Academic literature on the topic 'Heart Artificial'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heart Artificial.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heart Artificial"
Gilbert, Alan, and Peter Gizzi. "Artificial Heart." Chicago Review 44, no. 3/4 (1998): 197. http://dx.doi.org/10.2307/25304332.
Full textMoyer, Michael. "Artificial Heart." Scientific American 301, no. 3 (September 2009): 75. http://dx.doi.org/10.1038/scientificamerican0909-75b.
Full textHarasaki, H., and L. Golding. "Artificial heart." Current Opinion in Cardiology 3, no. 5 (September 1988): 770–75. http://dx.doi.org/10.1097/00001573-198809000-00020.
Full textYuan, Yuan. "Analysis of the current status and development prospects of artificial hearts." Theoretical and Natural Science 29, no. 1 (January 8, 2024): 108–11. http://dx.doi.org/10.54254/2753-8818/29/20240755.
Full textShankar, Mr A. Ravi, Dr S. Kishore Reddy, and Dr Sultan Feisso. "Prototype of Total Artificial Heart System." International Journal of Trend in Scientific Research and Development Volume-1, Issue-6 (October 31, 2017): 850–55. http://dx.doi.org/10.31142/ijtsrd4693.
Full textFrankel, William C., and Tom C. Nguyen. "Artificial Heart Valves." JAMA 325, no. 24 (June 22, 2021): 2512. http://dx.doi.org/10.1001/jama.2020.19936.
Full textDunning, J. "Artificial heart transplants." British Medical Bulletin 53, no. 4 (January 1, 1997): 706–18. http://dx.doi.org/10.1093/oxfordjournals.bmb.a011642.
Full textWhite, Boyd. "The Artificial Heart." Iowa Review 21, no. 1 (January 1991): 110–11. http://dx.doi.org/10.17077/0021-065x.3974.
Full textGrunkemeier, G. L., and S. H. Rahimtoola. "Artificial Heart Valves." Annual Review of Medicine 41, no. 1 (February 1990): 251–63. http://dx.doi.org/10.1146/annurev.me.41.020190.001343.
Full text&NA;. "ARTIFICIAL HEART, TOTAL." ASAIO Journal 42, no. 2 (April 1996): 4–9. http://dx.doi.org/10.1097/00002480-199642020-00003.
Full textDissertations / Theses on the topic "Heart Artificial"
Nishta, B. V. "Artificial heart." Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/35027.
Full textWestaby, Stephen. "Towards a realistic artificial heart." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248952.
Full textMICCIOLO, MATTEO. "ASSISTENZE MECCANICHE AL CIRCOLO: PADUA HEART PROJECT A TOTAL ARTIFICIAL HEART." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3423929.
Full textStudio dello stato dell’arte del cuore artificiale totale (TAH) nella pratica clinica: la ricerca bibliografica è stata orientata all’analisi delle più recenti esperienze cliniche con TAH per individuarne limiti e punti di forza. L’obiettivo di tale ricerca documentale era quello di dedurre le specifiche per un nuovo TAH, in grado di soddisfare le esigenze terapeutiche ancora parzialmente o totalmente irrisolte dai sistemi attualmente disponibili: • CARATTERISTICHE DI PESO E INGOMBRO IDEALI: diametro <90 mm, lunghezza < 100 mm; peso < 800 gr (peso del cuore naturale 300- 400 gr), per poter essere impiantato anche in pazienti di piccola BSA • ATTUATORE impiantabile, elettromeccanico, efficiente, silenzioso, in grado di produrre un flusso medio di circa 6 L/min contro una pressione media di circa 100 mmHg, con capacità di sostenere sovraccarichi e picchi di flusso, con bassa dissipazione di calore verso il sangue e i tessuti • DISEGNO DELLE CAMERE VENTRICOLARI E DELLE VALVOLE rispetto al flusso ematico tale da minimizzare l’emolisi e le zone di stagnazione del flusso e il conseguente pericolo di formazione di trombi • MATERIALI USATI BIO ED EMOCOMPATIBILI: plastica, metallo, materiale biologico (PERICARDIO DECELLULARIZZATO), con caratteristiche di non tossicità, non carcinogenicità, stabilità chimica e resistenza meccanica, sterilizzabilità • INTERFACCIA DEL TAH con