Journal articles on the topic 'Head related transfer functions'

To see the other types of publications on this topic, follow the link: Head related transfer functions.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Head related transfer functions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Farias, Julio G., and David R. Perrott. "Transforming the head‐related transfer functions." Journal of the Acoustical Society of America 102, no. 5 (November 1997): 3117. http://dx.doi.org/10.1121/1.420570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rasmussen, Gunnar. "Head related transfer functions for KEMAR." Journal of the Acoustical Society of America 125, no. 4 (April 2009): 2596. http://dx.doi.org/10.1121/1.3155484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wenzel, Elizabeth M., Marianne Arruda, Doris J. Kistler, and Frederic L. Wightman. "Localization using nonindividualized head‐related transfer functions." Journal of the Acoustical Society of America 94, no. 1 (July 1993): 111–23. http://dx.doi.org/10.1121/1.407089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chateau, Noel, and Adelbert W. Bronkhorst. "Efficient representation of head‐related transfer functions." Journal of the Acoustical Society of America 101, no. 5 (May 1997): 3084. http://dx.doi.org/10.1121/1.418799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fels, Janina, and Michael Vorländer. "Anthropometric Parameters Influencing Head-Related Transfer Functions." Acta Acustica united with Acustica 95, no. 2 (March 1, 2009): 331–42. http://dx.doi.org/10.3813/aaa.918156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Song, and Jürgen Peissig. "Measurement of Head-Related Transfer Functions: A Review." Applied Sciences 10, no. 14 (July 21, 2020): 5014. http://dx.doi.org/10.3390/app10145014.

Full text
Abstract:
A head-related transfer function (HRTF) describes an acoustic transfer function between a point sound source in the free-field and a defined position in the listener’s ear canal, and plays an essential role in creating immersive virtual acoustic environments (VAEs) reproduced over headphones or loudspeakers. HRTFs are highly individual, and depend on directions and distances (near-field HRTFs). However, the measurement of high-density HRTF datasets is usually time-consuming, especially for human subjects. Over the years, various novel measurement setups and methods have been proposed for the fast acquisition of individual HRTFs while maintaining high measurement accuracy. This review paper provides an overview of various HRTF measurement systems and some insights into trends in individual HRTF measurements.
APA, Harvard, Vancouver, ISO, and other styles
7

