Journal articles on the topic 'Heat generation and transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Heat generation and transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
van Beek, Johannes H. G. M. "Heat generation and transport in the heart." Journal of Engineering Physics and Thermophysics 69, no. 3 (May 1996): 287–97. http://dx.doi.org/10.1007/bf02606947.
Full textKhassaf, Nada K., and AL-Mukh J.M. "The Role of Electron-Phonon Coupling in Spin Transport through FM-QD Molecular-FM in the Presence of Spin Accumulation in the Leads." NeuroQuantology 20, no. 5 (April 30, 2022): 16–24. http://dx.doi.org/10.14704/nq.2022.20.5.nq22144.
Full textFushinobu, K., A. Majumdar, and K. Hijikata. "Heat Generation and Transport in Submicron Semiconductor Devices." Journal of Heat Transfer 117, no. 1 (February 1, 1995): 25–31. http://dx.doi.org/10.1115/1.2822317.
Full textPop, E., S. Sinha, and K. E. Goodson. "Heat Generation and Transport in Nanometer-Scale Transistors." Proceedings of the IEEE 94, no. 8 (August 2006): 1587–601. http://dx.doi.org/10.1109/jproc.2006.879794.
Full textPop, Eric. "MONTE CARLO TRANSPORT AND HEAT GENERATION IN SEMICONDUCTORS." Annual Review of Heat Transfer 17, N/A (2014): 385–423. http://dx.doi.org/10.1615/annualrevheattransfer.2014007694.
Full textMuscato, Orazio, Wolfgang Wagner, and Vincenza Di Stefano. "Heat generation in silicon nanometric semiconductor devices." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33, no. 4 (July 1, 2014): 1198–207. http://dx.doi.org/10.1108/compel-11-2012-0327.
Full textHari, Rakesh, and Chandrasekharan Muraleedharan. "Analysis of Effect of Heat Pipe Parameters in Minimising the Entropy Generation Rate." Journal of Thermodynamics 2016 (February 3, 2016): 1–8. http://dx.doi.org/10.1155/2016/1562145.
Full textGollahalli, S. R., J. E. Francis, and D. Varshney. "Heat Generation in Ferrous Metal Piles." Journal of Energy Resources Technology 115, no. 3 (September 1, 1993): 168–74. http://dx.doi.org/10.1115/1.2905989.
Full textPop, Eric. "Heat Generation and Transport in SOI and GOI Devices." ECS Transactions 6, no. 4 (December 19, 2019): 151–57. http://dx.doi.org/10.1149/1.2728854.
Full textFerhi, M., R. Djebali, F. Mebarek-Oudina, Nidal H. Abu-Hamdeh, and S. Abboudi. "Magnetohydrodynamic Free Convection Through Entropy Generation Scrutiny of Eco-Friendly Nanoliquid in a Divided L-Shaped Heat Exchanger with Lattice Boltzmann Method Simulation." Journal of Nanofluids 11, no. 1 (February 1, 2022): 99–112. http://dx.doi.org/10.1166/jon.2022.1819.
Full textLe, Xuan Hoang Khoa, Ioan Pop, and Mikhail A. Sheremet. "Thermogravitational Convective Flow and Energy Transport in an Electronic Cabinet with a Heat-Generating Element and Solid/Porous Finned Heat Sink." Mathematics 10, no. 1 (December 23, 2021): 34. http://dx.doi.org/10.3390/math10010034.
Full textBosomworth, Chris, Maksym Spiryagin, Sanath Alahakoon, and Colin Cole. "MODELLING RAIL THERMAL DIFFERENTIALS DUE TO BENDING AND DEFECTS." Transport 36, no. 2 (June 10, 2021): 134–46. http://dx.doi.org/10.3846/transport.2021.14574.
Full textNigen, J. S., and C. H. Amon. "Effect of material composition and localized heat generation on time-dependent conjugate heat transport." International Journal of Heat and Mass Transfer 38, no. 9 (June 1995): 1565–76. http://dx.doi.org/10.1016/0017-9310(94)00292-4.
Full textPereira, Luiz Felipe C., and Isaac M. Felix. "Thermal transport in periodic and quasiperiodic graphene-hBN superlattice ribbons." Journal of Physics: Conference Series 2241, no. 1 (March 1, 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2241/1/012008.
Full textLe, Xuan Hoang Khoa, Hakan F. Oztop, Fatih Selimefendigil, and Mikhail A. Sheremet. "Entropy Analysis of the Thermal Convection of Nanosuspension within a Chamber with a Heat-Conducting Solid Fin." Entropy 24, no. 4 (April 7, 2022): 523. http://dx.doi.org/10.3390/e24040523.
Full textHögblom, Olle, and Ronnie Andersson. "Multiphysics CFD Simulation for Design and Analysis of Thermoelectric Power Generation." Energies 13, no. 17 (August 22, 2020): 4344. http://dx.doi.org/10.3390/en13174344.
Full textGusev, Vitalyi, Pierrick Lotton, Hélène Bailliet, Stéphane Job, and Michel Bruneau. "Thermal wave harmonics generation in the hydrodynamical heat transport in thermoacoustics." Journal of the Acoustical Society of America 109, no. 1 (January 2001): 84–90. http://dx.doi.org/10.1121/1.1332383.
