Academic literature on the topic 'HDR brachytherapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'HDR brachytherapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "HDR brachytherapy"
Kanaev, Sergey, Ye Bykova, I. Akulova, Nadezhda Popova, Pavel Krzhivitskiy, Petr Krivorotko, Olga Ponomareva, Zhanna Bryantseva, Sergey Novikov, and Yu Melnik. "RADIATION BOOST AFTER WHOLE-BREAST IRRADIATION: DOSIMETRIC COMPARISON OF HIGH DOSE RATE INTERSTITIAL BRACHYTHERAPY AND IRRADIATION WITH ELECTRONS." Problems in oncology 64, no. 3 (March 1, 2018): 303–9. http://dx.doi.org/10.37469/0507-3758-2018-64-3-303-309.
Full textMitra, Devarati, Yaguang Pei, Ivan Buzurovic, Phillip M. Devlin, Katherine Thornton, Chandrajit P. Raut, Elizabeth H. Baldini, and Miranda B. Lam. "Angiosarcoma of the Scalp and Face: A Dosimetric Comparison of HDR Surface Applicator Brachytherapy and VMAT." Sarcoma 2020 (August 25, 2020): 1–6. http://dx.doi.org/10.1155/2020/7615248.
Full textCrook, Juanita, Marina Marbán, and Deidre Batchelar. "HDR Prostate Brachytherapy." Seminars in Radiation Oncology 30, no. 1 (January 2020): 49–60. http://dx.doi.org/10.1016/j.semradonc.2019.08.003.
Full textStrom, Tobin Joel Crill, Alex Cruz, Nicholas Figura, Kushagra Shrinath, Kevin Nethers, Eric Albert Mellon, Daniel Celestino Fernandez, et al. "Health-related quality of life changes due to high-dose rate brachytherapy, low-dose rate brachytherapy, or intensity-modulated radiation therapy for prostate cancer." Journal of Clinical Oncology 34, no. 2_suppl (January 10, 2016): 72. http://dx.doi.org/10.1200/jco.2016.34.2_suppl.72.
Full textTyree, W. C., H. Cardenes, M. Randall, and L. Papiez. "High-dose-rate brachytherapy for vaginal cancer: Learning from treatment complications." International Journal of Gynecologic Cancer 12, no. 1 (January 2002): 27–31. http://dx.doi.org/10.1136/ijgc-00009577-200201000-00005.
Full textHatcher, Jeremy, Adam Shulman, Claire Dempsey, Betty Chang, Sameeksha Malhotra, Oluwadamilola Oladeru, Michael Tassoto, Peter Sandwall, Sonja Dieterich, and Benjamin Li. "Collaborative Model for International Telehealth: High Dose Rate Brachytherapy Training for Emerging Radiation Oncology Centers in Lower- and Middle-Income Countries." JCO Global Oncology 6, Supplement_1 (July 2020): 51–52. http://dx.doi.org/10.1200/go.20.47000.
Full textKabacińska, R., J. Jastrzembski, R. Makarewicz, and B. Drzewiecka. "Optimisation in HDR brachytherapy." Reports of Practical Oncology 2, no. 2 (January 1997): 44. http://dx.doi.org/10.1016/s1428-2267(97)70122-4.
Full textde la Torre, Marcela, Isabel Rodriguez, and Victor J. Bourel. "117 HDR endobronchial brachytherapy." Radiotherapy and Oncology 39 (May 1996): S30. http://dx.doi.org/10.1016/0167-8140(96)87922-9.
Full textScott, Aba Anoa, Joel Yarney, Verna Vanderpuye, Charles Akoto Aidoo, Mervin Agyeman, Samuel Ntiamoah Boateng, Evans Sasu, Kwabena Anarfi, and Tony Obeng-Mensah. "Outcomes of patients with cervical cancer treated with low- or high-dose rate brachytherapy after concurrent chemoradiation." International Journal of Gynecologic Cancer 31, no. 5 (February 8, 2021): 670–78. http://dx.doi.org/10.1136/ijgc-2020-002120.
Full textAdhikari, Kanchan P., Aarati Shah, Bibek Achraya, Ambuj Karn, and Sandhya Chapagain. "ACCEPTANCE TESTING, COMMISSIONING AND QUALITY ASSURANCE FOR A NUCLETRON 192IR HDR BRACHYTHERAPY AFTERLOADER AT NAMS, BIR HOSPITAL." Scientific World 12, no. 12 (October 6, 2015): 85–88. http://dx.doi.org/10.3126/sw.v12i12.13604.
Full textDissertations / Theses on the topic "HDR brachytherapy"
Holm, Åsa. "Mathematical Optimization of HDR Brachytherapy." Doctoral thesis, Linköpings universitet, Optimeringslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-99795.
Full textKolkman-Deurloo, Inger Karine Kirsten. "Intraoperative HDR brachytherapy: present and future." [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 2007. http://hdl.handle.net/1765/8621.
Full textAmoush, Ahmad A. "Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307105202.
Full textToye, Warren, and michelletoye@optusnet com au. "HDR Brachytherapy: Improved Methods of Implementation and Quality Assurance." RMIT University. Applied Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080528.091630.
Full textAldelaijan, Saad. "Reference dosimetry of HDR Ir-192 brachytherapy source using radiochromic film." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95205.
Full textUn protocole d'établir film radiochromique dosimétrie de référence en fonction de débit de dose élevé source Ir-192 curiethérapie été évalués et décrits. Une comparaison entre les courbes d'étalonnage créé dans l'eau et Solid WaterTM sont fournis. Solid WaterTM s'est révélée être une alternative viable à l'eau dans l'établissement de la courbe d'étalonnage pour les Ir-192 faisceau de rayonnement. Un facteur de correction de Monte Carlo a été calculé pour convertir la dose à l'eau en dose à Solid WaterTM et les méthodes expérimentales que nous avons réalisé d'accord avec les résultats de Monte Carlo où le ratio (DSW/DW)Ir-192 a été trouvé à 0.9808 ± 0.14% (1σ). EBT-2 modèle GAFCHROMICTM film a également été étudiée pour les propriétés d'absorption et jugé être un moins sensible que son prédécesseur (EBT-1) en termes de variation nette de l'absorbance, mais cela n'a pas d'incidence sur la valeur dosimétrique que ce film possède. Une méthode d'évaluation des doses d'erreur a été décrit pour le modèle EBT-2 film (et est applicable à d'autres types ainsi) qui permet d'établir les contraintes de temps d'erreur sur le post-irradiation temps de balayage, qui va encore donner une erreur de dose acceptable pour des applications cliniques, si le protocole emploie le plus court post-irradiation de numérisation temps est mis en uvre dans la clinique. Nous montrons que pour deux post-irradiation de numérisation fois de 30 minutes et 24 heures, la dose d'erreur de 1% peut être accordée si la fenêtre de temps de balayage est inférieure à ± 5 minutes et de ± 2 heures, respectivement. Performance de la EBT-2 modèle a également été évaluée dans l'eau et il a été conclu un protocole de correction proposé est nécessaire pour que les temps d'immersion supérieure à 2 heures. Cette correction a été testé avec la courbe de calibration créée à partir d'installation de l'eau et ont été jugés effic
Williams, Eric. "Dose Modification Factor Analysis of Multi-Lumen Brachytherapy Applicator with Monte Carlo Simulation." University of Toledo Health Science Campus / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=mco1352570600.
Full textShum, Tsz-hang, and 岑梓恆. "A high spatial and temporal resolutions quality assurance tool for checking the accuracy of HDR source dwell positions and times." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/193526.
Full textpublished_or_final_version
Diagnostic Radiology
Master
Master of Medical Sciences
Fonseca, Gabriel Paiva. "Modelagem pelo método de Monte Carlo do paciente e das complexidades dos tratamentos braquiterápicos com alta taxa de dose." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/85/85133/tde-06012016-155103/.
Full textBrachytherapy treatments are commonly performed using the American Association of Physicists in Medicine (AAPM) Task Group report TG-43U1 absorbed dose to water formalism, which neglects human tissue densities, material compositions, body interfaces, body shape and dose perturbations from applicators. The significance of these effects has been described by the AAPM Task Group report TG-186 in published guidelines towards the implementation of Treatment Planning Systems (TPS) which can take into account the above mentioned complexities. This departure from the water kernel based dose calculation approach requires relevant scientific efforts in several fields. This thesis aims to improve brachytherapy treatment planning accuracy following TG-186 recommendations and going beyond it. A software has been developed to integrate clinical treatment plans with Monte Carlo (MC) simulations; high fidelity CAD-Mesh geometry was employed to improve brachytherapy applicators modelling; different dose report quantities, Dw,m (dose to water in medium) and Dm,m (dose to medium in medium), were obtained for a head and neck case using small cavity theory (SCT) and large cavity theory (LCT); the dose component due to the source moving within the patient was evaluated for gynecological and prostate clinical cases using speed profiles from the literature. Moreover, source speed measurements were performed using a high speed camera. Dose calculations using MC showed overdosing around 5% within the target volume for a gynecological case comparing results obtained including tissue, air and applicator effects against a homogeneous water phantom. On the other hand, the same comparison showed underdosing around 5% when including tissue and air composition for an interstitial arm case. A hollow cylinder applicator was responsible for the overdosing observed for the gynecological case highlighting the importance of accurate applicator modelling. The evaluated CAD-Mesh applicators models included a Fletcher- Williamson shielded applicator and a deformable balloon used for accelerated partial breast irradiation. Results obtained were equivalent to ones obtained with conventional constructive solid geometry and may be convenient for complex applicators and/or when manufacturer CAD models are available. Differences between Dm,m and Dw,m (SCT or LCT) are up to 14% for bone in a evaluated head and neck case. The approach (SCT or LCT) leads to differences up to 28% for bone and 36% for teeth. Differences can also be significant due to the source movement since some speed profiles from literature show low source speeds or uniform accelerated movements. Considering the worst case scenario and without include any dwell time correction, the transit dose can reach 3% of the prescribed dose in a gynecological case with 4 catheters and up to 11.1% when comparing the average prostate dose for a case with 16 catheters. The transit dose for a high speed (measured with a video camera) source is not uniformly distributed leading to over and underdosing, which is within 1.4% for commonly prescribed doses (310 Gy). The main subjects evaluated in this thesis are relevant for brachytherapy treatment planning and can improve treatment accuracy. Many of the issues described in here can be assessed with the software, coupled with a MC code, developed in this work.
Hliziyo, Freedom. "Dose intercomparisons between computer planning, in-vivo and phantom measurements for Iridium-192 HDR Brachytherapy." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/2800.
Full textMacey, Nathaniel J. "Evaluation of a MapCHECK2TM Diode Array for High Dose Rate Brachytherapy Quality Assurance." University of Toledo Health Science Campus / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=mco1430301747.
Full textBooks on the topic "HDR brachytherapy"
Brachytherapy Meeting (Remote Afterloading: State of the art) (Dearborn, Michigan, USA 1989). Brachytherapy HDR and LDR: Proceedings Brachytherapy Meeting Remote Afterloading: State of the art, 4-6 May 1989, Dearborn, Michigan, USA. Leersum: Nucletron International BV, 1990.
Find full textBrachytherapy HDR and LDR. Nucletron, 1990.
Find full textHoskin, Peter, and György Kovács. Interstitial Prostate Brachytherapy: LDR-PDR-HDR. Springer, 2013.
Find full textHoskin, Peter, and György Kovács. Interstitial Prostate Brachytherapy: LDR-PDR-HDR. Springer, 2013.
Find full textHoskin, Peter, and György Kovács. Interstitial Prostate Brachytherapy: LDR-PDR-HDR. Springer, 2015.
Find full textBook chapters on the topic "HDR brachytherapy"
Gutiérrez, Cristina, Andrea Slocker, Dina Najjari, Ignasi Modolell, Ferran Ferrer, Anna Boladeras, Jose Francisco Suárez, and Ferran Guedea. "Single-Fraction HDR Boost." In Brachytherapy, 199–206. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0490-3_14.
Full textSiebert, Frank-André. "HDR Planning." In Interstitial Prostate Brachytherapy, 149–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36499-0_11.
Full textHoskin, Peter. "HDR Technique." In Interstitial Prostate Brachytherapy, 103–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36499-0_7.
Full textNakano, Takashi, and Masaru Wakatsuki. "Moving on from LDR to HDR." In Brachytherapy, 37–44. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0490-3_4.
Full textHoskin, Peter. "HDR Versus LDR Seeds." In Interstitial Prostate Brachytherapy, 179–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36499-0_14.
Full textKovács, György. "Patient Selection and Recommendations: HDR." In Interstitial Prostate Brachytherapy, 79–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36499-0_5.
Full textKovács, György. "Results of HDR Prostate Brachytherapy Treatments." In Interstitial Prostate Brachytherapy, 197–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36499-0_16.
Full textRübe, Claudia E., Bernadine R. Donahue, Jay S. Cooper, Caspian Oliai, Yan Yu, Laura Doyle, Rene Rubin, et al. "High-Dose Rate (HDR) Brachytherapy." In Encyclopedia of Radiation Oncology, 313. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_429.