Zahorik, Pavel. "Distance localization using nonindividualized head‐related transfer functions." Journal of the Acoustical Society of America 108, no. 5 (November 2000): 2597. http://dx.doi.org/10.1121/1.4743664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Duraiswami, Ramani, and Nail A. Gumerov. "Method for measurement of head related transfer functions." Journal of the Acoustical Society of America 128, no. 5 (2010): 3272. http://dx.doi.org/10.1121/1.3525326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wightman, Frederic L., and Doris J. Kistler. "Explaining individual differences in head‐related transfer functions." Journal of the Acoustical Society of America 105, no. 2 (February 1999): 1036. http://dx.doi.org/10.1121/1.424943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bronkhorst, Adelbert W. "Adapting head‐related transfer functions to individual listeners." Journal of the Acoustical Society of America 105, no. 2 (February 1999): 1036. http://dx.doi.org/10.1121/1.424944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Spezio, Michael L., Clifford H. Keller, Richard T. Marrocco, and Terry T. Takahashi. "Head-related transfer functions of the Rhesus monkey." Hearing Research 144, no. 1-2 (June 2000): 73–88. http://dx.doi.org/10.1016/s0378-5955(00)00050-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kistler, Doris, and Frederic Wightman. "Principal components analysis of head‐related transfer functions." Journal of the Acoustical Society of America 88, S1 (November 1990): S98. http://dx.doi.org/10.1121/1.2029241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hu, Shichao, Jorge Trevino, César Salvador, Shuichi Sakamoto, and Yôiti Suzuki. "Modeling head-related transfer functions with spherical wavelets." Applied Acoustics 146 (March 2019): 81–88. http://dx.doi.org/10.1016/j.apacoust.2018.10.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Andreopoulou, Areti, and Agnieszka Roginska. "Database Matching of Sparsely Measured Head-Related Transfer Functions." Journal of the Audio Engineering Society 65, no. 7/8 (August 15, 2017): 552–61. http://dx.doi.org/10.17743/jaes.2017.0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nambu, Isao, Manabu Washizu, Shuhei Morioka, Yuta Hasegawa, Wataru Sakuma, Shohei Yano, Haruhide Hokari, and Yasuhiro Wada. "Reinforcement-Learning-Based Personalization of Head-Related Transfer Functions." Journal of the Audio Engineering Society 66, no. 5 (May 24, 2018): 317–28. http://dx.doi.org/10.17743/jaes.2018.0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hammershoei, Dorte, Jesper Sandvad, and Henrik Moeller. "Application of head‐related transfer functions for binaural synthesis." Journal of the Acoustical Society of America 102, no. 5 (November 1997): 3116. http://dx.doi.org/10.1121/1.421006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lockwood, Michael E., Douglas L. Jones, Robert C. Bilger, Charissa R. Lansing, William D. O’Brien, Bruce C. Wheeler, and Albert S. Feng. "Robustness of beamforming algorithms with head‐related transfer functions." Journal of the Acoustical Society of America 109, no. 5 (May 2001): 2493. http://dx.doi.org/10.1121/1.4744873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Katz, Brian F. "New approach for obtaining individualized head‐related transfer functions." Journal of the Acoustical Society of America 100, no. 4 (October 1996): 2609. http://dx.doi.org/10.1121/1.417640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hoffmann, Pablo F., and Henrik Møller. "Audibility of Differences in Adjacent Head-Related Transfer Functions." Acta Acustica united with Acustica 94, no. 6 (November 1, 2008): 945–54. http://dx.doi.org/10.3813/aaa.918111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hoffmann, Pablo F., and Henrik Møller. "Audibility of Direct Switching Between Head-Related Transfer Functions." Acta Acustica united with Acustica 94, no. 6 (November 1, 2008): 955–64. http://dx.doi.org/10.3813/aaa.918112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Abel, Jonathan Stuart. "Method and apparatus for measuring head-related transfer functions." Journal of the Acoustical Society of America 104, no. 2 (August 1998): 617. http://dx.doi.org/10.1121/1.423393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sottek, Roland, and Klaus Genuit. "Physical modeling of individual head‐related transfer functions (HRTFs)." Journal of the Acoustical Society of America 105, no. 2 (February 1999): 1162. http://dx.doi.org/10.1121/1.425519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

MacDonald, Justin A. "A localization algorithm based on head-related transfer functions." Journal of the Acoustical Society of America 123, no. 6 (June 2008): 4290–96. http://dx.doi.org/10.1121/1.2909566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Brungart, Douglas S., and William M. Rabinowitz. "Auditory localization of nearby sources. Head-related transfer functions." Journal of the Acoustical Society of America 106, no. 3 (September 1999): 1465–79. http://dx.doi.org/10.1121/1.427180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Grijalva, Felipe, Luiz Cesar Martini, Dinei Florencio, and Siome Goldenstein. "Interpolation of Head-Related Transfer Functions Using Manifold Learning." IEEE Signal Processing Letters 24, no. 2 (February 2017): 221–25. http://dx.doi.org/10.1109/lsp.2017.2648794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Xu, Song, Zhizhong Li, and Gavriel Salvendy. "Individualized head-related transfer functions based on population grouping." Journal of the Acoustical Society of America 124, no. 5 (November 2008): 2708–10. http://dx.doi.org/10.1121/1.2982398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Seppälä, Eira T., Ole Kirkeby, Asta Kärkkäinen, Leo Kärkkäinen, and Tomi Huttunen. "Simulations of head‐related transfer functions in wideband acoustics." Journal of the Acoustical Society of America 119, no. 5 (May 2006): 3430. http://dx.doi.org/10.1121/1.4786885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

McGrath, David S. "Head related transfer functions for panned stereo audio content." Journal of the Acoustical Society of America 127, no. 6 (2010): 3878. http://dx.doi.org/10.1121/1.3455410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

