To see the other types of publications on this topic, follow the link: Hawkesbury region, N.S.W., ecology.

Journal articles on the topic 'Hawkesbury region, N.S.W., ecology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 26 journal articles for your research on the topic 'Hawkesbury region, N.S.W., ecology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chancey, S. T., D. W. Wood, and L. S. Pierson. "Two-Component Transcriptional Regulation of N -Acyl-Homoserine Lactone Production inPseudomonas aureofaciens." Applied and Environmental Microbiology 65, no. 6 (June 1, 1999): 2294–99. http://dx.doi.org/10.1128/aem.65.6.2294-2299.1999.

Full text
Abstract:
ABSTRACT Production of phenazine antibiotics by the biological control bacterium Pseudomonas aureofaciens 30-84 is regulated in part by the PhzI/PhzR N-acyl-homoserine lactone (AHL) response system (L. S. Pierson III, V. D. Keppenne, and D. W. Wood, J. Bacteriol. 176:3966–3974, 1994; D. W. Wood and L. S. Pierson III, Gene 168:49–53, 1996). Two mutants, 30-84W and 30-84.A2, were isolated and were found to be deficient in the production of phenazine, protease, hydrogen cyanide (HCN), and the AHL signal N-hexanoyl-homoserine lactone. These mutants were not complemented by phzI, phzR, or the phenazine biosynthetic genes (phzFABCD) (L. S. Pierson III, T. Gaffney, S. Lam, and F. Gong, FEMS Microbiol. Lett. 134:299–307, 1995). A 2.2-kb region of the 30-84 chromosome which fully restored production of all of these compounds in strain 30-84W was identified. Nucleotide sequence analysis of this region revealed a single open reading frame encoding a predicted 213-amino-acid protein which is very similar to the global response regulator GacA. Strain 30-84.A2 was not complemented by gacA or any cosmid from a genomic library of strain 30-84 but was complemented bygacS (formerly lemA) homologs fromPseudomonas fluorescens Pf-5 (N. Corbel and J. E. Loper, J. Bacteriol. 177:6230–6236, 1995) and Pseudomonas syringae pv. syringae B728a (E. M. Hrabek and D. K. Willis, J. Bacteriol. 174:3011–3020, 1992). Transcription ofphzR was not altered in either mutant; however,phzI transcription was eliminated in strains 30-84W and 30-84.A2. These results indicated that the GacS/GacA two-component signal transduction system of P. aureofaciens 30-84 controls the production of AHL required for phenazine production by mediating the transcription of phzI. Addition of exogenous AHL did not complement either mutant for phenazine production, indicating that the GacS/GacA global regulatory system controls phenazine production at multiple levels. Our results reveal for the first time a mechanism by which a two-component regulatory system and an AHL-mediated regulatory system interact.
APA, Harvard, Vancouver, ISO, and other styles
2

Ferriss, Bridget E., and Timothy E. Essington. "Regional patterns in mercury and selenium concentrations of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) in the Pacific Ocean." Canadian Journal of Fisheries and Aquatic Sciences 68, no. 12 (December 2011): 2046–56. http://dx.doi.org/10.1139/f2011-120.

Full text
Abstract:
Mercury (Hg) concentrations in high trophic level fish, such as bigeye tuna ( Thunnus obesus ) and yellowfin tuna ( Thunnus albacares ), can often exceed consumption advisories. Here we sampled 444 yellowfin and bigeye tuna to determine whether tuna Hg concentration varies regionally in the eastern and central Pacific Ocean and whether this variation corresponds to environmental characteristics that promote the bioavailability of Hg. Of the five regions sampled, we found significantly higher Hg concentrations in the eastern equatorial region (5°S–5°N; 110°W–120°W) for both species. Hg concentrations in this region were elevated by 0.22 and 0.17 µg·g–1for yellowfin and bigeye tuna, respectively, compared with Hg concentrations in the other regions. Tuna selenium concentrations, which may alter the toxicity of Hg, did not vary by region. Oceanographic data indicated that the eastern equatorial region had elevated chlorophyll a concentrations and shallow minimum oxygen depths, both of which promote Hg methylation. These findings suggest that methylation-promoting mechanisms may translate into regional variation in the Hg concentrations of highly mobile, high trophic level fish.
APA, Harvard, Vancouver, ISO, and other styles
3

Borobia, Mônica, Salvatore Siciliano, Liliane Lodi, and Wyb Hoek. "Distribution of the South American dolphin Sotalia fluviatilis." Canadian Journal of Zoology 69, no. 4 (April 1, 1991): 1025–39. http://dx.doi.org/10.1139/z91-148.

Full text
Abstract:
The marine form of the South American dolphin Sotalia fluviatilis has an extensive and possibly continuous distribution, from the Florianópolis region, Brazil (27°35′S, 48°34′W), north to Panama (~9°22′N, 79°54′W). The high number of records from 25–20°S is due to the presence of many observers in those latitudes. The freshwater form of this species inhabits the Amazon and Orinoco drainages. It is commonly seen in the Amazon, and has been found as far inland as southern Peru. The southern limit of the range of the marine form of Sotalia is associated with the confluence zone of the Brazil and Falkland currents, suggesting that low sea-surface temperature is a limiting factor, whereas in fresh water the distribution of Amazonian Sotalia seems more closely related to the movements and concentrated occurrence of prey.
APA, Harvard, Vancouver, ISO, and other styles
4

Gibbs, CF, GH Arnott, AR Longmore, and JW Marchant. "Nutrient and plankton distribution near a shelf break front in the region of the Bass Strait cascade." Marine and Freshwater Research 42, no. 2 (1991): 201. http://dx.doi.org/10.1071/mf9910201.