il circolo (atri, arterie) rispettosa dell’anatomia e con agevoli meccanismi di aggancio • DURATA DISPOSITIVO : circa 5 anni (per un sistema pulsatile, ciò corrisponde ad un numero di cicli variabile tra 225 e 350 Milioni, a seconda che lo Stroke Volume vari tra 70 e 45 ml), per poter offrire un supporto di lungo termine Studio di nuovi modelli di TAH ancora in corso di sviluppo e ricerca brevettuale su TAH innovativi: attraverso tale ricerca sono stati individuati gli spunti più interessanti tra le tecnologie in divenire ed è stato definito come orientare il progetto del TAH di Padova. In particolare, si è optato per un sistema con pompe volumetriche, a camere flessibili valvolate, azionate da motori elettrici lineari (quindi, con meno trasduzioni) di piccole dimensioni. L’attuazione prevede un movimento push-pull del piano delle valvole, che realizza contemporaneamente il riempimento e l’eiezione dalle camere ventricolari. Questo consente, a parità di ingombro, l’aumento della portata o, viceversa, a parità di portata una considerevole riduzione di volume della pompa. Sono stati disegnate diverse possibili configurazioni della pompa push-pull e infine viene scelta soluzione con movimento dei piani valvolari, interposti tra sacco ventricolare e “atri”, disposti a “U”,con frequenza minima 60 b/min, SV 80 ml (40ml +40ml). Primi test su banco: il sistema push-pull con uno stroke volume complessivo di 80 ml ottenuto attraverso 2 eiezioni successive di 40 ml ciascuna, con frequenza di salita/discesa del motore lineare di 60b/min (1Hz) riesce a pompare 4,8 L/min contro un afterload di 120 mmHg Aumentando la frequenza a 92b/min, il sistema riesce a erogare una portata di 7.2 L/min contro lo stesso postcarico Emerge l’originalità progettuale del disegno in cui le valvole si comportano sia da organi di intercettazione sia da elementi di spinta della massa fluida. Prove su banco di confronto Drive Units di dispositive in uso clinico (Cardiowest Companion vs Freedom): sono state eseguite prove su banco di unità di controllo differenti impiegate sullo stesso modello di TAH (Cardiowest) allo scopo di individuare le variabili di controllo salienti su cui basare il sistema di attuazione del nuovo TAH. Lo spunto è stato fornito da un reale “clinical dilemma”: il paziente 1Z, a cui era stato impiantato il CardioWest nel 2007, ha iniziato a manifestare problemi di dispnea con edema polmonare, nonostante un flusso di 5 L/min, appena è passato dal sistema di attuazione Companion al più recente Freedom. Non aveva tali sintomi coi precedenti drive units Excor e Companion; nessun altro organo presentava segnali di scompenso. Le prove su banco hanno dimostrato che la più recente drive unit (Freedom), essendo molto rigida, poiché non permette la regolazione delle pressioni di attuazione dei due ventricoli, e non avendo alcun feedback sulle pressioni di riempimento del paziente, può determinare squilibri tra circolo destro e sinistro. Appare quindi molto importante nel progetto di nuovo TAH includere la possibilità di modulazione della portata in funzione delle pressioni di riempimento. Progetto di fitting virtuale del TAH: lo studio si propone di convertire TAC del torace in un modello 3D semplice rapido e affidabile della cavità toracica. I risultati attesi consistono nella definizione ottimale degli ingombri e delle forme della protesi impiantabile del TAH che si sta progettando, incluse le interfacce con atri e grandi vasi del ricevente. Inoltre, lo strumento sarebbe disponibile per la determinazione ottimale pre-operatoria del fitting anatomico in un dato paziente di un dato sistema di supporto circolatorio impiantabile. La ricerca è stata avviata in collaborazione con l’Unità di Ricerca “3DOM” della Fondazione Bruno Kessler di Trento.
