Academic literature on the topic 'Heat of exhaust gases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat of exhaust gases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat of exhaust gases"
Alekseenko, V. v., O. B. Sezonenko, and O. O. Vasechko. "RECUPERATION OF HEAT OF INCINERATORS FOR WASTE OF MEDICAL INSTITUTIONS." Energy Technologies & Resource Saving, no. 2 (June 25, 2018): 31–38. http://dx.doi.org/10.33070/etars.2.2018.04.
Full textKHAN, Mohammad Nadeem. "Energetic and Exergetic Investigation of Regenerative Gas Turbine Air-Bottoming/Steam -Bottoming Combined Cycle." Mechanics 27, no. 3 (June 10, 2021): 251–58. http://dx.doi.org/10.5755/j02.mech.25099.
Full textFialko, Nataliia, Raisa Navrodska, Malgorzata Ulewicz, Georgii Gnedash, Sergii Alioshko, and Svitlana Shevcuk. "Environmental aspects of heat recovery systems of boiler plants." E3S Web of Conferences 100 (2019): 00015. http://dx.doi.org/10.1051/e3sconf/201910000015.
Full textFialko, N., A. Stepanova, R. Navrodskaya, S. Shevchuk, and G. Sbrodova. "Optimization of operating parameters a heat-recovery exchanger of a boiler plant based on the exergy approach." Energy and automation, no. 2(54) (June 22, 2021): 5–16. http://dx.doi.org/10.31548/energiya2021.02.005.
Full textPetrash, V. D., Yu N. Polunin, and N. V. Danichenko. "RANGE OF EXHAUST GASES PRE-COOLING IN THE IMPROVED HEAT PUMP SYSTEM OF HEAT SUPPLY." Bulletin of Odessa State Academy of Civil Engineering and Architecture, no. 83 (June 4, 2021): 139–47. http://dx.doi.org/10.31650/2415-377x-2021-83-139-147.
Full textBukowska, Maria, Krzysztof Nowak, Danuta Proszak-Miąsik, and Sławomir Rabczak. "Concept of Heat Recovery from Exhaust Gases." IOP Conference Series: Materials Science and Engineering 245 (October 2017): 052057. http://dx.doi.org/10.1088/1757-899x/245/5/052057.
Full textLESIAK, Krzysztof, Marek BRZEZANSKI, and Dariusz PROSTANSKI. "Concept of using the heat pipes in the heat exchanger of diesel engine exhaust system intended for use in potentially explosive atmospheres." Combustion Engines 177, no. 2 (May 1, 2019): 127–31. http://dx.doi.org/10.19206/ce-2019-222.
Full textChandravanshi, Ajay, and Dr J. G. Suryawanshi Dr. J. G. Suryawanshi. "Waste Heat Recovery from Exhaust Gases through I C Engine Using Thermoelectric Generator." Indian Journal of Applied Research 3, no. 7 (October 1, 2011): 270–71. http://dx.doi.org/10.15373/2249555x/july2013/84.
Full textVeerabhadrappa, Kavadiki, K. N. Seetharamu, Chethan Kembhavi, Darshan Dayanand, Vinayakaraddy, and Rupanagudi Suresh Kumar. "Finite Element Analysis of Three-Fluid Heat Exchanger for Diesel Engine Exhaust Heat Recovery System." Applied Mechanics and Materials 592-594 (July 2014): 1607–11. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1607.
Full textNovichkov, Sergei, Irina Rostuntsova, and Natalia Schegoleva. "Boiler house exhaust gases heat for snow disposal." Energy Safety and Energy Economy 5 (October 2019): 20–24. http://dx.doi.org/10.18635/2071-2219-2019-5-20-24.
Full textDissertations / Theses on the topic "Heat of exhaust gases"
Tkach, P. U. "Use of residual heat and chemical energy of exhaust gases." Thesis, Видавництво СумДУ, 2012. http://essuir.sumdu.edu.ua/handle/123456789/26088.
Full textKleut, Petar. "Recuperation of the exhaust gases energy using a Brayton cycle machine." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/76807.
