Journal articles on the topic 'Heat-engines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Heat-engines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Johnson, Clifford V. "Holographic heat engines as quantum heat engines." Classical and Quantum Gravity 37, no. 3 (January 13, 2020): 034001. http://dx.doi.org/10.1088/1361-6382/ab5ba9.
Full textKuboyama, Tatsuya, Hidenori Kosaka, Tetsuya Aizawa, and Yukio Matsui. "A Study on Heat Loss in DI Diesel Engines(Diesel Engines, Performance and Emissions, Heat Recovery)." Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2004.6 (2004): 111–18. http://dx.doi.org/10.1299/jmsesdm.2004.6.111.
Full textGemmen, R., M. C. Williams, and G. Richards. "Electrochemical Heat Engines." ECS Transactions 65, no. 1 (February 2, 2015): 243–52. http://dx.doi.org/10.1149/06501.0243ecst.
Full textWilloughby, H. E. "Hurricane heat engines." Nature 401, no. 6754 (October 1999): 649–50. http://dx.doi.org/10.1038/44287.
Full textJohnson, Clifford V. "Holographic heat engines." Classical and Quantum Gravity 31, no. 20 (October 1, 2014): 205002. http://dx.doi.org/10.1088/0264-9381/31/20/205002.
Full textKRIBUS, ABRAHAM. "Heat Transfer in Miniature Heat Engines." Heat Transfer Engineering 25, no. 4 (June 2004): 1–3. http://dx.doi.org/10.1080/01457630490443505.
Full textCourtney, W. "Cool running heat engines." Journal of Biological Physics and Chemistry 21, no. 3 (September 30, 2021): 79–87. http://dx.doi.org/10.4024/12co20a.jbpc.21.03.
Full textHolubec, Viktor, and Artem Ryabov. "Fluctuations in heat engines." Journal of Physics A: Mathematical and Theoretical 55, no. 1 (December 15, 2021): 013001. http://dx.doi.org/10.1088/1751-8121/ac3aac.
Full textJohnson, Clifford V. "Taub–Bolt heat engines." Classical and Quantum Gravity 35, no. 4 (January 12, 2018): 045001. http://dx.doi.org/10.1088/1361-6382/aaa010.
Full textAhmed, Wasif, Hong Zhe Chen, Elliott Gesteau, Ruth Gregory, and Andrew Scoins. "Conical holographic heat engines." Classical and Quantum Gravity 36, no. 21 (October 14, 2019): 214001. http://dx.doi.org/10.1088/1361-6382/ab470b.
Full textPoletayev, Andrey D., Ian S. McKay, William C. Chueh, and Arun Majumdar. "Continuous electrochemical heat engines." Energy & Environmental Science 11, no. 10 (2018): 2964–71. http://dx.doi.org/10.1039/c8ee01137k.
Full textSolomon, Dan. "Thermomagnetic mechanical heat engines." Journal of Applied Physics 65, no. 9 (May 1989): 3687–93. http://dx.doi.org/10.1063/1.342595.
Full textValdès, L. C. "Competitive solar heat engines." Renewable Energy 29, no. 11 (September 2004): 1825–42. http://dx.doi.org/10.1016/j.renene.2004.02.008.
Full textHilt, Matthew G., K. A. Pestka, G. D. Mahan, J. D. Maynard, D. Pickrell, B. Na, and J. Tamburini. "Unconventional thermoacoustic heat engines." Journal of the Acoustical Society of America 119, no. 5 (May 2006): 3414. http://dx.doi.org/10.1121/1.4786811.
Full textAneja, Preety. "Optimization and Efficiency Studies of Heat Engines: A Review." Journal of Advanced Research in Mechanical Engineering and Technology 07, no. 03 (October 7, 2020): 37–58. http://dx.doi.org/10.24321/2454.8650.202006.
Full textHuleihil, Mahmoud, and Gedalya Mazor. "Golden Section Heat Engines and Heat Pumps." International Journal of Arts 2, no. 2 (August 31, 2012): 1–7. http://dx.doi.org/10.5923/j.arts.20120202.01.
Full textKondrashov, A. V., and A. A. Trinchenko. "Condensation heat recycling system for heat engines." Power engineering: research, equipment, technology 25, no. 6 (January 12, 2024): 67–77. http://dx.doi.org/10.30724/1998-9903-2023-25-6-67-77.
