Academic literature on the topic 'Heat generation and transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat generation and transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat generation and transport"
van Beek, Johannes H. G. M. "Heat generation and transport in the heart." Journal of Engineering Physics and Thermophysics 69, no. 3 (May 1996): 287–97. http://dx.doi.org/10.1007/bf02606947.
Full textKhassaf, Nada K., and AL-Mukh J.M. "The Role of Electron-Phonon Coupling in Spin Transport through FM-QD Molecular-FM in the Presence of Spin Accumulation in the Leads." NeuroQuantology 20, no. 5 (April 30, 2022): 16–24. http://dx.doi.org/10.14704/nq.2022.20.5.nq22144.
Full textFushinobu, K., A. Majumdar, and K. Hijikata. "Heat Generation and Transport in Submicron Semiconductor Devices." Journal of Heat Transfer 117, no. 1 (February 1, 1995): 25–31. http://dx.doi.org/10.1115/1.2822317.
Full textPop, E., S. Sinha, and K. E. Goodson. "Heat Generation and Transport in Nanometer-Scale Transistors." Proceedings of the IEEE 94, no. 8 (August 2006): 1587–601. http://dx.doi.org/10.1109/jproc.2006.879794.
Full textPop, Eric. "MONTE CARLO TRANSPORT AND HEAT GENERATION IN SEMICONDUCTORS." Annual Review of Heat Transfer 17, N/A (2014): 385–423. http://dx.doi.org/10.1615/annualrevheattransfer.2014007694.
Full textMuscato, Orazio, Wolfgang Wagner, and Vincenza Di Stefano. "Heat generation in silicon nanometric semiconductor devices." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33, no. 4 (July 1, 2014): 1198–207. http://dx.doi.org/10.1108/compel-11-2012-0327.
Full textHari, Rakesh, and Chandrasekharan Muraleedharan. "Analysis of Effect of Heat Pipe Parameters in Minimising the Entropy Generation Rate." Journal of Thermodynamics 2016 (February 3, 2016): 1–8. http://dx.doi.org/10.1155/2016/1562145.
Full textGollahalli, S. R., J. E. Francis, and D. Varshney. "Heat Generation in Ferrous Metal Piles." Journal of Energy Resources Technology 115, no. 3 (September 1, 1993): 168–74. http://dx.doi.org/10.1115/1.2905989.
Full textPop, Eric. "Heat Generation and Transport in SOI and GOI Devices." ECS Transactions 6, no. 4 (December 19, 2019): 151–57. http://dx.doi.org/10.1149/1.2728854.
Full textFerhi, M., R. Djebali, F. Mebarek-Oudina, Nidal H. Abu-Hamdeh, and S. Abboudi. "Magnetohydrodynamic Free Convection Through Entropy Generation Scrutiny of Eco-Friendly Nanoliquid in a Divided L-Shaped Heat Exchanger with Lattice Boltzmann Method Simulation." Journal of Nanofluids 11, no. 1 (February 1, 2022): 99–112. http://dx.doi.org/10.1166/jon.2022.1819.
Full textDissertations / Theses on the topic "Heat generation and transport"
Legault, Stephane. "Heat transport in quasicrystals." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0021/NQ55355.pdf.
Full textLegault, Stéphane. "Heat transport in quasicrystals." Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36034.
Full textAt low temperatures (below 20K), the thermal conductivity is defect limited, being controlled by boundary scattering, two level systems, stacking faults and dislocations. At high temperatures (above 20K), we find the thermal conductivity is limited by intrinsic properties of the quasicrystalline structure and phonon-phonon scattering.
From fitting the thermal conductivity to a detailed model we are able to predict the maximum thermal conductivity of a perfect quasicrystal.
Moe, Bjørn Kristian. "Heat Generation by Heat Pump for LNG Plants." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14671.
Full textShukla, Nitin. "Heat Transport across Dissimilar Materials." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/27820.
Full textPh. D.
Sato, Ken-ichi. "Next Generation Transport Network Architecture." IEEE, 2010. http://hdl.handle.net/2237/14451.
Full textRivera, Gomez Franco Wilfrido. "Heat transformer technology and steam generation." Thesis, University of Salford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360445.
Full textNazari, Ashkan. "HEAT GENERATION IN LITHIUM-ION BATTERIES." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1469445487.
Full textBeardo, Ricol Albert. "Generalized Hydrodynamic Heat Transport in Semiconductors." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673590.