Full textJabeen, Iffat, Muhammad Farooq, Muhammad Rizwan, Roman Ullah, and Shakeel Ahmad. "Analysis of nonlinear stratified convective flow of Powell-Eyring fluid: Application of modern diffusion." Advances in Mechanical Engineering 12, no. 10 (October 2020): 168781402095956. http://dx.doi.org/10.1177/1687814020959568.
Full textNigen, J. S., and C. H. Amon. "Time-Dependent Conjugate Heat Transfer Characteristics of Self-Sustained Oscillatory Flows in a Grooved Channel." Journal of Fluids Engineering 116, no. 3 (September 1, 1994): 499–507. http://dx.doi.org/10.1115/1.2910305.
Full textMa, H. B., C. Wilson, Q. Yu, K. Park, U. S. Choi, and Murli Tirumala. "An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe." Journal of Heat Transfer 128, no. 11 (May 23, 2006): 1213–16. http://dx.doi.org/10.1115/1.2352789.
Full textCarey, V. P., and N. E. Hawks. "Stochastic Modeling of Molecular Transport to an Evaporating Microdroplet in a Superheated Gas." Journal of Heat Transfer 117, no. 2 (May 1, 1995): 432–39. http://dx.doi.org/10.1115/1.2822540.
Full textThuto and Banjong. "Investigation of Heat and Moisture Transport in Bananas during Microwave Heating Process." Processes 7, no. 8 (August 16, 2019): 545. http://dx.doi.org/10.3390/pr7080545.
Full textKurnia, Jundika Candra, and Agus Pulung Sasmito. "Numerical Evaluation of Heat Transfer and Entropy Generation of Helical Tubes with Various Cross-sections under Constant Heat Flux Condition." MATEC Web of Conferences 225 (2018): 03017. http://dx.doi.org/10.1051/matecconf/201822503017.
Full textMarshall, David P., and Laure Zanna. "A Conceptual Model of Ocean Heat Uptake under Climate Change." Journal of Climate 27, no. 22 (November 4, 2014): 8444–65. http://dx.doi.org/10.1175/jcli-d-13-00344.1.
Full textWei, P. S., S. C. Wang, and M. S. Lin. "Transport Phenomena During Resistance Spot Welding." Journal of Heat Transfer 118, no. 3 (August 1, 1996): 762–73. http://dx.doi.org/10.1115/1.2822697.
Full textSteinbacher, Thomas, Max Meindl, and Wolfgang Polifke. "Modelling the generation of temperature inhomogeneities by a premixed flame." International Journal of Spray and Combustion Dynamics 10, no. 2 (November 14, 2017): 111–30. http://dx.doi.org/10.1177/1756827717738139.
Full textDing, X., and E. K. H. Salje. "Heat transport by phonons and the generation of heat by fast phonon processes in ferroelastic materials." AIP Advances 5, no. 5 (May 2015): 053604. http://dx.doi.org/10.1063/1.4921899.
Full textHao, Zisu, Morton A. Barlaz, and Joel J. Ducoste. "Finite-Element Modeling of Landfills to Estimate Heat Generation, Transport, and Accumulation." Journal of Geotechnical and Geoenvironmental Engineering 146, no. 12 (December 2020): 04020134. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0002403.
Full textMuscato, O., and V. Di Stefano. "An Energy Transport Model Describing Heat Generation and Conduction in Silicon Semiconductors." Journal of Statistical Physics 144, no. 1 (June 23, 2011): 171–97. http://dx.doi.org/10.1007/s10955-011-0247-2.
Full textAtienza-Márquez, Antonio, Joan Carles Bruno, and Alberto Coronas. "Recovery and Transport of Industrial Waste Heat for Their Use in Urban District Heating and Cooling Networks Using Absorption Systems." Applied Sciences 10, no. 1 (December 31, 2019): 291. http://dx.doi.org/10.3390/app10010291.
Full textArpacı, Vedat S. "Thermal Deformation: From Thermodynamics to Heat Transfer." Journal of Heat Transfer 123, no. 5 (February 20, 2001): 821–26. http://dx.doi.org/10.1115/1.1379953.
Full textMuscato, Orazio. "Electrothermal Monte Carlo Simulation of a GaAs Resonant Tunneling Diode." Axioms 12, no. 2 (February 19, 2023): 216. http://dx.doi.org/10.3390/axioms12020216.
Full textStepanov, Dmitry, Vladimir Fomin, Anatoly Gusev, and Nikolay Diansky. "Mesoscale Dynamics and Eddy Heat Transport in the Japan/East Sea from 1990 to 2010: A Model-Based Analysis." Journal of Marine Science and Engineering 10, no. 1 (December 30, 2021): 33. http://dx.doi.org/10.3390/jmse10010033.
Full textVázquez, Federico, Péter Ván, and Róbert Kovács. "Ballistic-Diffusive Model for Heat Transport in Superlattices and the Minimum Effective Heat Conductivity." Entropy 22, no. 2 (January 31, 2020): 167. http://dx.doi.org/10.3390/e22020167.