Full textÚltimamente los fabricantes de automóviles se han puesto el gran reto de reducir la emisión de CO2 en la totalidad de sus flotas. Las nuevas normativas para la reducción de las emisiones contaminantes limitan los medios para lograr los objetivos deseados en la emisión de CO2 porque algunas de las soluciones que llevan a la reducción en la emisión de CO2 también dan lugar a un incremento en la emisión de otros contaminantes. La recuperación de calor residual (WHR) podría ser una buena solución para reducir las emisiones de CO2 del motor de combustión interna (ICE) sin poner en peligro la emisión de contaminantes. En la presente Tesis se analizaron diferentes estrategias de WHR y se concluyó que sería interesante estudiar más a fondo la máquina de ciclo Brayton. El Ciclo Brayton de Aire (ABC) permite recuperar una parte del calor de los gases de escape del ICE y transformar este calor en energía mecánica. La energía mecánica recuperada se devuelve al cigüeñal del ICE, reduciendo de ese modo la cantidad de energía que tiene que ser liberada por la combustión del combustible, lo cual permite reducir el consumo de combustible y las emisiones de CO2. En esta Tesis se estudia el ABC mediante un análisis del ciclo ideal con el fin de obtener el máximo teórico del sistema. El modelo se mejora con un análisis del ciclo semi-ideal donde se tienen en cuenta todas las pérdidas mediante el uso de dos coeficientes generales. Este análisis muestra que para el motor diesel la eficiencia del ciclo ABC es muy baja debido a la baja temperatura del gas de escape. Para el motor de gasolina el ciclo podría ser viable cuando el ICE está trabajando bajo condiciones estacionarias y una carga mayor. Estas condiciones se podrían cumplir cuando el vehículo está circulando en autopista. El análisis detallado de este ciclo tiene como objetivo determinar las pérdidas principales de ciclo. Las pérdidas principales se identificaron como: las pérdidas de bombeo, las pérdidas causadas por la transferencia de calor y las pérdidas mecánicas. Teniendo en cuenta estas pérdidas principales junto con otras pérdidas directas e indirectas, se concluyó que el ciclo no es viable para los tipos de máquinas WHR que fueron considerados en este estudio. Para que el ciclo sea viable se tiene que buscar alguna otra máquina existente o un nuevo tipo de máquina que reduzca las principales pérdidas y ofrezca un buen rendimiento isentrópico y mecánico para las condiciones deseadas.
Últimament els fabricants d'automòbils s'han posat el gran repte de reduir l'emissió de CO2 de la totalitat de les seues flotes. Les noves normatives de reducció de les emissions contaminants limiten els mitjans per assolir els objectius desitjats d'emissió de CO2 perquè algunes de les solucions que porten a la reducció en l'emissió de CO2 també donen lloc a un increment a l'emissió de altres contaminants. La recuperació de calor residual (WHR) podria ser una bona solució per reduir les emissions de CO2 del motor de combustió interna (ICE) sense posar en perill l'emissió de contaminants. En la present Tesi s'han analitzat diferents estratègies WHR i es va concloure que seria interessant estudiar més a fons el cicle Brayton. El Cicle Brayton d'Aire (ABC) representa una manera de recuperar una part de la calor dels gasos d'escapament de l'ICE i transformar calor a l'energia mecànica. L'energia mecànica recuperada es retorna al cigonyal de l'ICE reduint d'aquesta manera la quantitat d'energia que ha de ser alliberada per la combustió del combustible permitint la reducció del consum de combustible i les emissions de CO2. En aquesta Tesi s'ha començat estudiant un ABC amb una anàlisi del cicle ideal per tal d'obtenir el màxim teòric del sistema. Este model es millora amb una anàlisi del cicle semiideal on es tenen en compte totes les pèrdues amb tan sols dos coeficients d'eficiència. Aquesta anàlisi va mostrar que per al motor dièsel l'eficiència del cicle ABC és molt baixa a causa de la baixa temperatura del gas d'escapament. Per al motor de gasolina el cicle podria ser viable quan l'ICE està treballant sota condicions estacionàries i una càrrega més gran. Aquestes condicions es podrien complir quan el vehicle està circulant en autopista. L'anàlisi detallada del cicle va tenir com a objectiu determinar les pèrdues principals de cicle. Les pèrdues principals es van identificar com: les pèrdues de bombament, les pèrdues causades per la transferència de calor i les pèrdues mecàniques. Tenint en compte aquestes pèrdues principals juntament amb altres pèrdues directes i indirectes, es va concloure que el cicle no és viable per als tipus de màquines WHR que van ser considerats en aquest estudi. Perquè el cicle puga ser viable s'ha de buscar alguna altra màquina existent o un nou tipus de màquina que puga reduir les principals pèrdues i puga oferir un bon rendiment isentròpic i mecànic per a les condicions desitjades.