Full text
Abstract:
Nutrient enrichment of surface water to the east of a shelf break front at the eastern end of Bass Strait occurs in winter. This area of enrichment is more than 100 nautical miles (E-W) by 150 nm (N-S). From east of Banks Strait (40� 45'S,148�E), some of the nutrient-rich water is carried northwards with the northward flow of Bass Strait water which later forms the well-known 'cascade' below the warmer waters of the Tasman Sea. In September 1984, the chlorophyll a concentration increased along the line of this northward flow, producing a maximum off the Victorian coast near where the cascade occurs. In contrast to nutrient and chlorophyll a distributions, zooplankton biomass (dry weight) was higher in the shallow water of Bass Strait than over the continental slope. This suggests that the plankton growth observed in shallow Bass Strait waters in late winter had ceased by September, but was continuing to the north-east and over the slope in waters with a shallow mixed depth. We propose that the northward flow of water along the shelf break maintains plankton in a nutrient-rich environment, so that they continue to grow until they are carried below the photic zone by the cascade.
APA, Harvard, Vancouver, ISO, and other styles
5

Farías, L., L. Florez-Leiva, V. Besoain, and C. Fernández. "Dissolved greenhouse gases (nitrous oxide and methane) associated with the natural iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean." Biogeosciences Discussions 11, no. 8 (August 20, 2014): 12531–69. http://dx.doi.org/10.5194/bgd-11-12531-2014.

Full text
Abstract:
Abstract. The concentrations of greenhouse gases (GHGs) like nitrous oxide (N2O) and methane (CH4) were measured in the Kerguelen Plateau Region (KPR), an area with annual microalgal bloom caused by natural Fe fertilization, which may stimulate microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Two transects were sampled along and across the KRP, the north–south (N–S) transect (46–51° S, 72° E meridian) and the west–east (W–E) transect (66–75° E, 48.3° S latitude), both associated with the presence of a plateau, polar fronts and other mesoscale features. The W–E transect had N2O levels ranging from equilibrium (105%) to light supersaturation (120%) with respect to the atmosphere. CH4 levels fluctuated dramatically, with intense supersaturations (120–970%) in areas close to the coastal waters of Kerguelen Island and in the polar front (PF). There, Fe and nutrient fertilization seem to promote high total chlorophyll a (TChl a) levels. The distribution of both gases was more homogenous in the N–S transect, but CH4 peaked at southeastern stations of the KPR (A3 stations), where phytoplankton bloom was observed. Both gases responded significantly to the patchy distribution of particulate matter as Chl a, stimulated by Fe supply by complex mesoscale circulation. While CH4 appears to be produced mainly at the pycnoclines, N2O seems to be consumed superficially. Air–sea fluxes for N2O (from −10.5 to 8.65, mean 1.71 μmol m−2d−1), and for CH4 (from 0.32 to 38.1, mean 10.07 μmol m−2d−1) reflected sink and source behavior for N2O and source behavior for CH4, with considerable variability associated with a highly fluctuating wind regime and, in the case of CH4, due to its high superficial levels that had not been reported before in the Southern Ocean and may be caused by an intense microbial CH4 cycling.
APA, Harvard, Vancouver, ISO, and other styles
6

Manning, J. C., and P. Goldblatt. "New synonyms and a new name in Asteraceae: Senecioneae from the southern African winter rainfall region." Bothalia 40, no. 1 (July 22, 2010): 37–46. http://dx.doi.org/10.4102/abc.v40i1.179.

Full text
Abstract:
A review of the genera Othonna and Senecio undertaken for the forthcoming Greater Cape plants 2: Namaqualand-southern Namib and western Karoo (Manning in prep.) led to a re-examination of the taxonomic status of several species. This was facilitated by the recent availability of high-resolution digital images on the Aluka website (www.aluka.org) of the Drege isotypes in the Paris Herbarium that formed the basis of many species described by De Candolle in his Prodromus systematis naturalis regni vegetabilis. These images made it possible to identify several names whose application had remained uncertain until now. Each case is briefly discussed, with citation of additional relevant herbarium specimens. The following species are reduced to synonomy: O. incisa Harv. is included in O. rosea Harv.; O. spektakelensis Compton and O. zeyheri Sond. ex Harv. are included in O. retrorsa DC.; S. maydae Merxm. is included in S. albopunctatus Bolus, which is now considered to include forms with radiate and discoid capitula; S. cakilefolius DC. is included in O. arenarius Thunb.; S. pearsonii Hutch, is included in O. aspertdus DC.; S. parvifolius DC. is included in S. carroensis DC.; S. eriobasis DC. is included in S. erosus L.f.; and S. lobelioides DC. is included in S. flavus (Decne.) Sch.Bip. The name S. panduratus (Thunb.) Less, is identified as a synonym of S. erosus L.f. and plants that are currently know n under this name should be called S. robertiifolius DC. The confusion in the application o f the names O. perfoliata (L.f.) Jacq. and O. filicaulis Jacq. is examined. O. perfoliata is lecto- typified against a specimen in the Linnaean Herbarium (LINN) w ith radiate capitula. The name O. filicaulis correctly applies to a radiate species and is treated as a synonym of O. perfoliata. The vegetatively similar taxon with disciform capitula that is currently known as O. filicaulis should be known as () undulosa (DC.) J.C.Manning Goldblatt, comb. nov. The new name O. daucifolia J.C.Manning Goldblatt is provided to replace the later homonym O. abrotanifolia (Harv.) Druce.
APA, Harvard, Vancouver, ISO, and other styles
7

PECK, STEWART B., and JOYCE COOK. "Systematics, distributions and bionomics of the Catopocerini (eyeless soil fungivore beetles) of North America (Coleoptera: Leiodidae: Catopocerinae)." Zootaxa 3077, no. 1 (October 28, 2011): 1. http://dx.doi.org/10.11646/zootaxa.3077.1.1.

Full text
Abstract:
This paper is a review and revision of the tribe Catopocerini (Coleoptera: Leoididae: Catopocerinae) of North America. It covers the following genera: Catopocerus Motschulsky, 1870 with five species east of the Mississippi River and the resurrected genus Pinodytes Horn, 1880 with 42 species in North America west of the Mississippi River. All species in the tribe are eyeless and wingless inhabitants of forest soil and litter. Larvae and adults probably feed on subterranean fungi. Pinodytes Horn is resurrected to valid generic status. A neotype is assigned for Catopocerus politus Motschulsky. Lectotypes are designated for Catops cryptophagoides (Mannerheim, 1852) (which is transferred to Pinodytes), and Pinodytes pusio Horn, 1892. The following new synonym is recognized: Catopocerus ulkei Brown, 1933 = Catopocerus politus Motschulsky, 1870. The 33 new species and their distributions are as follows: Pinodytes angulatus (NW Oregon, USA), P. borealis (central Alaska, USA), P. chandleri (N California, USA), P. colorado (Colorado, USA), P. constrictus (S California, USA), P. contortus (E California, USA), P. delnorte (NW California, USA), P. eldorado (E California, USA), P. fresno (central California, USA), P. garibaldi (NW Oregon, USA), P. gibbosus (S California, USA), P. haidagwaii (Haida Gwaii (formerly Queen Charlotte) Islands, British Columbia, Canada), P. humboldtensis (NW California, USA), P. idaho (NW Idaho, USA), P. isabella (N Idaho, USA), P. klamathensis (SW Oregon and NW California, USA), P. losangeles (S California, USA), P. marinensis (W California, USA), P. minutus (central California, USA), P. monterey ( SW California, USA), P. newtoni (Ozarks region to E Texas, USA), P. orca (SW Oregon, USA), P. parvus (NW California, USA), P. punctatus (W Idaho and E Washington, USA), P. sanjacinto (S California, USA), P. sequoia ( S central California, USA), P. setosus ( SW Oregon and NW California, USA), P. shasta (N California, USA), P. shoshone (N Idaho, USA), P. sinuatus (SW Oregon, USA), P. spinus (N central California, USA), P. tehama (N California, USA), and P. tuolumne (E central California, USA). The following new combinations are established: Pinodytes capizzii (Hatch, 1957), ex Catopocerus; P. cryptophagoides (Mannerheim, 1852), ex Catopocerus; P. imbricatus (Hatch, 1957), ex Catopocerus; P. newelli (Hatch, 1957), ex Catopocerus; P. ovatus (Hatch, 1957), ex Catopocerus; P. pusio Horn, 1892, ex Catopocerus; P. rothi (Hatch, 1957), ex Catopocerus; P. subterraneus (Hatch, 1935), ex Catopocerus; P. tibialis (Hatch, 1957), ex Catopocerus.
APA, Harvard, Vancouver, ISO, and other styles
8

Ito, Yasuko, Toshio Tomita, Narayan Roy, Akito Nakano, Noriko Sugawara-Tomita, Seiji Watanabe, Naoko Okai, Naoki Abe, and Yoshiyuki Kamio. "Cloning, Expression, and Cell Surface Localization of Paenibacillus sp. Strain W-61 Xylanase 5, a Multidomain Xylanase." Applied and Environmental Microbiology 69, no. 12 (December 2003): 6969–78. http://dx.doi.org/10.1128/aem.69.12.6969-6978.2003.

Full text
Abstract:
ABSTRACT We have shown that a xylan-degrading bacterium, W-61, excretes multiple xylanases, including xylanase 5 with a molecular mass of 140 kDa. Here, we emend the previously used classification of the bacterium (i.e., Aeromonas caviae W-61) to Paenibacillus sp. strain W-61 on the basis of the nucleotide sequence of the 16S rRNA gene, and we clone and express the xyn5 gene encoding xylanase 5 (Xyn5) in Escherichia coli and study the subcellular localization of Xyn5. xyn5 encodes 1,326 amino acid residues, including a 27-amino-acid signal sequence. Sequence analysis indicated that Xyn5 comprises two family 22 carbohydrate-binding modules (CBM), a family 10 catalytic domain of glycosyl hydrolases, a family 9 CBM, a domain similar to the lysine-rich region of Clostridium thermocellum SdbA, and three S-layer-homologous (SLH) domains. Recombinant Xyn5 bound to a crystalline cellulose, Avicel PH-101, while an N-terminal 90-kDa fragment of Xyn5, which lacks the C-terminal half of the family 9 CBM, did not bind to Avicel PH-101. Xyn5 was cell bound, and the cell-bound protein was digested by exogenous trypsin to produce immunoreactive and xylanolytic fragments with molecular masses of 80 and 60 kDa. Xyn5 was exclusively distributed in the cell envelope fraction consisting of a peptidoglycan-containing layer and an associated S layer. Thus, Paenibacillus sp. strain W-61 Xyn5 is a cell surface-anchored modular xylanase possessing a functional cellulose-binding module and SLH domains. Possible cooperative action of multiple xylanases produced by strain W-61 is discussed on the basis of the modular structure of Xyn5.
APA, Harvard, Vancouver, ISO, and other styles
9

Delon, C., E. Mougin, D. Serça, M. Grippa, P. Hiernaux, M. Diawara, C. Galy-Lacaux, and L. Kergoat. "Modelling the effect of soil moisture and organic matter degradation on biogenic NO emissions from soils in Sahel rangeland (Mali)." Biogeosciences 12, no. 11 (June 3, 2015): 3253–72. http://dx.doi.org/10.5194/bg-12-3253-2015.

Full text
Abstract:
Abstract. This work is an attempt to provide seasonal variation of biogenic NO emission fluxes in a Sahelian rangeland in Mali (Agoufou, 15.34° N, 1.48° W) for years 2004, 2005, 2006, 2007 and 2008. Indeed, NO is one of the most important precursors for tropospheric ozone, and previous studies have shown that arid areas potentially display significant NO emissions (due to both biotic and abiotic processes). Previous campaigns in the Sahel suggest that the contribution of this region in emitting NO is no longer considered as negligible. However, very few data are available in this region, therefore this study focuses on model development. The link between NO production in the soil and NO release to the atmosphere is investigated in this modelling study, by taking into account vegetation litter production and degradation, microbial processes in the soil, emission fluxes, and environmental variables influencing these processes, using a coupled vegetation–litter decomposition–emission model. This model includes the Sahelian Transpiration Evaporation and Productivity (STEP) model for the simulation of herbaceous, tree leaf and faecal masses, the GENDEC model (GENeral DEComposition) for the simulation of the buried litter decomposition and microbial dynamics, and the NO emission model (NOFlux) for the simulation of the NO release to the atmosphere. Physical parameters (soil moisture and temperature, wind speed, sand percentage) which affect substrate diffusion and oxygen supply in the soil and influence the microbial activity, and biogeochemical parameters (pH and fertilization rate related to N content) are necessary to simulate the NO flux. The reliability of the simulated parameters is checked, in order to assess the robustness of the simulated NO flux. Simulated yearly average of NO flux ranges from 2.09 to 3.04 ng(N) m−2 s−1 (0.66 to 0.96 kg(N) ha−1 yr−1), and wet season average ranges from 3.36 to 5.48 ng(N) m−2 s−1 (1.06 to 1.73 kg(N) ha−1 yr−1). These results are of the same order as previous measurements made in several sites where the vegetation and the soil are comparable to the ones in Agoufou. This coupled vegetation–litter decomposition–emission model could be generalized at the scale of the Sahel region, and provide information where few data are available.
APA, Harvard, Vancouver, ISO, and other styles
10

Golovanov, Ya M., S. M. Yamalov, M. V. Lebedeva, A. Yu Korolyuk, L. M. Abramova, and N. a. Dulepova. "Vegetation of chalk outcrops of Sub-Ural plateau and adjacent territories." Vegetation of Russia, no. 40 (2021): 3–42. http://dx.doi.org/10.31111/vegrus/2021.40.3.

Full text
Abstract:
The results of long-term studies of the vegetation of chalk outcrops of the Orenburg region (Russian Federation) and North-West Kazakhstan on Sub-Ural plateau and adjacent territories are presented. Chalk outcrops are unique botanical-geographical sites located in steppe and desert zones of Eurasia. Specific communities of calcephyte plant species have spread in these areas, in places of outcrops or close occurrence from the surface of upper-Cretaceous carbonate rocks. The flora of chalk outcrops is characterized by a great amount of rare species, mainly ende­mic, associated with peculiar substrates, the locality of habitats, and the historical past of the area of outcrops location (Matyshenko, 1985) The history of the study of flora and vegetation of chalk outcrops is given. Synthaxonomic studies of chalk vegetation as part of the ecological-floristic approach cover only territories west of the Volga river (Poluyanov, 2009; Averinova, 2011, 2016; Demina, 2014; Demina et al., 2016; Didukh et al., 2018). Chalk highlands of the North-West Kazakhstan and adjacent regions of the Russian Federation occupy quite large areas. However, up to date, there is no data on the vegetation diversity of these territories based on complete geobotanical relevés, that is why their synthaxonomy remains undeveloped. The study area with 15 massifs of chalk outcrops (Fig. 1) includes the Orenburg region (Novosergievsky, Perevolotsky, Sol-Iletskiy, Akbulak and Gaysky districts), and Aktobe (Hobdinsky, Uilsky and Bayganinsky district) and Atyrau (Zhylyoysky district) regions of the Republic of Kazakhstan. The largest massifs in the Orenburg region of the Russian Federation are: Starobelogorskie (Fig. 2), Chesnokov­skie (Fig. 3), Verkhnechibendinskie (Fig. 6), Troits­kie (Fig. 7), Pokrovskie Chalk Mountains (Fig. 4) and Durtel mountain (Fig. 5). Chalk massif Akshatau (Fig. 8) and the range Aktolagai (Fig. 9) are the largest within Aktobe region. The investigated sites are mostly located on the Sub-Ural Plateau, which extended from the southern regions of the Orenburg region to the Emba River in the territory of Aktobe region. They are less common within the Obschiy Syrt and sporadic in the Guberlinskie mountains. The study area covers a wide range of zonal vegetation from dry steppes in the northern part of the gradient to northern deserts in the southern one. The dataset includes 270 relevés of chalk outcrops communities performed by the authors in 2014–2019. The primary classification was carried out using TWINSPAN algorithm. As a result three groups of communities are established. The first group is communities of the Emben Plateau, the most southern area; second is communities on relatively developed soils in the slopes bases, depressions between chalk ridges and on their flat tops; third is widespread communities on most of the Podural Plateau and Obschy Syrt, excluding the Emben Plateau. Comparison with associations of calcephyte, semidesert and steppe vegetation (Golub, 1994; Kolomiychuk, Vynokurov, 2016; Lysenko, Yamalov, 2017; Didukh et al., 2018; Korolyuk, 2017) was made to determine the position of studied communities in the system of ecological-floristic classification of the herbasceous vegetation of Eurasia. Cluster analysis results (Fig. 10) revealed the significant specificity the chalk outcrops of the Sub-Ural Plateau in comparison with calciphytic communities of Eastern Europe, as well as with deserts and steppes zonal vegetation. That was the reason to describe a new class for vegetation of the studied chalk outcrops. The class Anabasietea cretaceae Golovanov class nov. hoc loco. Diagnostic species: Anabasis cretacea, Anthemis trotzkiana, Artemisia salsoloides, Atraphaxis decipiens,Crambe aspera, Echinops meyeri, Jurinea kirghisorum, Hedysarum tscherkassovae, Lepidium meyeri, Limonium cretaceum, Linaria cretacea, Matthiola fragrans, Nanophyton erinaceum, Seseli glabratum, Zygophyllum pinnatum;holotypus is order Anabasie­talia cretaceae ord. nov. hoc loco. Class combines calciphytic, mainly semi-shrub communities on the outcrops of chalk and marl rocks of the south of the Orenburg region and North-West Kazakhstan within the steppe (subzones of the true and desert steppes) and desert zone. The central order, Anabasietalia cretaceae Golovanov ord. nov. hoc loco, is described;holotypus is alliance Anthemido trotzkianae–Artemision salsoloidis all. nov. hoc loco. Three alliances identified within the order reflect both community distribution along the latitudinal gradient and succession stages. The alliance Sileno fruticulosae–Nanophytonion erinacei Lebedeva all. nov hoc loco is poor-species communities, located mainly on the chalk massifs in the southern part of the Sub-Ural Plateau (Emben Plateau) and adjacent territories. Holotypus of the alliance is ass. Onosmo staminei–Anabasietum cretaceae ass. nov. hoc loco with highly constant desert plant species (Anabasis salsa, Artemisia terrae-albae, Atriplex cana, Limonium suffruticosum, Rhammatophyllum pachyrhizum, etc.). It includes the ass. Onos­mo staminei–Anabasietum cretaceae ass. nov. hoc loco (Table 3, syntaxa 1–3; Tables 4–6). Holotypus hoc loco: Table 4, rel. no. 9 (YS19-034): Republic of Kazakhstan, Atyrau region, Zhylyojskij district, 10 km W Aktologay ridge, 47.48514° N, 54.97647° E, 19.05.2019, collector Yamalov S. M.) The alliance Anabasio cretaceae–Agropyrion desertorum Korolyuk all. nov hoc loco.Holotypus is ass. Agropyro desertorum–Artemisietum lessingianae ass. nov. hoc loco. Alliance includes communities in flat habitats with well-developed soils at the foot of the chalk hills in the central and northern parts of the Sub-Ural Plateau, on the chalk rock outflows, as well on their tops. Active are species of deserts and galophytic communities of the classes Artemisietea lerchianae and Festuco-Puccinellietea, as well as these of dry and desert steppes of the order Tanaceto achilleifolii–Stipetalia lessingianae. There are 2 associations: Agropyro desertorum–Artemisietum lessingianae ass. nov. hoc loco (Table 3, syntaxon 4; Table 7; fig. 23; holotypus hoc loco: Table 7, rel. no 8 (YS15-019)), Russian Federation, Orenburg region, Sol-Ilets­kiy district, Troitsk Chalk Mountains, 10 km SW vil. Troitsk, 50.65317° N, 54.542° W, 06.06.2015, collector Yamalov S. M.) and Psephello marschallianae–Artemisietum lerchianae ass. nov. hoc loco ((Table. 3, syntaxon 5; Table 8; fig. 24); holotypus hoc loco: Table 8, rel. no 15 (YS19-050), Republic of Kazakhstan, Aktyubinsk region, Hobdinsky district, chalk mountains 16 km NE vil. Zhantalap, 50.39986° N, 56.05054° N, 21.05.2019, collector Yamalov S. M.). The alliance Anthemido trotzkianae–Artemision salsoloidis Yamalov all. nov hoc loco.Holotypus is ass. Anthemido trotzkianae–Artemisietum salsoloi­dis ass. nov. Alliance includes the cenoses of the chalk highlands of the Sub-Ural Plateau (except for its extremely southern part) and the Obschiy Syrt. These are both communities of the initial and more advanced succession stages. The high constancy of Anthemis trotzkiana and Artemisia salsoloides, as well as the presence of petrophytic species widely distributed in the rocky steppes of the Southern Ural (Alyssum tortuosum, Centaurea marchalliana, Euphorbia seguieriana, Galium octonarium) are character for the alliance cenophlora. There are three associations— Nanophytono erinacei–Jurinetum kirghisori ass. nov. hoc loco (Table 3, syntaxon 6; Table 9; Fig. 25; holotypus hoc loco: Table 9, rel. no 7 (GY18-070)), Russian Federation, Orenburg region, Sol-Iletskiy district, Verhnechibendinskie Chalk Mountains, 10 km W vil. Troitsk, 50.6562° N, 54.44272° W, 07.06.2016, collector Golovanov Ya. M.); Anthemido trotzkianae–Artemisietum salsoloidis ass. nov. hoc loco (Table 3, syntaxa 7, 8; Tables 10, 11; Fig. 26; holotypus hoc loco: Table 10, rel. no 20 (GY15-047)), Russian Federation, Orenburg region, Sol-Iletskiy district, Troitsk Chalk Mountains, 10 km NW vil. Troitsk, 50.65267° N, 54.54217° E, 06.06.2015, collector Golovanov Ya. M.); Onosmo simplicissimae–Anthemietum trotzkianae ass. nov. hoc loco (Table 3, syntaxon 9; tab. 12; Fig. 27); holotypus hoc loco: Table 12, rel. no 1 (GY19-011)), Republic of Kazakhstan, Aktyubinsk region, Uilskii district, Terektytau, 10 km NE vil. Akshatau, 49.43507° N, 54.60127° E, 15.05.2019, collector — Golovanov Ya. M.). There are 2 associations in the class Festuco-Brometea. Within the dry steppe order Tanaceto achilleifolii–Stipetalia lessingianae this is Bassio prostratae–Agropyretum desertorum ass. nov. hoc loco (Table 3, syntaxa 10, 11; Table 13), holotypus hoc loco: Table 13, rel. no 8 (GY19-004)), Republic of Kazakhstan, Aktyubinsk region, Uilskii district, Terektytau, 10 km NE vil. Akshatau, 49.42942° N, 54.60047° E, 15.05.2019, collector Golovanov Ya. M.); within the true steppe order Helictotricho-Stipetalia this isass. Anthemido trotzkianae–Thymetum guberlinensis ass. nov. hoc loco (Table 3, syntaxon 12; Table 14); holotypus hoc loco: Table 14, rel. no 8 (GY14-012)), Russian Federation, Orenburg region, Gayskii district, chalk mountain Dyurtel, 4 km NE vil. Starohalilovo, 51.504° N, 58.157° E, 27.06.2014, collector Golovanov Ya. M.). The result of the research of chalk outcrops ve­getation of Sub-Ural plateau and adjacent territories is new class Anabasietea cretaceae which includes 1 order, 3 alliances, 6 associations, 3 subassociations, 2 variants and 9 facies.
APA, Harvard, Vancouver, ISO, and other styles
11

Raimbault, P., N. Garcia, and F. Cerutti. "Distribution of inorganic and organic nutrients in the South Pacific Ocean – evidence for long-term accumulation of organic matter in nitrogen-depleted waters." Biogeosciences Discussions 4, no. 4 (August 30, 2007): 3041–87. http://dx.doi.org/10.5194/bgd-4-3041-2007.

Full text
Abstract:
Abstract. The BIOSOPE cruise of the RV Atalante was devoted to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W–8° S) and the Chilean upwelling (73° W–34° S). The 8000 km cruise had the opportunity to encounter different trophic situations, and especially strong oligotrophic conditions in the Central South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between surface and 160–180 m, while regenerated nitrogen (nitrite and ammonium) only revealed some traces (<20 nmoles l−1), even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. In spite of this severe nitrogen-depletion, phosphate was always present at significant concentrations (≈0.1 μmoles l−1), while silicate maintained at low but classical oceanic levels (≈1 μmoles l−1). In contrast, the Marquesas region (MAR) at west and Chilean upwelling (UPW) at east were characterized by large nutrient contents one hundred to one thousand fold higher than in the SPG. Distribution of surface chlorophyll concentration reflected this gradient of nitrate availability. The lowest value (0.023 nmoles l−1) was measured in the centre of the SPG, where integrated chlorophyll over the photic layer was very weak (≈10 mg m−2), since a great part (up to 50%) of the deep chlorophyll maximum (DCM) was located below the 1% light. But, because of the relative high concentration encountered in the DCM (0.2 μg l−1), chlorophyll a content over the photic layer varied much less (by a factor 2 to 5) than the nitrate content. In contrast to chlorophyll a, integrated content of particulate organic matter (POM) remained more or less constant along the investigated area (500 mmoles m−2, 60 mmoles m−2 and 3.5 mmoles m−2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), except in the upwelling where values were two fold higher. Extensive comparison has shown that glass fiber GF/F filters efficiency collected particulate chlorophyll, while a significant fraction of POM (up to 50%) passed trough this filter and was retained by 0.2 μm Teflon membrane. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG relative to surrounding waters, especially dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l−1). Due to this large pool of DOM over the whole photic layer of the SPG, integrated values followed an opposite geographical pattern than this of inorganic nutrients with a large accumulation within the centre of the SPG. While suspended particulate matter in the mixed layer had C/N ratio largely conform to Redfield stoichiometry (C/N≈6.6), marked deviations were observed in this excess DOM (C/N≈16 to 23). The existence of C-rich dissolved organic matter is recognized as a feature typical of oligotrophic waters, requiring the over consumption of carbon. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can produce a large amount of carbon. The implications of this finding are discussed, the conclusion being that, due to the lack of seasonal vertical mixing and weak lateral advection, the dissolved organic carbon biologically produced can be accumulated and stored in the photic layer for a very long period.
APA, Harvard, Vancouver, ISO, and other styles
12