Full textMose, Stephan, Stephan Mose, Brandon J. Fisher, Iris Rusu, Charlie Ma, Lu Wang, Larry C. Daugherty, et al. "Brachytherapy: High Dose Rate (HDR) Implants." In Encyclopedia of Radiation Oncology, 46–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_143.
Full textXiao, Ying, Jay E. Reiff, Timothy Holmes, Timothy Holmes, Hebert Alberto Vargas, Oguz Akin, Hedvig Hricak, et al. "Interstitial High Dose Rate (HDR) Brachytherapy." In Encyclopedia of Radiation Oncology, 385–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_317.
Full textConference papers on the topic "HDR brachytherapy"
Martı́nez-Dávalos, A. "Monte Carlo dosimetry in HDR brachytherapy." In The fourth mexican symposium on medical physics. AIP, 2000. http://dx.doi.org/10.1063/1.1328950.
Full textYang, Xiaofeng, Peter Rossi, Tomi Ogunleye, Ashesh B. Jani, Walter J. Curran, and Tian Liu. "A new CT prostate segmentation for CT-based HDR brachytherapy." In SPIE Medical Imaging, edited by Ziv R. Yaniv and David R. Holmes. SPIE, 2014. http://dx.doi.org/10.1117/12.2043695.
Full textReyes-Rivera, E., M. Sosa, U. Reyes, E. Monzón, José de Jesús Bernal-Alvarado, T. Córdova, and A. Gil-Villegas. "Dosimetric study of surface applicators of HDR brachytherapy GammaMed Plus equipment." In XIII MEXICAN SYMPOSIUM ON MEDICAL PHYSICS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4901388.
Full textLei, Yang, Yabo Fu, Tonghe Wang, Walter J. Curran, Tian Liu, Pretesh Patel, and Xiaofeng Yang. "Prostate dose prediction in HDR Brachytherapy using unsupervised multi-atlas fusion." In Image Processing, edited by Bennett A. Landman and Ivana Išgum. SPIE, 2021. http://dx.doi.org/10.1117/12.2580979.
Full textLiang, Fan, Bryan Traughber, Raymond Musiz, Rodney Ellis, and Tarun K. Podder. "Reconstruction of Brachytherapy Catheters and Needles Using EM Sensor-Based Navigation System." In 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3536.
Full textMolokov, A. A., E. A. Vanina, and S. S. Tseluyko. "Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer." In PHYSICS OF CANCER: INTERDISCIPLINARY PROBLEMS AND CLINICAL APPLICATIONS: Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications (PC IPCA’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5001629.
Full textDai, Xianjin, Yang Lei, Yupei Zhang, Tonghe Wang, Walter Curran, Pretesh Patel, Tian Liu, and Xiaofeng Yang. "Deep learning-based multi-catheter reconstruction for MRI-guided HDR prostate brachytherapy." In Image-Guided Procedures, Robotic Interventions, and Modeling, edited by Cristian A. Linte and Jeffrey H. Siewerdsen. SPIE, 2021. http://dx.doi.org/10.1117/12.2581123.
Full textBatra, Ankit. "Clinical comparison of toxicity pattern of two linear quadratic model-baesd fractionation schemes of high-dose-rate intracavitary brachytherapy for cervical cancer." In 16th Annual International Conference RGCON. Thieme Medical and Scientific Publishers Private Ltd., 2016. http://dx.doi.org/10.1055/s-0039-1685255.
Full textJreije, Mima Samir, Zeina Al Kattar El Balaa, Hanna El Balaa, Jamal Charara, Wael Abdallah, Mirvana Hilal, Jean-Noel Foulquier, and Emmanuel Touboul. "HDR brachytherapy, risk analysis and dose evaluation for operators in case of source blockage." In 2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME). IEEE, 2017. http://dx.doi.org/10.1109/icabme.2017.8167523.
Full text"Brachyview: An in-body imaging system for real-time QA in HDR prostate brachytherapy." In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). IEEE, 2013. http://dx.doi.org/10.1109/nssmic.2013.6829797.
Full textReports on the topic "HDR brachytherapy"
Davda, Reena, and Amani Chowdhury. HDR brachytherapy for prostate cancer. BJUI Knowledge, May 2021. http://dx.doi.org/10.18591/bjuik.0686.
Full text