Kleut, P. (2016). Recuperation of the exhaust gases energy using a Brayton cycle machine [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/76807
TESIS
Milkov, Nikolay. "Waste heat recovery from the exhaust gases of a diesel engine by means of Rankine cycle." Thesis, Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1149/document.
Full textThis study is motivated by the environment protection and the reduction of emissions CO2 from internal combustion engines. The aim of the thesis is to study the possibilities of fuel consumption reduction of a diesel engine intended for a passenger car by means of waste heat recovery from exhaust gases based on thermodynamic cycle (Rankine cycle). In order to determine the waste heat, the engine was tested on a test bench as the exhaust parameters were measured. A simulation model of the engine has also been developed and validated by means of experimental results. The recovery potential of the exhaust gases and the cooling system has been estimated. This analysis revealed that the waste heat recovery potential of the exhaust gases is higher that the cooling sys-tem. By means of Rankine cycle numerical model and experimental test, the output power and efficiency of the Rankine cycle were studied. Finally, the impact of the heat recovery system on engine performance was studied. The results revealed that the engine power increases by 4.3% at the operating point which corresponds to the maximum engine power
Това изследване е мотивирано от опазването на околната среда и намаляването на емисиите на CO2 от двигателите с вътрешно горене. Целта на дисертацията е да проучи възможнос-тите за намаляване на разхода на гориво на дизелов двигател, предназначен за лек автомо-бил, чрез рекупериране на енергия с цикъл на Ранкин. За да се определи неоползотворената енергия в отработилите газове бе използван изпитателен стенд. Симулационен модел на двигателя е разработен и валидиран чрез експерименталните резултати. Направена е оценка на потенциала за рекупериране на енергия от отработилите газове и охладителната система. Този анализ показва, че потенциала за рекупериране е по-голям в изпускателната система. С помощта на експериментален стенд и числен модел на цикъла на Ранкин са установени мощността и ефективността на системата. Въздействието на системата за рекупериране на енергия е изследвано. Данните показват, че мощността на двигателя се увеличава с до 4,3%
Bishop, Christopher. "Innovative sensors using nitride semiconductor materials for the detection of exhaust gases and water pollutants." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54898.
Full textÁvila, Márcio Turra de. "Estudo de motor de combustão interna, do Ciclo Otto, movido a etanol previamente vaporizado." Universidade de São Paulo, 1994. http://www.teses.usp.br/teses/disponiveis/18/18135/tde-09102015-153544/.
Full textThe ethanol (ethyl alcohol) has been studied more and more as alternative fuel to replace some petroleum derivatives for internal combustion engines. The attached study examines the application of vaporized ethanol for Otto cycle engines, searching for better levels of total thermal efficiency. Therefore, an engine for test of octane number (CFR motor) was equipped with an alcohol vaporizer installed inside the escape pipe, and after many experiences, several analysis were made. The various analysis included aspects as thermal efficiency, air/fuel ratio, advance ignition, escape temperature, power and volumetric efficiency, always considering their influence on the operation of the engine. It was confirmed that the engine moved by vaporized ethanol presents higher thermal efficiency, smaller fuel consumption and smoother working than in case of alimentation by liquid alcohol.
Hamza, Hamza Ali Adel. "Selection and justification the parameters of diesel power plant with heat recovery system." Thesis, NTU "KhPI", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31664.