Ranawake, Manoja, and n/a. "Development of the artificial heart for serial production." University of Canberra. Industrial Design, 1995. http://erl.canberra.edu.au./public/adt-AUC20061113.151545.
Full textMenon, Vinay. "Fuzzy logic controller for an artificial heart." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq32405.pdf.
Full textHui, Andrew J. "Hydrogel-based artificial heart valve stent material." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0018/MQ58005.pdf.
Full textAlsalamah, Mashail. "Heart diseases diagnosis using artificial neural networks." Thesis, Coventry University, 2017. http://curve.coventry.ac.uk/open/items/a9564d2b-df62-4573-8888-cabdbbdcd4e0/1.
Full textBarsanti, Stephen. "Observations on the mechanical behaviour of polyurethane heart valves." Thesis, University of the West of Scotland, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265928.
Full textNugent, Allen Harold Biomedical Engineering UNSW. "Fluid dynamical investigation of a ventricular assist device." Awarded by:University of New South Wales. Biomedical Engineering, 2005. http://handle.unsw.edu.au/1959.4/35035.
Full textSedighian, Pouye. "Pediatric heart sound segmentation." Thesis, California State University, Long Beach, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1526952.
Full textRecent advances in technology have facilitated the prospect of automatic cardiac auscultation by using digital stethoscopes. This in turn creates the need for development of algorithms capable of automatic segmentation of the heart sound. Pediatric heart sound segmentation is a challenging task due to various factors including the significant influence of respiration on the heart sound. This project studies the application of homomorphic filtering and Hidden Markov Model for the purpose of pediatric heart sound segmentation. The efficacy of the proposed method is evaluated on a publicly available dataset and its performance is compared with those of three other existing methods. The results show that our proposed method achieves accuracy of 92.4% ±1.1% and 93.5% ±1.1% in identification of first and second heart sound components, and is superior to four other existing methods in term of accuracy or time complexity.
Books on the topic "Heart Artificial"
Gizzi, Peter. Artificial heart. Providence, R.I: Burning Deck, 1998.
Find full textInternational Symposium on Artificial Heart and Assist Device (4th 1992 Tokyo, Japan). Heart replacement: Artificial heart 4. Edited by Akutsu Tetsuzō 1922- and Koyanagi Hitoshi 1936-. Tokyo: Springer-Verlag, 1993.
Find full text1922-, Akutsu Tetsuzō, and Koyanagi Hitoshi 1936-, eds. Heart replacement: Artificial heart 6. Tokyo: Springer, 1998.
Find full textAkutsu, Tetsuzo, Hitoshi Koyanagi, Setsuo Takatani, Kazunori Kataoka, Jack G. Copeland, Stuart L. Cooper, Peer M. Portner, and David B. Geselowitz, eds. Artificial Heart 2. Tokyo: Springer Japan, 1988. http://dx.doi.org/10.1007/978-4-431-65964-8.
Full textAkutsu, Tetsuzo, Hitoshi Koyanagi, James M. Anderson, Lawrence H. Cohn, Peter L. Frommer, Mitsuhiro Hachida, Kazunori Kataoka, et al., eds. Artificial Heart 3. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68126-7.
Full textBerger, Melvin. The artificial heart. New York: F. Watts, 1987.
Find full textYamane, Takashi. Mechanism of Artificial Heart. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55831-6.
Full textUnited States. National Aeronautics and Space Administration., ed. Incomprehensive viscous flow computations for the pump components and the artificial heart. San Jose, CA: MCAT Institute, 1992.
Find full textR, Hogness John, VanAntwerp Malin, and National Heart, Lung, and Blood Institute., eds. The artificial heart: Prototypes, policies, and patients. Washington, D.C: National Academy Press, 1991.