Full textKe, Zhenying, Yang Xu, and Zihao Guo. "Analysis of the social impact of heat engine and its future application." IOP Conference Series: Earth and Environmental Science 1011, no. 1 (April 1, 2022): 012007. http://dx.doi.org/10.1088/1755-1315/1011/1/012007.
Full textDerényi, Imre, and R. Astumian. "Efficiency of Brownian heat engines." Physical Review E 59, no. 6 (June 1999): R6219—R6222. http://dx.doi.org/10.1103/physreve.59.r6219.
Full textSinitsyn, N. A. "Fluctuation relation for heat engines." Journal of Physics A: Mathematical and Theoretical 44, no. 40 (September 14, 2011): 405001. http://dx.doi.org/10.1088/1751-8113/44/40/405001.
Full textAnderson, Warren G. "Relativistic heat engines and efficiency." Physics Letters A 223, no. 1-2 (November 1996): 23–27. http://dx.doi.org/10.1016/s0375-9601(96)00715-3.
Full textGrazzini, Giuseppe. "Work from irreversible heat engines." Energy 16, no. 4 (April 1991): 747–55. http://dx.doi.org/10.1016/0360-5442(91)90024-g.
Full textRichards, George, Randall S. Gemmen, and Mark C. Williams. "Solid – state electrochemical heat engines." International Journal of Hydrogen Energy 40, no. 9 (March 2015): 3719–25. http://dx.doi.org/10.1016/j.ijhydene.2015.01.043.
Full textLöffler, Michael. "Batch Processes in Heat Engines." Energy 125 (April 2017): 788–94. http://dx.doi.org/10.1016/j.energy.2017.02.105.
Full textMartínez, Ignacio A., Édgar Roldán, Luis Dinis, and Raúl A. Rica. "Colloidal heat engines: a review." Soft Matter 13, no. 1 (2017): 22–36. http://dx.doi.org/10.1039/c6sm00923a.
Full textHsu, S. M., J. M. Perez, and C. S. Ku. "Advanced lubricants for heat engines." Journal of Synthetic Lubrication 14, no. 2 (July 1997): 143–56. http://dx.doi.org/10.1002/jsl.3000140204.
Full textNuwayhid, R. Y., and F. Moukalled. "Effect of heat leak on cascaded heat engines." Energy Conversion and Management 43, no. 15 (October 2002): 2067–83. http://dx.doi.org/10.1016/s0196-8904(01)00146-7.
Full textLampinen, Markku J., and Jari Vuorisalo. "Heat accumulation function and optimization of heat engines." Journal of Applied Physics 69, no. 2 (January 15, 1991): 597–605. http://dx.doi.org/10.1063/1.347392.
Full textEbrahimi, Alireza, Soheil Jafari, and Theoklis Nikolaidis. "Heat Load Development and Heat Map Sensitivity Analysis for Civil Aero-Engines." International Journal of Turbomachinery, Propulsion and Power 9, no. 3 (July 2, 2024): 25. http://dx.doi.org/10.3390/ijtpp9030025.
Full textVelidi, Gurunadh, and Chun Sang Yoo. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges." Energies 16, no. 9 (May 8, 2023): 3968. http://dx.doi.org/10.3390/en16093968.
Full textKadam, Shrutika. "Analysis of TAE by Modifying Cold and Hot Heat Exchanger Using Waste Heat Recovery." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (May 29, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem35022.
Full textYao, Xuyichen. "Stirling engines: Advancements, applications, and environmental benefits." Theoretical and Natural Science 25, no. 1 (December 20, 2023): 186–91. http://dx.doi.org/10.54254/2753-8818/25/20240963.
Full textYang, Zongming, Volodymyr Korobko, Mykola Radchenko, and Roman Radchenko. "Improving Thermoacoustic Low-Temperature Heat Recovery Systems." Sustainability 14, no. 19 (September 27, 2022): 12306. http://dx.doi.org/10.3390/su141912306.
Full textVetchanin, Evgeniy, and Valentin Tenenev. "Simulation of gas dynamics in heat engines of complex shapes." Modern science: researches, ideas, results, technologies 8, no. 2 (June 15, 2017): 29–34. http://dx.doi.org/10.23877/ms.ts.39.004.