Full textÉsta tesis presenta una descripción unificadora de una variedad de experimentos de transporte térmico a la micro y nano escala en semiconductores como el silicio o el germanio. Se utilitza un modelo de transporte de calor hidrodinámico para predecir la respuesta no difusiva de sistemas complejos en situacions de relevancia tecnológica, como el proceso de enfriamento de un componente electrónico liberando calor hacia un sustrato semiconductor. El modelo no utilitza parámetros de ajuste en función de la geometría, sinó que utiliza parámetros calculados des de primeros principios. Los efectos de tamaño reducido o alta frecuencia se capturan a través de condiciones de contorno específicas y, por tanto, el modelo es una herramienta útil para el diseño de dispositivos micro electrónicos. Dado que la descripción hidrodinámica para el silicio no es el método convencional, en ésta tesis se presta especial atención a determinar la aplicabilidad del modelo en múltiples experimentos de forma unificadora. Como resultado, se identifican fenómenos no difusivos como la propagación de segundo sonido en campos térmicos fluctuantes en germanio, o múltiples tiempos de relajación en la evolución térmica de calentadores nano estructurados en silicio. Además, la descripción hidrodinámica se compara con otros modelos modernos para describir los mismos experimentos, y se proporciona un resumen de las herramientas teóricas necesarias (la termodinámica de no equilibrio y la teoria cinética). Utilizando las evidencias experimentales que se aportan, se concluye que el modelo hidrodinámico tiene capacidad predictiva de la respuesta térmica de materiales como el silicio a la nano escala dentro de un cierto rango de aplicabilidad.
This thesis presents a unifying description of a variety of experiments on micro- and nano-scale heat transport in semiconductors like silicon or germanium. A hydrodynamic-like heat transport model is used to predict the non-diffusive thermal response of complex systems in technologically relevant situations, like the process of energy release from nanostructured heat sources towards a semiconductor substrate. The model does not use geometry-dependent or fitted parameters, but use intrinsic material properties that can be calculated from first principles. Small-size and high-frequency effects are captured through the use of specific boundary conditions, thus resulting in a practical tool for complex microelectronic device design. Since hydrodynamic modeling is not the state-of-the-art approach to describe standard semiconductors like silicon, special care is devoted to quantitatively determine the applicability of the model, and multiple experiments using different techniques are considered and studied in a unifying way. As a result, previously unreported non-Fourier phenomena in materials like silicon or germanium is identified and demonstrated (e.g. second sound in rapidly varying thermal fields or multiple decay times characterizing the evolution of nano-structured heaters). Furthermore, the hydrodynamic description is compared with alternative modern frameworks describing size and frequency effects in semiconductor heat transport, and a summarized overview of the theoretical background, namely non-equilibrium thermodynamics and kinetic theory, is presented. In light of the extensive experimental evidence provided, this thesis demonstrate the predictive capability of hydrodynamic-like thermal transport modeling in semiconductors within a certain range of applicability that is well beyond the diffusive regime.
Universitat Autònoma de Barcelona. Programa de Doctorat en Física
Niemi, Daniel, and Joel Hambraeus. "Heat Transport in Inhomogeneous Harmonic Chains." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275699.
Full textVisarraga, Darrin Bernardo. "Heat transport models with distributed microstructure." Access restricted to users with UT Austin EID, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3036605.
Full textBooks on the topic "Heat generation and transport"
1945-, Mareschal Jean-Claude, ed. Heat generation and transport in the Earth. Cambridge: Cambridge University Press, 2010.
Find full textMihaylov, Vyacheslav, Elena Sotnikova, and Nina Kalpina. Eco-friendly air protection systems for motor transport facilities. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1093106.
Full textEllanti, Manohar Naidu, Lakshmi G. Raman, Steven Scott Gorshe, and Wayne D. Grover. Next Generation Transport Networks. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/b104435.
Full textOhadi, Michael, Kyosung Choo, Serguei Dessiatoun, and Edvin Cetegen. Next Generation Microchannel Heat Exchangers. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-0779-9.
Full textOhadi, Michael. Next Generation Microchannel Heat Exchangers. New York, NY: Springer New York, 2013.
Find full text1935-, Tien Chang L., Majumdar Arunava, and Gerner F. M, eds. Microscale energy transport. Washington, D.C: Taylor & Francis, 1998.
Find full textLeonard, Sagis, and Oh Eun-Suok, eds. Interfacial transport phenomena. 2nd ed. New York: Springer, 2007.
Find full textMeeting, American Society of Mechanical Engineers Winter. Convective transport. New York, N.Y: American Society of Mechanical Engineers, 1987.
Find full textSellitto, Antonio, Vito Antonio Cimmelli, and David Jou. Mesoscopic Theories of Heat Transport in Nanosystems. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27206-1.
Full textAcosta, Jose Luis. Porous media: Heat & mass transfer, transport & mechanics. Hauppauge: Nova Science Publishers, 2009.
Find full textBook chapters on the topic "Heat generation and transport"
Zohuri, Bahman, and Patrick McDaniel. "Heat Transport System Thermal Hydraulics." In Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants, 59–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70551-4_4.
Full textZohuri, Bahman. "Heat Transport System Thermal Hydraulics." In Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants, 61–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15560-9_4.
Full textTeske, Sven, and Thomas Pregger. "OECM 1.5 °C Pathway for the Global Energy Supply." In Achieving the Paris Climate Agreement Goals, 293–313. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99177-7_12.
Full textHuber, Heiko, and Ulvi Arslan. "Characterization of Heat Transport Processes in Geothermal Systems." In Progress in Sustainable Energy Technologies: Generating Renewable Energy, 551–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07896-0_33.