Find full text1922-, Akutsu Tetsuzō, Koyanagi Hitoshi 1936-, and Japanese Research Promotion Society for Cardiovascular Diseases., eds. Artificial heart 2: Proceedings of the 2nd International Symposium on Artificial Heart and Assist Device, August 13-14, 1987, Tokyo, Japan. Tokyo: Springer-Verlag, 1988.
Find full textBook chapters on the topic "Heart Artificial"
Mitamura, Yoshinori, Tatsuhiko Wada, and Eiji Okamoto. "Feasibility of Ferromagnetic Artificial Cells for Artificial Circulation." In Heart Replacement, 482–83. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-65921-1_78.
Full textHan, Lu, and Wei Wang. "Total Artificial Heart." In Artificial Hearts, 95–108. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4378-4_6.
Full textCopeland, Hannah, Jack G. Copeland, and Richard G. Smith. "Total Artificial Heart." In Surgical Treatment for Advanced Heart Failure, 161–75. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6919-3_13.
Full textCopeland, Hannah, Jennifer Berumen, Richard G. Smith, and Jack G. Copeland. "The Artificial Heart." In Textbook of Organ Transplantation, 563–67. Oxford, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118873434.ch49.
Full textStamm, Christof, and Roland Hetzer. "Total Artificial Heart." In Translational Approach to Heart Failure, 437–48. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7345-9_17.
Full textLi, Yongjun, and Zhengxi Xu. "Total Artificial Heart." In Application of Biomaterials in the Treatment of Cardiovascular Diseases, 381–92. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-7712-1_11.
Full textShah, Keyur B., Anit K. Mankad, Daniel G. Tang, and Vigneshwar Kasirajan. "The Total Artificial Heart." In Heart Failure, 691–709. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-4219-5_29.
Full textWatson, John T. "Implantable Artificial Heart Systems." In Heart Replacement, 95–100. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-67020-9_10.
Full textFrazier, O. Howard, Denton A. Cooley, and Hiroyuki Noda. "Completely implantable total artificial hearts: Status at the Texas Heart Institute." In Artificial Heart 3, 167–71. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68126-7_19.
Full textWei, Xufeng, and Yixin Cui. "Mechanisms of Heart Failure." In Artificial Hearts, 21–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4378-4_2.
Full textConference papers on the topic "Heart Artificial"
K. Kar, Kamal, and Mridul Bharadwaj. "Artificial Heart Valve Testing Setup." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-287.
Full textPotnuru, Akshay, Lianjun Wu, and Yonas Tadesse. "Artificial heart for humanoid robot." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Yoseph Bar-Cohen. SPIE, 2014. http://dx.doi.org/10.1117/12.2045289.
Full textSahrani, S., N. Semangin, S. Suhaili, D. A. Awg Mat, M. S. Osman, and M. Sawawi. "Electromagnetic interference on artificial heart pacemaker." In 2008 IEEE International RF and Microwave Conference (RFM). IEEE, 2008. http://dx.doi.org/10.1109/rfm.2008.4897396.
Full textCorrigan, J. J., M. Jeter, R. G. Smith, M. Levinson, and J. G. Copeland. "FIBRINOLYTIC PEPTIDES IN ARTIFICIAL HEART RECIPIENTS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642920.
Full textAl-Mannai, Rashid Ebrahim, Mohammed Hamad Almerekhi, Mohammed Abdulla Al-Mannai, Mishahira N, Kishor Kumar Sadasivuni, Huseyin Cagatay Yalcin, Hassen M. Ouakad, Issam Bahadur, Somaya Al-Maadeed, and Asiya Albusaidi. "Artificial Intelligence in Predicting Heart Failure." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0130.
Full textHui, Andrew J., Anthony C. Duncan, and W. K. Wan. "Hydrogel Based Artificial Heart Valve Stent." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0224.
Full textDolgov, Dmitriy, and Yury Zakharov. "Mathematical modelling of artificial heart valve performance." In 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342202.
Full text"Heart Attack Prediction with Artificial Neural Network." In 2020 2nd International Symposium on the Frontiers of Biotechnology and Bioengineering (FBB 2020). Clausius Scientific Press, 2020. http://dx.doi.org/10.23977/fbb2020.010.
Full textBharathi, N. Nava, Mahammad Firose Shaik, T. Poojita, T. Sravanthi, Mohammad Rafi, and Inakoti Ramesh Raja. "Heart Attack Prediction Using Artificial Neural Networks." In 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2023. http://dx.doi.org/10.1109/icaccs57279.2023.10112664.
Full textBindela, H. V. R., K. C. Yedubati, R. R. Gosula, E. Snir, and B. Rahmani. "Heart Failure Prediction Using Artificial Intelligence Methods." In 2023 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE, 2023. http://dx.doi.org/10.1109/aipr60534.2023.10440664.
Full textReports on the topic "Heart Artificial"
Langlois, Lyse, Marc-Antoine Dilhac, Jim Dratwa, Thierry Ménissier, Jean-Gabriel Ganascia, Daniel Weinstock, Luc Bégin, and Allison Marchildon. Ethics at the heart of AI. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, October 2023. http://dx.doi.org/10.61737/wfym6890.
Full textWagner, Anna, Jon Maakestad, Edward Yarmak, and Thomas Douglas. Artificial ground freezing using solar-powered thermosyphons. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42421.
Full textRinaudo, Christina, William Leonard, Jaylen Hopson, Christopher Morey, Robert Hilborn, and Theresa Coumbe. Enabling understanding of artificial intelligence (AI) agent wargaming decisions through visualizations. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48418.
Full textTIMOTHY J. KNEAFSEY AND KARSTEN PRUESS. LABORATORY EXPERIMENTS ON HEAT-DRIVEN TWO-PHASE FLOWS IN NATURAL AND ARTIFICIAL ROCK FRACTURES. Office of Scientific and Technical Information (OSTI), May 1998. http://dx.doi.org/10.2172/778893.
Full textKneafsey, T. J., and K. Pruess. Preferential flow paths and heat pipes: Results from laboratory experiments on heat-driven flow in natural and artificial rock fractures. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/527417.
Full textK. PRUESS AND T. KNEAFSEY. PREFERENTIAL FLOW PATHS AND HEAT PIPES: RESULTS FROM LABORATORY EXPERIMENTS ON HEAT-DRIVEN FLOW IN NATURAL AND ARTIFICIAL ROCK FRACTURES, LEVEL 4 MILESTONE ID: SPL6A5M4, WSB 1.2.3.12.2. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/778887.
Full textPrajapati, Jinal, Rubina Tabassum, and Gaurang Mistry. Comparison of shear bond strength of artificial teeth used with CAD/CAM PMMA versus heat cure acrylic resins for complete denture manufacturing- a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2023. http://dx.doi.org/10.37766/inplasy2023.11.0065.
Full textGuidati, Gianfranco, and Domenico Giardini. Joint synthesis “Geothermal Energy” of the NRP “Energy”. Swiss National Science Foundation (SNSF), February 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.4.en.
Full textWideman, Jr., Robert F., Nicholas B. Anthony, Avigdor Cahaner, Alan Shlosberg, Michel Bellaiche, and William B. Roush. Integrated Approach to Evaluating Inherited Predictors of Resistance to Pulmonary Hypertension Syndrome (Ascites) in Fast Growing Broiler Chickens. United States Department of Agriculture, December 2000. http://dx.doi.org/10.32747/2000.7575287.bard.
Full textWilson, Thomas E., Avraham A. Levy, and Tzvi Tzfira. Controlling Early Stages of DNA Repair for Gene-targeting Enhancement in Plants. United States Department of Agriculture, March 2012. http://dx.doi.org/10.32747/2012.7697124.bard.
Full text