Raimbault, P., N. Garcia, and F. Cerutti. "Distribution of inorganic and organic nutrients in the South Pacific Ocean − evidence for long-term accumulation of organic matter in nitrogen-depleted waters." Biogeosciences 5, no. 2 (March 3, 2008): 281–98. http://dx.doi.org/10.5194/bg-5-281-2008.

Full text
Abstract:
Abstract. During the BIOSOPE cruise the RV Atalante was dedicated to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W–8° S) and the Chilean upwelling (73° W–34° S). Over the 8000 km covered by the cruise, several different trophic situations were encountered, in particular strong oligotrophic conditions in the South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between the surface and 160–180 m and only trace quantities (<20 nmoles l−1) of regenerated nitrogen (nitrite and ammonium) were detected, even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. Despite this severe nitrogen-depletion, phosphate was always present in significant concentrations (≈0.1 μmoles l−1), while silicic acid was maintained at low but classical oceanic levels (≈1 μmoles l−1). In contrast, the Marquesas region (MAR) to the west and Chilean upwelling (UPW) to the east were characterized by high nutrient concentrations, one hundred to one thousand fold higher than in the SPG. The distribution of surface chlorophyll reflected the nitrate gradient, the lowest concentrations (0.023 nmoles l−1) being measured at the centre of the SPG, where integrated value throughout the photic layer was very low (≈ 10 mg m−2). However, due to the relatively high concentrations of chlorophyll-a encountered in the DCM (0.2 μg l−1), chlorophyll-a concentrations throughout the photic layer were less variable than nitrate concentrations (by a factor 2 to 5). In contrast to chlorophyll-a, integrated particulate organic matter (POM) remained more or less constant along the study area (500 mmoles m−2, 60 mmoles m−2 and 3.5 mmoles m−2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), with the exception of the upwelling, where values were two fold higher. The residence time of particulate carbon in the surface water was only 4–5 days in the upwelling, but up to 30 days in the SPG, where light isotopic δ15N signal noted in the suspended POM suggests that N2-fixation provides a dominant supply of nitrogen to phytoplankton. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG compared to the surrounding waters, in particular dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l−1). Due to this large pool of DOM in the SPG photic layer, integrated values followed a converse geographical pattern to that of inorganic nutrients with a large accumulation in the centre of the SPG. Whereas suspended particulate matter in the mixed layer had a C/N ratio largely conforming to the Redfield stochiometry (C/N≈6.6), marked deviations were observed in this excess DOM (C/N≈16 to 23). The marked geographical trend suggests that a net in situ source exists, mainly due to biological processes. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can accumulate large amounts of C-rich dissolved organic matter. The implications of this finding are examined, the conclusion being that, due to weak lateral advection, the biologically produced dissolved organic carbon can be accumulated and stored in the photic layer for very long periods. In spite of the lack of seasonal vertical mixing, a significant part of new production (up to 34%), which was mainly supported by dinitrogen fixation, can be exported to deep waters by turbulent diffusion in terms of DOC. The diffusive rate estimated in the SPG (134 μmolesC m−2 d−1), was quite equivalent to the particles flux measured by sediments traps.
APA, Harvard, Vancouver, ISO, and other styles
13

Rossi-Santos, Marcos R., Elitieri S. Neto, Clarêncio G. Baracho, Sérgio R. Cipolotti, Enrico Marcovaldi, and Marcia H. Engel. "Occurrence and distribution of humpback whales (Megaptera novaeangliae) on the north coast of the State of Bahia, Brazil, 2000–2006." ICES Journal of Marine Science 65, no. 4 (March 20, 2008): 667–73. http://dx.doi.org/10.1093/icesjms/fsn034.

Full text
Abstract:
Abstract Rossi-Santos, M. R., Neto, E. S., Baracho, C. G., Cipolotti, S. R., Marcovaldi, E., and Engel, M. H. 2008. Occurrence and distribution of humpback whales (Megaptera novaeangliae) on the north coast of the State of Bahia, Brazil, 2000–2006. – ICES Journal of Marine Science, 65: 667–673. The Abrolhos Bank off Brazil is considered the main breeding ground for the humpback whale (Megaptera novaeangliae) in the Southwest Atlantic. However, owing to an increase in the occurrence of the species along the north coast of the State of Bahia, it has been suggested that the species is reoccupying that region, which was probably utilized by the whales before commercial whaling. Information is presented on the occurrence and distribution of humpback whales along the north coast of the State of Bahia, with a comparative overview, for the period 2000–2006. Daily research cruises were conducted from July to October, departing from Praia do Forte (13°40′S 38°10′W) and lasting ∼9 h. Data on sampling and sighting effort, and geographical position and composition of groups of humpback whales, were collected on standardized field sheets. In all, 230 surveys were performed, covering some 9740 nautical miles in 1645 h of sampling effort, during which 1626 humpback whales were sighted, including 118 calves. Humpback whales were sighted throughout the study area. Solitary individuals and pairs were the most frequent group composition, 26% and 37% of the observed groups (n = 723), respectively. Depth of water varied from 15 to 1657 m (mean = 62.4; s.d. = 99). The sightings values were grouped into depth classes to ascertain the highest frequencies (∼30%) for the two classes, i.e. between 35.1 and 55 m of water. There was an increase in the encounter rates of humpback whales on the north coast of the State of Bahia between 2000 and 2006, identifying a difference in SPUE [sightings per unit (h) of effort] among years (Kruskal–Wallis H = 30.155, d.f. = 6, p < 0.05). The results support the hypothesis that humpback whales are reoccupying former breeding areas along the Brazilian coast.
APA, Harvard, Vancouver, ISO, and other styles
14

Dupouy, C., D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. K. Westberry. "An algorithm for detecting <i>Trichodesmium</i> surface blooms in the South Western Tropical Pacific." Biogeosciences 8, no. 12 (December 13, 2011): 3631–47. http://dx.doi.org/10.5194/bg-8-3631-2011.