McGrath, David S. "Head related transfer functions for panned stereo audio content." Journal of the Acoustical Society of America 127, no. 6 (2010): 3869. http://dx.doi.org/10.1121/1.3457089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Lin, Fuliang Yin, and Zhe Chen. "A hybrid compression method for head-related transfer functions." Applied Acoustics 70, no. 9 (September 2009): 1212–18. http://dx.doi.org/10.1016/j.apacoust.2009.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhong, Xiao-Li, Feng-chun Zhang, and Bo-Sun Xie. "On the spatial symmetry of head-related transfer functions." Applied Acoustics 74, no. 6 (June 2013): 856–64. http://dx.doi.org/10.1016/j.apacoust.2013.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Nimick, Stephen, Joshua Atkins, and Ismael Nawfal. "The effects of head-worn attire on measured head-related transfer functions." Journal of the Acoustical Society of America 135, no. 4 (April 2014): 2427. http://dx.doi.org/10.1121/1.4878073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rummukainen, Olli S., Thomas Robotham, and Emanuël A. P. Habets. "Head-Related Transfer Functions for Dynamic Listeners in Virtual Reality." Applied Sciences 11, no. 14 (July 20, 2021): 6646. http://dx.doi.org/10.3390/app11146646.

Full text
Abstract:
In dynamic virtual reality, visual cues and motor actions aid auditory perception. With multimodal integration and auditory adaptation effects, generic head-related transfer functions (HRTFs) may yield no significant disadvantage to individual HRTFs regarding accurate auditory perception. This study compares two individual HRTF sets against a generic HRTF set by way of objective analysis and two subjective experiments. First, auditory-model-based predictions examine the objective deviations in localization cues between the sets. Next, the HRTFs are compared in a static subjective (N=8) localization experiment. Finally, the localization accuracy, timbre, and overall quality of the HRTF sets are evaluated subjectively (N=12) in a six-degrees-of-freedom audio-visual virtual environment. The results show statistically significant objective deviations between the sets, but no perceived localization or overall quality differences in the dynamic virtual reality.
APA, Harvard, Vancouver, ISO, and other styles
34

Zhong, Xiao-li, and Bo-sun Xie. "Consistency among the head-related transfer functions from different measurements." Journal of the Acoustical Society of America 133, no. 5 (May 2013): 3282. http://dx.doi.org/10.1121/1.4805371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Harder, S., R. R. Paulsen, M. Larsen, S. Laugesen, M. Mihocic, and P. Majdak. "Reliability in Measuring Head Related Transfer Functions of Hearing Aids." Acta Acustica united with Acustica 101, no. 5 (September 15, 2015): 1064–66. http://dx.doi.org/10.3813/aaa.918900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xiangyang, Zeng, Wang Lei, Lu Dongdong, and Huaizhen Cai. "Individualization of head-related transfer functions using sparse representation approach." Journal of the Acoustical Society of America 145, no. 3 (March 2019): 1888. http://dx.doi.org/10.1121/1.5101842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Simon, Laurent S. R., Nick Zacharov, and Brian F. G. Katz. "Perceptual attributes for the comparison of head-related transfer functions." Journal of the Acoustical Society of America 140, no. 5 (November 2016): 3623–32. http://dx.doi.org/10.1121/1.4966115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Romigh, Griffin D., Douglas S. Brungart, Richard M. Stern, and Brian D. Simpson. "Efficient Real Spherical Harmonic Representation of Head-Related Transfer Functions." IEEE Journal of Selected Topics in Signal Processing 9, no. 5 (August 2015): 921–30. http://dx.doi.org/10.1109/jstsp.2015.2421876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sekido, Hiromi, Yuko Watanabe, and Hareo Hamada. "A study of pinna effect on head‐related transfer functions." Journal of the Acoustical Society of America 120, no. 5 (November 2006): 3212. http://dx.doi.org/10.1121/1.4788133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Romigh, Griffin D., Brian Simpson, and Michelle Wang. "Specificity of adaptation to non-individualized head-related transfer functions." Journal of the Acoustical Society of America 141, no. 5 (May 2017): 3974. http://dx.doi.org/10.1121/1.4989065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Huttunen, Tomi, Kimmo Tuppurainen, Antti Vanne, Pasi Ylä-Oijala, Seppo Järvenpää, Asta Kärkkäinen, and Leo Kärkkäinen. "Simulation of the head-related transfer functions using cloud computing." Journal of the Acoustical Society of America 133, no. 5 (May 2013): 3515. http://dx.doi.org/10.1121/1.4806289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhong, Xiao-li. "Auditory evaluation of head-related transfer functions from multiple databases." Journal of the Acoustical Society of America 140, no. 4 (October 2016): 3276. http://dx.doi.org/10.1121/1.4970408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Slaney, Malcolm. "Estimation of head-related transfer functions for spatial sound representative." Journal of the Acoustical Society of America 120, no. 1 (2006): 23. http://dx.doi.org/10.1121/1.2227680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fink, Kimberly J., and Laura R. Ray. "Tuning of head‐related transfer functions using principal component analysis." Journal of the Acoustical Society of America 127, no. 3 (March 2010): 1887. http://dx.doi.org/10.1121/1.3384697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Huang, Qinghua, and Yong Fang. "Interpolation of head-related transfer functions using spherical fourier expansion." Journal of Electronics (China) 26, no. 4 (July 2009): 571–76. http://dx.doi.org/10.1007/s11767-009-0048-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fink, Kimberly J., and Laura Ray. "Individualization of head related transfer functions using principal component analysis." Applied Acoustics 87 (January 2015): 162–73. http://dx.doi.org/10.1016/j.apacoust.2014.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Yuxiang, You Zhang, Zhiyao Duan, and Mark Bocko. "Employing deep learning method to predict global head-related transfer functions from scanned head geometry." Journal of the Acoustical Society of America 150, no. 4 (October 2021): A348. http://dx.doi.org/10.1121/10.0008543.