Full textZahedi, Polad. "Pickering Generating Station Primary Heat Transport Pressure Control Analysis During Boiler Steam Relief Valve Testing." In Proceedings of The 20th Pacific Basin Nuclear Conference, 167–80. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2317-0_17.
Full textWallis, Tania, Greig Paul, and James Irvine. "Organisational Contexts of Energy Cybersecurity." In Computer Security. ESORICS 2021 International Workshops, 384–402. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95484-0_22.
Full textHondzo, Midhat, and Heinz G. Stefan. "Heat Transport." In Water Science and Technology Library, 189–218. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8664-1_6.
Full textBöttcher, Norbert, Guido Blöcher, Mauro Cacace, and Olaf Kolditz. "Heat Transport." In Thermo-Hydro-Mechanical-Chemical Processes in Porous Media, 89–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27177-9_4.
Full textDobkin, Daniel M., and Michael K. Zuraw. "Heat Transport." In Principles of Chemical Vapor Deposition, 69–93. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0369-7_4.
Full textHurle, Donald T. J. "Heat Transport." In Crystal Pulling from the Melt, 40–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78208-4_5.
Full textConference papers on the topic "Heat generation and transport"
Kong, Jing, Shenghao Wu, Huachao Yang, and Zheng Bo. "ELECTRON AND ION TRANSPORT WITHIN THE HEAT GENERATION OF GRAPHENE-BASED SUPERCAPACITORS." In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.ecl.022731.
Full textKishimoto, Masashi, Hiroshi Iwai, Motohiro Saito, and Hideo Yoshida. "Quantitative Evaluation of Transport Properties of SOFC Porous Anode and Their Effect on the Power Generation Performance." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22495.
Full textZeng, Taofang. "Direct Power Generation Using Tunneling and Thermionic Emission." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56724.
Full textCai, Qingjun, Reh-Lin Chen, and Chung-Lung Chen. "An Investigation of Evaporation, Boiling, and Heat Transport Performance in Pulstating Heat Pipe." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33334.
Full textBright, T. J., and Z. M. Zhang. "Entropy Generation in Thin Films Evaluated From Phonon Radiative Transport." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12388.
Full textHe, Ya-Ling, Zheng Miao, and Wen-Quan Tao. "Modeling of Heat Transport in a Direct Methanol Fuel Cell With Anisotropic Gas Diffusion Layers." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22102.
Full textHoang, Triem T., Tamara A. O’Connell, Jentung Ku, C. Dan Butler, and Theodore D. Swanson. "Miniature Loop Heat Pipes for Electronic Cooling." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35245.
Full textLu, Yuan, Joseph Katz, and Andrea Prosperetti. "Generation and Transport of Bubbles in Intense Ultrasonic Fields." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72286.
Full textWojtala, Malgorzata E., Ferran Brosa Planella, Alana A. Zulke, Harry E. Hoster, and David A. Howey. "Investigating changes in transport, kinetics and heat generation over NCA/Gr-SiOx battery lifetime." In 2022 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2022. http://dx.doi.org/10.1109/vppc55846.2022.10003425.
Full textDragunov, Alexey, Eugene Saltanov, Igor Pioro, Glenn Harvel, and Brian Ikeda. "Study on Primary and Secondary Heat-Transport Systems for Sodium-Cooled Fast Reactor." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16014.
Full textReports on the topic "Heat generation and transport"
Bell, Lon E., Ramesh Koripella, and Robert T. Collins. Increased Efficiency Thermoelectric Generator With Convective Heat Transport. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada538133.
Full textWilliams, M. L., A. Yuecel, and S. Nadkarny. DOS-HEATING6: A general conduction code with nuclear heat generation derived from DOT-IV transport calculations. Office of Scientific and Technical Information (OSTI), May 1988. http://dx.doi.org/10.2172/6928640.
Full textGuidati, Gianfranco, and Domenico Giardini. Joint synthesis “Geothermal Energy” of the NRP “Energy”. Swiss National Science Foundation (SNSF), February 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.4.en.
Full textCain, P. Heat generation of bagged 'Astracem'. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304956.
Full textKeolian, Robert M., and Anthony A. Atchley. Basic Research in Thermoacoustic Heat Transport. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada417390.
Full textAtchley, Anthony A. Basic Research in Thermoacoustic Heat Transport. Fort Belvoir, VA: Defense Technical Information Center, June 1996. http://dx.doi.org/10.21236/ada310791.
Full textKirby, James T., and Fengyan Shi. Generation, Transport and Fate of Surfzone Bubbles. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada514806.
Full textDr. Kumar Sridharan, Dr. Mark Anderson, Dr. Michael Corradini, Dr. Todd Allen, Luke Olson, James Ambrosek, and Daniel Ludwig. Molten Salt Heat Transport Loop: Materials Corrosion and Heat Transfer Phenomena. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/934785.
Full textDyer, R. B., and A. P. Shreve. Sum frequency generation studies of membrane transport phenomena. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/674919.
Full textLeigh, R. W., and M. Piraino. Increased use of reject heat from electric generation. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/10137881.
Full text