Full textJONES, JOHN DEWEY. "Heat Transfer Processes in Low-Heat-Rejection Diesel Engines." Heat Transfer Engineering 8, no. 3 (January 1987): 90–99. http://dx.doi.org/10.1080/01457638708962807.
Full textOdes, Ron, and Abraham Kribus. "Performance of heat engines with non-zero heat capacity." Energy Conversion and Management 65 (January 2013): 108–19. http://dx.doi.org/10.1016/j.enconman.2012.08.010.
Full textMoukalled, F., R. Y. Nuwayhid, and N. Noueihed. "The efficiency of endoreversible heat engines with heat leak." International Journal of Energy Research 19, no. 5 (July 1995): 377–89. http://dx.doi.org/10.1002/er.4440190503.
Full textMatos, Wagner Santos, Juliano de Assis Pereira, Josef Klammer, José Antonio Perrella Balestieri, Alex Mendonça Bimbato, and Marcelino Pereira do Nascimento. "HEAT REJECTION AVOIDANCE IN COMBUSTION ENGINES." Brazilian Journal of Development 6, no. 7 (2020): 53369–92. http://dx.doi.org/10.34117/bjdv6n7-835.
Full textMyers, Nathan M., Jacob McCready, and Sebastian Deffner. "Quantum Heat Engines with Singular Interactions." Symmetry 13, no. 6 (May 31, 2021): 978. http://dx.doi.org/10.3390/sym13060978.
Full textYerra, Pavan Kumar, and Chandrasekhar Bhamidipati. "Critical heat engines in massive gravity." Classical and Quantum Gravity 37, no. 20 (September 26, 2020): 205020. http://dx.doi.org/10.1088/1361-6382/abb2d1.
Full textAtchley, Anthony. "Sound waves rev up heat engines." Physics World 12, no. 8 (August 1999): 21–22. http://dx.doi.org/10.1088/2058-7058/12/8/27.
Full textLarsen, D. C., J. W. Adams, L. R. Johnson, A. P. S. Teotia, L. G. Hill, and T. Z. Kattamis. "Ceramic Materials for Advanced Heat Engines." Journal of Engineering Materials and Technology 109, no. 1 (January 1, 1987): 99. http://dx.doi.org/10.1115/1.3225945.
Full textPáv, Karel, Václav Rychtář, and Václav Vorel. "Heat balance in modern automotive engines." Journal of Middle European Construction and Design of Cars 10, no. 2 (November 1, 2012): 6–13. http://dx.doi.org/10.2478/v10138-012-0007-7.
Full textPilgram, Sebastian, David Sánchez, and Rosa López. "Quantum point contacts as heat engines." Physica E: Low-dimensional Systems and Nanostructures 74 (November 2015): 447–50. http://dx.doi.org/10.1016/j.physe.2015.08.003.
Full textChakraborty, Avik, and Clifford V. Johnson. "Benchmarking black hole heat engines, II." International Journal of Modern Physics D 27, no. 16 (December 2018): 1950006. http://dx.doi.org/10.1142/s0218271819500068.
Full textChakraborty, Avik, and Clifford V. Johnson. "Benchmarking black hole heat engines, I." International Journal of Modern Physics D 27, no. 16 (December 2018): 1950012. http://dx.doi.org/10.1142/s0218271819500123.
Full textArcoumanis, C., P. Cutter, and D. S. Whitelaw. "Heat Transfer Processes in Diesel Engines." Chemical Engineering Research and Design 76, no. 2 (February 1998): 124–32. http://dx.doi.org/10.1205/026387698524695.
Full textWei, Shao-Wen, and Yu-Xiao Liu. "Charged AdS black hole heat engines." Nuclear Physics B 946 (September 2019): 114700. http://dx.doi.org/10.1016/j.nuclphysb.2019.114700.
Full textLong, Rui, and Wei Liu. "Ecological optimization for general heat engines." Physica A: Statistical Mechanics and its Applications 434 (September 2015): 232–39. http://dx.doi.org/10.1016/j.physa.2015.04.016.
Full textSenft, J. R. "Mechanical efficiency of kinematic heat engines." Journal of the Franklin Institute 324, no. 2 (January 1987): 273–90. http://dx.doi.org/10.1016/0016-0032(87)90066-4.
Full text