Full text
Abstract:
We propose an HRTF personalization method in which a Convolutional Neural Network (CNN) is employed to learn subjects' HRTFs from the scanned geometry of their heads. The trained model can then be employed to predict the global HRTF set (for all directions) from the subject's head scan data alone. In our trial, the HUTUBS HRTF database was used as the training set. A truncated spherical harmonic expansion of head scan data was used to preserve the boundary shape features that are important in the acoustic scattering process. Each HRTF for a given subject also was represented by a truncated spherical harmonic expansion. The SHT coefficients of the scanned head geometry and the HRTFs serve as training data for a CNN that subsequently can be used to predict HRTFs from geometric scan data. A leave-one-out validation with log-spectral distortion (LSD) metric was used for evaluation. The results show a decent LSD level at both spatial & temporal dimensions compared to the ground truth, and have lower LSD than the finite element acoustic simulation of HRTFs that the database provides. In continuing work, we are validating the prediction results in listener tests.
APA, Harvard, Vancouver, ISO, and other styles
48

Urviola, Ayrton, Shuichi Sakamoto, and César D. Salvador. "Ear Centering for Accurate Synthesis of Near-Field Head-Related Transfer Functions." Applied Sciences 12, no. 16 (August 19, 2022): 8290. http://dx.doi.org/10.3390/app12168290.

Full text
Abstract:
The head-related transfer function (HRTF) is a major tool in spatial sound technology. The HRTF for a point source is defined as the ratio between the sound pressure at the ear position and the free-field sound pressure at a reference position. The reference is typically placed at the center of the listener’s head. When using the spherical Fourier transform (SFT) and distance-varying filters (DVF) to synthesize HRTFs for point sources very close to the head, the spherical symmetry of the model around the head center does not allow for distinguishing between the ear position and the head center. Ear centering is a technique that overcomes this source of inaccuracy by translating the reference position. Hitherto, plane-wave (PW) translation operators have yield effective ear centering when synthesizing far-field HRTFs. We propose spherical-wave (SW) translation operators for ear centering required in the accurate synthesis of near-field HRTFs. We contrasted the performance of PW and SW ear centering. The synthesis errors decreased consistently when applying SW ear centering and the enhancement was observed up to the maximum frequency determined by the spherical grid.
APA, Harvard, Vancouver, ISO, and other styles
49

Scarpaci, Jacob W., and H. Steven Colburn. "Principal components analysis interpolation of head related transfer functions using locally‐chosen basis functions." Journal of the Acoustical Society of America 117, no. 4 (April 2005): 2561–62. http://dx.doi.org/10.1121/1.4788526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Arend, Johannes M., Fabian Brinkmann, and Christoph Pörschmann. "Assessing Spherical Harmonics Interpolation of Time-Aligned Head-Related Transfer Functions." Journal of the Audio Engineering Society 69, no. 1/2 (February 24, 2021): 104–17. http://dx.doi.org/10.17743/jaes.2020.0070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography