Academic literature on the topic 'HAZY IMAGE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'HAZY IMAGE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "HAZY IMAGE"
Wei, Jianchong, Yi Wu, Liang Chen, Kunping Yang, and Renbao Lian. "Zero-Shot Remote Sensing Image Dehazing Based on a Re-Degradation Haze Imaging Model." Remote Sensing 14, no. 22 (November 13, 2022): 5737. http://dx.doi.org/10.3390/rs14225737.
Full textGu, Ziqi, Zongqian Zhan, Qiangqiang Yuan, and Li Yan. "Single Remote Sensing Image Dehazing Using a Prior-Based Dense Attentive Network." Remote Sensing 11, no. 24 (December 13, 2019): 3008. http://dx.doi.org/10.3390/rs11243008.
Full textWei, Jianchong, Yan Cao, Kunping Yang, Liang Chen, and Yi Wu. "Self-Supervised Remote Sensing Image Dehazing Network Based on Zero-Shot Learning." Remote Sensing 15, no. 11 (May 24, 2023): 2732. http://dx.doi.org/10.3390/rs15112732.
Full textSun, Ziyi, Yunfeng Zhang, Fangxun Bao, Ping Wang, Xunxiang Yao, and Caiming Zhang. "SADnet: Semi-supervised Single Image Dehazing Method Based on an Attention Mechanism." ACM Transactions on Multimedia Computing, Communications, and Applications 18, no. 2 (May 31, 2022): 1–23. http://dx.doi.org/10.1145/3478457.
Full textRoy, Sangita, and Sheli Sinha Chaudhuri. "Fast Single Image Haze Removal Scheme Using Self-Adjusting." International Journal of Virtual and Augmented Reality 3, no. 1 (January 2019): 42–57. http://dx.doi.org/10.4018/ijvar.2019010103.
Full textSu, Chang, Wensheng Wang, Xingxiang Zhang, and Longxu Jin. "Dehazing with Offset Correction and a Weighted Residual Map." Electronics 9, no. 9 (September 1, 2020): 1419. http://dx.doi.org/10.3390/electronics9091419.
Full textBhadouria, Aashi Singh, and Khushboo Agarwal. "An Effective Framework for Enhancement of Hazed and Low-Illuminated Images." International Journal for Research in Applied Science and Engineering Technology 10, no. 2 (February 28, 2022): 791–800. http://dx.doi.org/10.22214/ijraset.2022.40382.
Full textHashim, Ahmed, Hazim Daway, and Hana kareem. "No reference Image Quality Measure for Hazy Images." International Journal of Intelligent Engineering and Systems 13, no. 6 (December 31, 2020): 460–71. http://dx.doi.org/10.22266/ijies2020.1231.41.
Full textKIM, Geun-Jun, Seungmin LEE, and Bongsoon KANG. "Single Image Haze Removal Using Hazy Particle Maps." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E101.A, no. 11 (November 1, 2018): 1999–2002. http://dx.doi.org/10.1587/transfun.e101.a.1999.
Full textWang, Xuemei, Mingye Ju, and Dengyin Zhang. "Automatic hazy image enhancement via haze distribution estimation." Advances in Mechanical Engineering 10, no. 4 (April 2018): 168781401876948. http://dx.doi.org/10.1177/1687814018769485.
Full textDissertations / Theses on the topic "HAZY IMAGE"
Zhao, Nilu. "Haze measurements through image analysis." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92216.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 28).
In the recent years, Singapore has been affected by haze caused by slash-and-bum fires in Indonesia. Currently, haze concentration is measured by filtering air samples at various stations in Singapore. In this thesis, optical approaches to haze measurements are explored. Images of haze were taken in fifteen minute intervals in June, 2013. These images were analyzed to obtain image contrast, and power spectral density functions. The power spectral density functions were characterized by maximum power, full width at half maximum, second and third moments, and exponential fit. Out of these methods, contrast and exponential fit results showed trend to the Pollutant Standards Index (PSI) values provided by the National Environmental Agency (NEA). Further studies on mapping contrast to PSI values are recommended.
by Nilu Zhao.
S.B.
Basinger, John A. "Grain Boundary Character Distribution in the HAZ of Friction Stir-Processed Al 7075 T7." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1046.pdf.
Full textArigela, Sai Babu. "A Self Tunable Transformation Function for Enhancement of Images Captured in Complex Lighting and Hazy Weather Conditions." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1449185835.
Full textPettersson, Niklas. "GPU-Accelerated Real-Time Surveillance De-Weathering." Thesis, Linköpings universitet, Datorseende, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97401.
Full textFrancis, John W. "Pixel-by pixel reduction of atmospheric haze effects in multispectral digital imagery of water /." Online version of thesis, 1989. http://hdl.handle.net/1850/11359.
Full textAbbott, Joshua E. "Interactive Depth-Aware Effects for Stereo Image Editing." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3712.
Full textToro, León Paulina Fernanda. "Preferencias por imagen sialográfica adquirida con radiografía panorámica digital y con tomografía computarizada de haz cónico." Tesis, Universidad de Chile, 2013. http://www.repositorio.uchile.cl/handle/2250/117298.
Full textAutor no autoriza el acceso a texto completo de su tesis en el Portal de Tesis Electrónicas
ntroducción: La sialografía mediante Tomografía Computarizada de Haz Cónico (TCHC) ha presentado un interés creciente de la comunidad internacional de especialistas radiólogos en los últimos cinco años. En este contexto se pretendió determinar la preferencia de un grupo de especialistas en Radiología Oral y Maxilofacial entre la imagen sialográfica obtenida mediante Radiografía Panorámica Digital (RPD) y aquella obtenida mediante TCHC. Material y Método: Se realizó un estudio descriptivo de corte transversal. La muestra se compuso de diez especialistas en Radiología Oral y Maxilofacial, quienes definieron su preferencia, mediante una encuesta, por la imagen sialográfica adquirida mediante RPD o mediante TCHC en cuanto a calidad de imagen, identificación de estructuras anatómicas, y reconocimiento de patología glandular. Resultados: Las observaciones mostraron que la sialografía mediante RPD fue la opción preferida respecto a nitidez de imagen, mientras que la sialografía con TCHC fue preferida para evaluar el lóbulo profundo de la glándula parótida. Ambos exámenes fueron igualmente preferidos para visualizar el conducto excretor parotídeo y los conductillos de segundo orden, y no existió marcada preferencia entre uno u otro examen para el reconocimiento de patología glandular. Conclusión: Ambos exámenes presentan ventajas particulares a la hora de evaluar patología glandular mediante sialografía. Se sugiere investigar, en futuros estudios, las razones detrás de estas preferencias, que podrían darnos pistas de la potencialidad de uso de la Sialografía combinada con TCHC en nuestro país.
Clark, Tad Dee. "An Analysis of Microstructure and Corrosion Resistance in Underwater Friction Stir Welded 304L Stainless Steel." Diss., BYU ScholarsArchive, 2005. http://contentdm.lib.byu.edu/ETD/image/etd872.pdf.
Full textZepeda, Barrios Alejandro. "Evaluación de la Evolución Temporal en Tumores Pulmonares Tratados con Radioterapia Estereotáctica Corporal a partir de Rasgos Extraídos de las Imágenes de Tomografía Computarizada con Haz Cónico." Tesis de maestría, Universidad Autónoma del Estado de México, 2021. http://hdl.handle.net/20.500.11799/111960.
Full textEn los tratamientos de radioterapia estereotáctica corporal (SBRT) es cada vez más común el uso de sistemas de tomografía computarizada por haz cónico (CBCT) montados en los aceleradores lineales, para la adquisición de imágenes tomográficas que son utilizadas para la verificación y corrección -si es el caso- del posicionamiento del paciente durante el tratamiento. En radioterapia es de importancia mayúscula asegurar que la posición del paciente sea la deseada y en SBRT esto adquiere aún mayor importancia ya que la dosis absorbida utilizada en estos procedimientos es mayor que en los casos de radioterapia de fraccionamientos convencionales (típicamente entre 10 Gy y 20 Gy por sesión de tratamiento, mientras que en otros tratamientos puede estar entre 2 Gy y 3 Gy). En el curso de SBRT, se obtiene un conjunto de imágenes de CBCT por cada sesión de tratamiento, que se compara con la tomografía de planeación para verificar que la colocación del paciente sea la indicada, regularmente las series de CBCT ya no son utilizadas para otro fin. Sin embargo, hay estudios que han demostrado que estas imágenes pueden ser utilizadas para obtener información cuantitativa de los efectos del tratamiento durante su administración, particularmente cuando se otorga en lesiones pulmonares usando SBRT. En este trabajo se buscó utilizar las imágenes de pacientes, obtenidas mediante CBCT, durante el curso de un tratamiento de SBRT de pulmón (específicamente al inicio, en una etapa intermedia y al final), para obtener rasgos cuantitativos que puedan brindar información acerca del tejido tumoral, ya sea debido a cambios en su morfología, en su intensidad de pixeles o en su textura, asociados a los efectos del tratamiento, destacando que esta evaluación se llevó a cabo solamente durante el tratamiento.. Los rasgos cuantitativos utilizados en el estudio se seleccionaron basándose en su coeficiente de variación, que nos proporciona información de su confiabilidad. A partir de las imágenes de CBCT, una vez seleccionados los rasgos, se estudió su evolución temporal del tejido tumoral a lo largo del tratamiento.