Full textCheng, Qilong, Siddhesh V. Sakhalkar, and David B. Bogy. "Direct measurement of disk-to-head back-heating in HAMR using a non-flying test stage." Applied Physics Letters 120, no. 24 (June 13, 2022): 241602. http://dx.doi.org/10.1063/5.0092170.
Full textKhan, Umair, Aurang Zaib, Ilyas Khan, and Kottakkaran Sooppy Nisar. "Entropy Generation Incorporating γ-Nanofluids under the Influence of Nonlinear Radiation with Mixed Convection." Crystals 11, no. 4 (April 10, 2021): 400. http://dx.doi.org/10.3390/cryst11040400.
Full textHromadka, T. V. "Analyzing Numerical Errors in Domain Heat Transport Models Using the CVBEM." Journal of Offshore Mechanics and Arctic Engineering 109, no. 2 (May 1, 1987): 163–69. http://dx.doi.org/10.1115/1.3257005.
Full textAbdedou, Azzedine, Khedidja Bouhadef, and Rachid Bennacer. "Forced convection in a self heating porous channel: Local thermal nonequilibium model." Thermal Science 21, no. 6 Part A (2017): 2419–29. http://dx.doi.org/10.2298/tsci150201110a.
Full textMansoor, Saad Bin, and Bekir S. Yilbas. "Estimating Entropy Generation Rate for Ballistic-Diffusive Phonon Transport Using Effective Thermal Conductivity." Journal of Non-Equilibrium Thermodynamics 46, no. 3 (May 13, 2021): 321–27. http://dx.doi.org/10.1515/jnet-2020-0113.
Full textXi, Mengmeng, Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. "Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport." Chinese Physics Letters 38, no. 8 (September 1, 2021): 088801. http://dx.doi.org/10.1088/0256-307x/38/8/088801.
Full textZhang, Lei, Weiqing Han, Yuanlong Li, and Toshiaki Shinoda. "Mechanisms for Generation and Development of the Ningaloo Niño." Journal of Climate 31, no. 22 (November 2018): 9239–59. http://dx.doi.org/10.1175/jcli-d-18-0175.1.
Full textWang, Zehua, and Yongjun Jian. "Heat Transport of Electrokinetic Flow in Slit Soft Nanochannels." Micromachines 10, no. 1 (January 7, 2019): 34. http://dx.doi.org/10.3390/mi10010034.
Full textKaczmarczyk, Michał, Anna Sowiżdżał, and Barbara Tomaszewska. "Individual heat generation to sustainable development in local scale." E3S Web of Conferences 154 (2020): 07007. http://dx.doi.org/10.1051/e3sconf/202015407007.
Full textMuscato, O., V. Di Stefano, and C. Milazzo. "An improved hydrodynamic model describing heat generation and transport in submicron silicon devices." Journal of Computational Electronics 7, no. 3 (May 13, 2008): 142–45. http://dx.doi.org/10.1007/s10825-008-0252-0.
Full textKhan, M. Ijaz, Tasawar Hayat, Sumaira Qayyum, Muhammad Imran Khan, and A. Alsaedi. "Entropy generation (irreversibility) associated with flow and heat transport mechanism in Sisko nanomaterial." Physics Letters A 382, no. 34 (August 2018): 2343–53. http://dx.doi.org/10.1016/j.physleta.2018.05.047.
Full textKantharaj, Rajath, and Amy M. Marconnet. "Heat Generation and Thermal Transport in Lithium-Ion Batteries: A Scale-Bridging Perspective." Nanoscale and Microscale Thermophysical Engineering 23, no. 2 (February 7, 2019): 128–56. http://dx.doi.org/10.1080/15567265.2019.1572679.
Full textEswara, A. K., and P. Sandilya. "Numerical computation of Boil off Rate (BoR) in shipboard LNG tanks." IOP Conference Series: Materials Science and Engineering 1240, no. 1 (May 1, 2022): 012033. http://dx.doi.org/10.1088/1757-899x/1240/1/012033.
Full textJasminská, Natália, Tomáš Brestovič, Marián Lázár, Mária Čarnogurská, and Juraj Václav. "Simulation of Temperature Fields in the Transport Container." Applied Mechanics and Materials 816 (November 2015): 76–87. http://dx.doi.org/10.4028/www.scientific.net/amm.816.76.
Full textYang, Duo, and Oleg A. Saenko. "Ocean Heat Transport and Its Projected Change in CanESM2." Journal of Climate 25, no. 23 (December 1, 2012): 8148–63. http://dx.doi.org/10.1175/jcli-d-11-00715.1.
Full textKhan, Wasim Ullah, Muhammad Awais, Nabeela Parveen, Aamir Ali, Saeed Ehsan Awan, Muhammad Yousaf Malik, and Yigang He. "Analytical Assessment of (Al2O3–Ag/H2O) Hybrid Nanofluid Influenced by Induced Magnetic Field for Second Law Analysis with Mixed Convection, Viscous Dissipation and Heat Generation." Coatings 11, no. 5 (April 23, 2021): 498. http://dx.doi.org/10.3390/coatings11050498.
Full text