Full textДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2017. Дисертація присвячена вибору і обґрунтуванню параметрів дизель-електричної станції з системою утилізації вторинної теплоти дизеля з використанням циклу Ренкіна, що використовує теплоту відпрацьованих газів та системи охолодження. В результаті аналізу особливостей перспективної енергетичної установки з двигуном Hyundai 25/33 для виробництва електричної енергії на заводі в Іраку розроблена технологічна схема комплексної системи утилізації вторинної теплоти дизель-електричної станції з додатковим отриманням електроенергії, теплоти для підігріву важкого палива, конденсації технічної води з відпрацьованих газів двигуна. Для утилізації вторинної теплоти двигуна Hyundai H25/33 запропоновано утилізаційний контур установки, який працює за органічним циклом Ренкіна (ОЦР). В якості робочого тіла в циклі Ренкіна доцільно використовувати воду системи охолодження двигуна. З використанням розробленої математичної моделі утилізаційного контуру дизель-електростанції виконане розрахунково-експериментальне дослідження впливу температури навколишнього середовища на показники ефективності утилізаційного контуру. При зміні температури навколишнього середовища від 0 ° С до 40 ° С кількість електроенергії, виробленої за циклом Ренкіна для двигуна Hyundai H25/33 збільшується до 10%. При роботі однієї когенераційної установки з двигуном Hyundai H25/33 та розробленим утилізаційним комплексом можна отримати на добу до 2300 кг конденсату водяної пари, що є дуже цінною в Іраку. На основі результатів дослідження було розроблено два варіанта технологічної схеми (проекти "А" та "Б") модернізації дизельних електростанцій компанії Hyundai Heavy Industries. Виконана техніко-економічна оцінка проектів за метод NPV показала, що після того, як обладнання утилізаційного контуру в повному обсязі буде введено у експлуатацію, максимально досяжний прибуток складе близько 1 406 219 дол. США/рік.
Rusev, Tihomir. "Comparative Study of Different Organic Rankine Cycle Models: Simulations and Thermo-Economic Analysis for a Gas Engine Waste Heat Recovery Application." Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-163706.
Full textХамза, Хамза Алі Адел. "Вибір та обґрунтування параметрів дизель-електричної станції з системою утилізації теплоти." Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31934.
Full textDissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Хамза, Хамза Алі Адел. "Вибір та обґрунтування параметрів дизель-електричної станції з системою утилізації теплоти." Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/31663.
Full textDissertation for the degree of candidate of technical sciences in specialty 05.05.03 – engines and power plants. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The dissertation is devoted to the choice and substantiation of parameters of a diesel power plant with heat recovery system of recycling the secondary heat from diesel engine using the Rankin cycle, which uses the heat of exhaust gases and cooling water systems. As a result of the analysis of the features of a promising power plant with a Hyundai 25/33 engine for the production of electric power at a plant in Iraq, a technological scheme of a comprehensive system for recycling diesel fuel from an electric power station with the additional generation of electricity, heat for heating heavy fuel, condensing technical water from exhaust gases. As a working fluid in the Rankin cycle, it is advisable to use the hot water from the engine cooling system. Using the developed mathematical model of the distillation circuit of the diesel power plant, the design-experimental study of the influence of the ambient temperature on the indicators of the efficiency of heat recovery was performed. When the ambient temperature changes from 0 ° C to 40 ° C, the amount of electric energy generated by the Rankin cycle for the Hyundai H25 / 33 engine increases to 10%. With a single cogeneration unit with a Hyundai H25 / 33 engine and a recycling complex developed, it is possible to get up to 2300 kg of water vapor condensate per day, which is very valuable in Iraq. Based on the results of the study, two variants of the technological scheme (projects A and B) were developed for the modernization of Hyundai diesel power plants. The feasibility study for the NPV method has shown that after the full recovery equipment is put into operation, the maximum achievable profit will be about 1 406 219 $ /year.
Skoupý, Jan. "Parní kotel." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401491.
Full textBooks on the topic "Heat of exhaust gases"
Vanka, S. P. Numerical investigation of hot gas ingestion by STOVL aircraft. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textOffice, Energy Efficiency. Gas turbine CHP using exhaust gases for drying. London: Department of the Environment, 1993.
Find full textLandwehr, Dennis. Final report for the BPA exhaust air heat pump study. Bend, OR: Pacific Science and Technology, 1999.