Ninguno
Berny, Myriam. "High-temperature tests for ceramic matrix composites : from full-field regularised measurements to thermomechanical parameter identification." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST028.
Full textThe aim of this thesis is firstly to develop procedures of full-field measurements with Digital Image Correlation (DIC), coupled to thermal measurements, suitable for high-temperature experiments on CMC specimens under thermal conditions representative of an engine environment. Secondly, a methodology is proposed for identifying the thermal and thermomechanical properties of the material, quantifying at each stage of the chain the uncertainties associated with the quantities of interest and strategies to reduce them. It was necessary to deal with the challenges due to high temperatures, especially for DIC, either in terms of acquisition (saturation, loss of contrast) or measurement (artefacts due to the mirage effect, also called "heat haze effect").This work has led to the development of a calibration protocol for a multi-instrumented bench using either an in-situ calibration target or by self-calibration using the specimen itself and its environment. 3D surface displacement measurements (with global stereocorrelation approaches) and thermal measurements have made it possible to highlight the heat haze effect phenomenon. Spatiotemporal regularisation strategies of the measured displacements were proposed and allowed satisfactory results to be obtained (significant reduction of measurement uncertainties). Similarly, model reduction approaches (POD) have been used to process thermal data and quantify the uncertainties associated with convective phenomena. Finally, a weighted Finite-Element Model Updating (FEMU) algorithm on both temperature and displacement data was implemented in order to identify a set of thermal and thermomechanical properties, taking into account the sensitivity of each parameter with regard to measurement uncertainties
Books on the topic "HAZY IMAGE"
Sin tetas no hay paraíso. Madrid: Editorial el Tercer Nombre, 2006.
Find full textSin tetas no hay paraíso. Bogotá, Colombia: Quintero, 2005.
Find full textMoreno, Gustavo Bolívar. Sin tetas no hay paraíso. 3rd ed. Bogotá, Colombia: Quintero Editores, 2005.
Find full textUbaldo de Casanova y Todolí. Hay algo que no funciona: La imagen de un mundo ajeno a la realidad. Salamanca: Amarú Ediciones, 2011.
Find full textEsponda, Juan González. "Ya no hay tributo, ni rey": De profetas y mesías en la insurrección de 1712 en la provincia de Chiapa. San Cristóbal de Las Casas, Chiapas: Secretaría de Pueblos y Culturas Indígenas, 2013.
Find full textAn analysis of Neptune's stratospheric haze using high-phase-angle voyager images. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textLincoln's Boys: John Hay, John Nicolay, and the War for Lincoln's Image. Penguin Publishing Group, 2014.
Find full textLincoln's boys: John Hay, John Nicolay, and the war for Lincoln's image. 2014.
Find full textDave, Strain, ed. Black Hills hay camp: Images and perspectives of early Rapid City. Rapid City, S.D: Dakota West Books, 1989.
Find full textBlack Hills hay camp: Images and perspectives of early Rapid City. Fenske Print, 1989.
Find full textBook chapters on the topic "HAZY IMAGE"
El Khoury, Jessica, Jean-Baptiste Thomas, and Alamin Mansouri. "A Spectral Hazy Image Database." In Lecture Notes in Computer Science, 44–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51935-3_5.
Full textZhao, Lingyun, Miles Hansard, and Andrea Cavallaro. "Pop-up Modelling of Hazy Scenes." In Image Analysis and Processing — ICIAP 2015, 306–18. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23231-7_28.