Full text
Abstract:
Abstract. Trichodesmium, a major colonial cyanobacterial nitrogen fixer, forms large blooms in NO3-depleted tropical oceans and enhances CO2 sequestration by the ocean due to its ability to fix dissolved dinitrogen. Thus, its importance in C and N cycles requires better estimates of its distribution at basin to global scales. However, existing algorithms to detect them from satellite have not yet been successful in the South Western Tropical Pacific (SP). Here, a novel algorithm (TRICHOdesmium SATellite) based on radiance anomaly spectra (RAS) observed in SeaWiFS imagery, is used to detect Trichodesmium during the austral summertime in the SP (5° S–25° S 160° E–170° W). Selected pixels are characterized by a restricted range of parameters quantifying RAS spectra (e.g. slope, intercept, curvature). The fraction of valid (non-cloudy) pixels identified as Trichodesmium surface blooms in the region is low (between 0.01 and 0.2 %), but is about 100 times higher than deduced from previous algorithms. At daily scales in the SP, this fraction represents a total ocean surface area varying from 16 to 48 km2 in Winter and from 200 to 1000 km2 in Summer (and at monthly scale, from 500 to 1000 km2 in Winter and from 3100 to 10 890 km2 in Summer with a maximum of 26 432 km2 in January 1999). The daily distribution of Trichodesmium surface accumulations in the SP detected by TRICHOSAT is presented for the period 1998–2010 which demonstrates that the number of selected pixels peaks in November–February each year, consistent with field observations. This approach was validated with in situ observations of Trichodesmium surface accumulations in the Melanesian archipelago around New Caledonia, Vanuatu and Fiji Islands for the same period.
APA, Harvard, Vancouver, ISO, and other styles
15

Carlotti, François, Marc Pagano, Loïc Guilloux, Katty Donoso, Valentina Valdés, Olivier Grosso, and Brian P. V. Hunt. "Meso-zooplankton structure and functioning in the western tropical South Pacific along the 20th parallel south during the OUTPACE survey (February–April 2015)." Biogeosciences 15, no. 23 (December 10, 2018): 7273–97. http://dx.doi.org/10.5194/bg-15-7273-2018.

Full text
Abstract:
Abstract. The western tropical South Pacific (WTSP) is one of the most understudied oceanic regions in terms of the planktonic food web, despite supporting some of the largest tuna fisheries in the world. In this stratified oligotrophic ocean, nitrogen fixation may play an important role in supporting the plankton food web and higher trophic level production. In the austral summer (February–April) of 2015, the OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment) project conducted a comprehensive survey of 4000 km along 20∘ S, from New Caledonia to Tahiti, to determine the role of N2 fixation on biogeochemical cycles and food web structure in this region. Here, we characterize the zooplankton community and plankton food web processes at 15 short-duration stations (8 h each) to describe the large-scale variability across trophic gradients from oligotrophic waters around Melanesian archipelagoes (MAs) to ultra-oligotrophic waters of the South Pacific gyre (GY). Three long-duration stations (5 days each) enabled a more detailed analysis of processes and were positioned (1) in offshore northern waters of New Caledonia (MA), (2) near Niue Island (MA), and (3) in the subtropical Pacific gyre (GY) near the Cook Islands. At all stations, meso-zooplankton was sampled with a bongo net with 120 µm mesh size to estimate abundance, biomass, community taxonomy and size structure, and size fractionated δ15N. Subsequently, we estimated zooplankton carbon demand, grazing impact, excretion rates, and the contribution of diazotroph-derived nitrogen (DDN) to zooplankton biomass. The meso-zooplankton community showed a general decreasing trend in abundance and biomass from west to east, with a clear drop in the GY waters. Higher abundance and biomass corresponded to higher primary production associated with complex mesoscale circulation in the Coral Sea and between 170–180∘ W. The taxonomic structure showed a high degree of similarity in terms of species richness and abundance distribution across the whole region, with, however, a moderate difference in the GY region, where the copepod contribution to meso-zooplankton increased. The calculated ingestion and metabolic rates allowed us to estimate that the top–down (grazing) and bottom–up (excretion of nitrogen and phosphorous) impact of zooplankton on phytoplankton was potentially high. Daily grazing pressure on phytoplankton stocks was estimated to remove 19 % to 184 % of the total daily primary production and 1.5 % to 22 % of fixed N2. The top–down impact of meso-zooplankton was higher in the eastern part of the transect, including GY, than in the Coral Sea region and was mainly exerted on nano- and micro-phytoplankton. The regeneration of nutrients by zooplankton excretion was high, suggesting a strong contribution to regenerated production, particularly in terms of N. Daily NH4+ excretion accounted for 14.5 % to 165 % of phytoplankton needs for N, whereas PO43- excretion accounted for only 2.8 % to 34 % of P needs. From zooplankton δ15N values, we estimated that the DDN contributed to up to 67 % and 75 % to the zooplankton biomass in the western and central parts of the MA regions, respectively, but strongly decreased to an average of 22 % in the GY region and down to 7 % in the easternmost station. Thus, the highest contribution of diazotrophic microorganisms to zooplankton biomass occurred in the region of highest N2 fixation rates and when Trichodesmium dominated the diazotrophs community (MA waters). Our estimations of the fluxes associated with zooplankton were highly variable between stations and zones but very high in most cases compared to literature data, partially due to the high contribution of small forms. The highest values encountered were found at the boundary between the oligotrophic (MA) and ultra-oligotrophic regions (GY). Within the MA zone, the high variability of the top–down and bottom–up impact was related to the high mesoscale activity in the physical environment. Estimated zooplankton respiration rates relative to primary production were among the highest cited values at similar latitudes, inducing a high contribution of migrant zooplankton respiration to carbon flux. Despite the relatively low biomass values of planktonic components in quasi-steady state, the availability of micro- and macronutrients related to physical mesoscale patterns in the waters surrounding the MA, the fueling by DDN, and the relatively high rates of plankton production and metabolism estimated during OUTPACE may explain the productive food chain ending with valuable fisheries in this region.
APA, Harvard, Vancouver, ISO, and other styles
16

Marcuzzo, Francisco Fernando Noronha, Eudes José Arantes, and Edson Wendland. "AVALIAÇÃO DE MÉTODOS DE ESTIMATIVA DE EVAPOTRANSPIRAÇÃO POTENCIAL E DIRETA PARA A REGIÃO DE SÃO CARLOS-SP." IRRIGA 13, no. 3 (September 19, 2008): 323–38. http://dx.doi.org/10.15809/irriga.2008v13n3p323-338.