Find full textJiang, Lei-Yong. Turbulent mixing in supersonic high-temperature exhaust jets. Downsview, Ont: Institute for Aerospace Studies, University of Toronto, 1995.
Find full textJiang, Lei-Yong. Turbulent mixing in supersonic high-temperature exhaust jets. [North York, Ont.]: University of Toronto, Institute for Aerospace Studies, 1996.
Find full textReardon, John E. Rocket plume base heat transfer methodology. Washington, D. C: American Institute of Aeronautics and Astronautics, 1993.
Find full textWoodward, John B. Engine waste heat thermodynamics. Ann Arbor, MI: Sarah Jennings Press, 1985.
Find full textNational Research Council (U.S.). Transportation Research Board, Airport Cooperative Research Program, and United States. Federal Aviation Administration, eds. Measurement of gaseous HAP emissions from idling aircraft as a function of engine and ambient conditions. Washington, D.C: Transportation Research Board, 2012.
Find full textMartin, Randal S. Application guide for the source PM exhaust gas recycle sampling system. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, 1989.
Find full textMax, Planck. The theory of heat radiation. Los Angeles: Tomash, 1988.
Find full textBook chapters on the topic "Heat of exhaust gases"
Fanisalek, Hadi, Mohsen Bashiri, and Reza Kamali. "Waste Heat Recovery Trial from Aluminum Reduction Cell Exhaust Gases." In Energy Technology 2011, 65–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118061886.ch7.
Full textMorozov, V., and I. Morozova. "Decrease in the Concentration of Hazardous Components of Exhaust Gases from a Combustion Chamber of a Heat Engine." In Advanced Nanomaterials for Detection of CBRN, 317–26. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2030-2_24.
Full textDwivedi, Kartikeya, Vaishali Kikan, Shambhavi Kaushik, Arjun Singh Jadon, and Shruti Talyan. "Maximizing the efficiency of portable air conditioning units using heat from exhaust gasses and refrigerant gasses." In Recent Trends in Communication and Electronics, 544–47. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003193838-101.
Full textHirschbichler, Franz. "Exhaust Heat Recovery." In Handbook of Diesel Engines, 401–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-89083-6_14.
Full textBajpai, Pratima, Pramod K. Bajpai, and Ryuichiro Kondo. "Biofiltration of Exhaust Gases." In Biotechnology for Environmental Protection in the Pulp and Paper Industry, 239–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60136-1_11.
Full textHan, Je-Chin, and Lesley M. Wright. "Radiation Transfer through Gases." In Analytical Heat Transfer, 455–84. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003164487-14.
Full textPanowski, Marcin, Roman Klainy, and Karol Sztelder. "Modelling of CO2 Adsorption from Exhaust Gases." In Proceedings of the 20th International Conference on Fluidized Bed Combustion, 889–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02682-9_138.
Full textIlchenko, Andrii, Vladislav Balyuk, and Neonila Kosnitskaya. "Diesel Exhaust Gases Centrifugal-Jet Filter-Converter." In Recent Advances in Systems, Control and Information Technology, 734–39. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48923-0_79.
Full textGranet, Irving, Jorge Luis Alvarado, and Maurice Bluestein. "Mixtures of Ideal Gases." In Thermodynamics and Heat Power, 329–86. Ninth edition. | Boca Raton, FL : CRC Press, [2021]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429299629-7.
Full textGonzález, Nuria Garrido. "Condensation in Exhaust Gas Coolers." In Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, 97–105. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47196-9_9.
Full textConference papers on the topic "Heat of exhaust gases"
Brimmo, Ayoola T., and Mohamed I. Hassan Ali. "Furnace Design for Improved Exhaust Gas Circulation and Heat Transfer Efficiency." In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-9069.
Full textHassan, Hamdy. "Enhancement the Solar Still Performance Using Chimney Exhaust Gases." In ASME 2021 15th International Conference on Energy Sustainability collocated with the ASME 2021 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/es2021-63858.