Full textKoranga, Pushpa, Sumitra Singar, and Sandeep Gupta. "Single Image Dehazing Techniques for Different Types of Hazy Images." In Applied Computational Technologies, 383–94. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2719-5_36.
Full textKumar, Balla Pavan, Arvind Kumar, and Rajoo Pandey. "Fast Adaptive Image Dehazing and Details Enhancement of Hazy Images." In Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences, 215–23. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8742-7_18.
Full textAgrawal, Subhash Chand, and Anand Singh Jalal. "Visibility Improvement of Hazy Image Using Fusion of Multiple Exposure Images." In Smart Innovations in Communication and Computational Sciences, 321–32. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5345-5_29.
Full textSharma, Divya, Shilpa Sharma, and Vaibhav Bhatnagar. "Foggy–Hazy License Plate Image Data Collection and Feature Extraction." In Proceedings of International Conference on Data Analytics and Insights, ICDAI 2023, 233–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3878-0_20.
Full textSom, S., P. K. Gayen, S. Bakshi, and S. Mondal. "Vehicle License Plate Image Preprocessing Strategy Under Fog/Hazy Weather Conditions." In Studies in Autonomic, Data-driven and Industrial Computing, 277–82. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7305-4_27.
Full textAgrawal, S. C. "Improving visibility of hazy images using image enhancement-based approaches through the fusion of multiple exposure images." In Smart Computing, 204–13. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003167488-26.
Full textZhang, Zhengxi, Liang Zhao, Yunan Liu, Shanshan Zhang, and Jian Yang. "Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes." In Computer Vision – ACCV 2020, 119–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69538-5_8.
Full textSingh, Satbir, Asifa Mehraj Baba, Md Imtiyaz Anwar, Ayaz Hussain Moon, and Arun Khosla. "Visibility Improvement in Hazy Conditions via a Deep Learning Based Image Fusion Approach." In Communications in Computer and Information Science, 410–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81462-5_37.
Full textConference papers on the topic "HAZY IMAGE"
Cheng, De, Yan Li, Dingwen Zhang, Nannan Wang, Xinbo Gao, and Jiande Sun. "Robust Single Image Dehazing Based on Consistent and Contrast-Assisted Reconstruction." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/119.
Full textLiang, Yudong, Bin Wang, Wangmeng Zuo, Jiaying Liu, and Wenqi Ren. "Self-supervised Learning and Adaptation for Single Image Dehazing." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/159.
Full textAncuti, Codruta O., Cosmin Ancuti, and Radu Timofte. "NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00230.
Full textGibson, Kristofor B., and Truong Q. Nguyen. "Hazy image modeling using color ellipsoids." In 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6115830.
Full textHuang, Shan, Hao Chang, Wei Wu, and Zhu Li. "DPGIR: SIFT Recovery from a Hazy Image." In 2022 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2022. http://dx.doi.org/10.1109/icme52920.2022.9859859.
Full textGui, Jie, Xiaofeng Cong, Yuan Cao, Wenqi Ren, Jun Zhang, Jing Zhang, and Dacheng Tao. "A Comprehensive Survey on Image Dehazing Based on Deep Learning." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/604.
Full textLi, Binghan, Yindong Hua, and Mi Lu. "Object Detection in Hazy Environment Enhanced by Preprocessing Image Dataset with Synthetic Haze." In 2020 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2020. http://dx.doi.org/10.1109/csci51800.2020.00298.
Full textLi, Dajian, Wei Jia, Wei Sun, Penghui Li, Chunyu Zhao, and Xumeng Chen. "Image Enhancement Focusing on Hazy and Non-uniform Illumination Images." In 2015 International Conference on Electronic Science and Automation Control. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/esac-15.2015.50.
Full textYuan, Zhiyu, Yuhang Li, and Jianfei Yang. "Improving Hazy Image Recognition by Unsupervised Domain Adaptation." In 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2022. http://dx.doi.org/10.1109/icarcv57592.2022.10004270.
Full textChen, Kai, Juping Liu, Chuheng Chen, Zhe Wang, and Mingye Ju. "Contrast Restoration of Hazy Image in HSV Space." In 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2021. http://dx.doi.org/10.1109/wcsp52459.2021.9613421.
Full textReports on the topic "HAZY IMAGE"
Du, Y., B. Guindon, and J. Cihlar. Haze detection and removal in high resolution satellite image with wavelet analysis. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/219726.
Full text