundry dryer heat recovery. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/7009625.
Full textBuchanan, C. R., and M. H. Sherman. A mathematical model for infiltration heat recovery. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/767547.
Full textMcGrail, Bernard, Mark White, Signe White, Jian Liu, Satish Nune, and Jeromy WJ Jenks. Thermocatalytic Heat Pipes for Geothermal Resource Recovery. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1771340.
Full textWilcox and Poerner. L52316 Small Scale Waste Heat Recovery Study. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2011. http://dx.doi.org/10.55274/r0000003.
Full textWilcox, Poerner, Ridens, and Coogan. PR-015-11206-R01 Waste Heat Recovery Phase II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2012. http://dx.doi.org/10.55274/r0010782.
Full text