Full textKhaled, Mahmoud, Mohamad Ramadan, Bakri Abed Alhay, Hisham Elhage, and Ahmad Haddad. "Performance Analysis of Heat Recovery System from Exhaust Gases of Boiler." In 10TH International Conference on Sustainable Energy and Environmental Protection. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-063-9.7.
Full textCoelho, Pedro. "THERMOELECTRIC GENERATOR FOR ENERGY RECOVERY FROM THE EXHAUST GASES OF HEAVY-DUTY VEHICLES." In ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.260.
Full textCoelho, Pedro. "THERMOELECTRIC GENERATOR FOR ENERGY RECOVERY FROM THE EXHAUST GASES OF HEAVY-DUTY VEHICLES." In ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.cht-7.260.
Full textPandit, Jaideep, Megan Thompson, Srinath V. Ekkad, and Scott Huxtable. "Experimental Investigation of Heat Transfer Across a Thermoelectric Generator for Waste Heat Recovery From Automobile Exhaust." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17438.
Full textDeshpande, A. C., and R. M. Pillai. "Adsorption Air-Conditioning (AdAC) for Automobiles Using Waste Heat Recovered from Exhaust Gases." In 2009 Second International Conference on Emerging Trends in Engineering & Technology. IEEE, 2009. http://dx.doi.org/10.1109/icetet.2009.22.
Full textGrzebielec, Andrzej, Artur Rusowicz, and Tomasz Ziąbka. "CORRECT SELECTION OF THE ORC SYSTEM PARAMETERS FOR THE EXHAUST GASES HEAT SOURCE." In 11th International Conference “Environmental Engineering”. VGTU Technika, 2020. http://dx.doi.org/10.3846/enviro.2020.706.
Full textLin, Wamei, Lars Nilsson, and Raffaele Malutta. "Waste Heat Recovery by Organic Rankine Cycle (ORC) for Moist Exhaust Gases From Paper Industry." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71326.
Full textXu, Jiangrong, Bin Liu, Bo Li, and Chenkui Ming. "Numerical Simulating for Coupling Heat-Transfer from Automobile Exhaust Gases to Thermoelectric Material Pipe." In 2010 International Conference on Computing, Control and Industrial Engineering. IEEE, 2010. http://dx.doi.org/10.1109/ccie.2010.175.
Full textReports on the topic "Heat of exhaust gases"
FTHENAKIS, V. OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/792566.
Full textHutter, E., U. Besserer, and G. Jacqmin. Treatment of tritiated exhaust gases at the Tritium Laboratory Karlsruhe. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/95666.
Full textChuen-Sen Lin. Capture of Heat Energy from Diesel Engine Exhaust. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/963351.
Full textLu, Yongqi, Seyed Dastgheib, Hong Lu, Hafiz Salih, Justin Mock, Tina Ilangovan, Luke Schideman, et al. CATALYTIC REMOVAL OF OXYGEN AND POLLUTANTS IN EXHAUST GASES FROM PRESSURIZED OXY-COMBUSTORS. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1716839.
Full textBattaglia, Franco, Young S. Kim, and Thomas F. George. Heat Capacities of Rare Gases Adsorbed on Graphite. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada173630.
Full textMigliaccio, Christopher P., and Nicholas R. Jankowski. Vehicle Exhaust Waste Heat Recovery Model with Integrated Thermal Load Leveling. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada621191.
Full textOouchi, Hitoshi, Masaki Aguro, and Tomoe Jinushi. Research of Low Heat-Mass 4-in-1 Exhaust Manifold Noise Reduction Technology. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0640.
Full textStroup, David W., Laurean DeLauter, Jack Lee, and Gary Roadarmel. Large fire research facility (Building 205) exhaust hood heat release rate measurement system. Gaithersburg, MD: National Institute of Standards and Technology, 2000. http://dx.doi.org/10.6028/nist.ir.6509.
Full textStevenson, D. A., and C. W. Frank. Electrochemical abatement of pollutants NO[sub x] and SO[sub x] in combustion exhaust gases employing a solid-oxide electrolyte. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/7024273.
Full textStevenson, D. A., and C. W. Frank. Electrochemical abatement of pollutants NO[sub x] and SO[sub x] in combustion exhaust gases employing a solid-oxide electrolyte. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6935660.
Full text