Full text
Abstract:
AVALIAÇÃO DE métodos de estimativa de evapotranspiração POTENCIAL E DIRETA PARA A REGIÃO DE SÃO CARLOS-SP Francisco Fernando Noronha Marcuzzo1; Eudes José Arantes2; Edson Wendland11 Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, SP, fmarcuzzo@gmail.com2 Universidade Tecnológica Federal do Paraná, Campo Mourão, PR 1 RESUMO Um dos fenômenos de maior incerteza no gerenciamento de recursos hídricos e, manejo da irrigação é o da evapotranspiração. A evapotranspiração é utilizada na determinação do balanço hídrico com a finalidade de se identificar os períodos de excesso ou escassez de água e, principalmente, na quantificação das deficiências hídricas para uma cultura em uma determinada localidade. O objetivo deste trabalho foi apresentar um estudo da correlação de cinco diferentes métodos de estimativa da evapotranspiração, a partir de dados de temperatura, radiação e evaporação e dados de lisímetro. Os dados utilizados foram coletados no ano de 2002, na Estação Hidrometeorológica do CRHEA (Centro de Recursos Hídricos e Ecologia Aplicada) do Departamento de Hidráulica e Saneamento da EESC-SP, localizada à latitude de 22º11”S, longitude de 47º58”W e altitude de733 m. Nos meses em que ocorrem concomitantemente números elevados ou baixos nos dados climatológicos que são utilizados no cálculo de evapotranspiração, como radiação e evaporação, há uma tendência de alta correlação entre os métodos de cálculo que se utilizam destes dados. Na comparação com dados de evapotranspiração real (lisímetro), o método empírico que mais se aproximou foi o método baseado na evaporação (Tanque Classe A), e os que obtiveram menores correlações foram os baseados na temperatura (Thornthwaite e Blaney-Criddle). UNITERMOS: tanque classe A, Thornthwaite, Jensen-Haise, Blaney-Criddle, evaporação MARCUZZO, F. F. N.; ARANTES, E. J.; WENDLAND, E. EVALUATION OF POTENTIAL AND DIRECT EVAPOTRANSPIRATION ESTIMATE METHODS APPLIED IN THE REGION OF SÃO CARLOS-SP 2 ABSTRACT Evapotranspiration is one of the most uncertain phenomena concerning management of water resources and irrigation. Evapotranspiration is used to identify periods of water excess or scarcity and mainly to quantify plant water stress in specific locations. The objective of this work was to study the correlation among five different methods for evapotranspiration estimates, using temperature, radiation, evaporation and lysimeter data. Data were collected in 2002 at the Hydrometeorology Station CRHEA (Center of Water Resources and Applied Ecology), located at latitude 22º11"S, longitude 47º58"W and733 mabove see level. A high correlation among evapotranspiration values estimated by different methods was observed in months where either high or low values of climatologic data, such as evaporation and radiation were obtained. The evaporation method (pan evaporation) showed the highest correlation when evapotranspiration values obtained using a lysimeter were used, whereas the methods based on temperature (Thornthwaite and Blaney-Criddle) showed the lowest correlation. KEY WORDS: pan, Thornthwaite, Jensen & Haise, Blaney-Criddle, evaporation
APA, Harvard, Vancouver, ISO, and other styles
17

Yakubu, Bashir Ishaku, Shua’ib Musa Hassan, and Sallau Osisiemo Asiribo. "AN ASSESSMENT OF SPATIAL VARIATION OF LAND SURFACE CHARACTERISTICS OF MINNA, NIGER STATE NIGERIA FOR SUSTAINABLE URBANIZATION USING GEOSPATIAL TECHNIQUES." Geosfera Indonesia 3, no. 2 (August 28, 2018): 27. http://dx.doi.org/10.19184/geosi.v3i2.7934.

Full text
Abstract:
Rapid urbanization rates impact significantly on the nature of Land Cover patterns of the environment, which has been evident in the depletion of vegetal reserves and in general modifying the human climatic systems (Henderson, et al., 2017; Kumar, Masago, Mishra, & Fukushi, 2018; Luo and Lau, 2017). This study explores remote sensing classification technique and other auxiliary data to determine LULCC for a period of 50 years (1967-2016). The LULCC types identified were quantitatively evaluated using the change detection approach from results of maximum likelihood classification algorithm in GIS. Accuracy assessment results were evaluated and found to be between 56 to 98 percent of the LULC classification. The change detection analysis revealed change in the LULC types in Minna from 1976 to 2016. Built-up area increases from 74.82ha in 1976 to 116.58ha in 2016. Farmlands increased from 2.23 ha to 46.45ha and bared surface increases from 120.00ha to 161.31ha between 1976 to 2016 resulting to decline in vegetation, water body, and wetlands. The Decade of rapid urbanization was found to coincide with the period of increased Public Private Partnership Agreement (PPPA). Increase in farmlands was due to the adoption of urban agriculture which has influence on food security and the environmental sustainability. The observed increase in built up areas, farmlands and bare surfaces has substantially led to reduction in vegetation and water bodies. The oscillatory nature of water bodies LULCC which was not particularly consistent with the rates of urbanization also suggests that beyond the urbanization process, other factors may influence the LULCC of water bodies in urban settlements. Keywords: Minna, Niger State, Remote Sensing, Land Surface Characteristics References Akinrinmade, A., Ibrahim, K., & Abdurrahman, A. (2012). Geological Investigation of Tagwai Dams using Remote Sensing Technique, Minna Niger State, Nigeria. Journal of Environment, 1(01), pp. 26-32. Amadi, A., & Olasehinde, P. (2010). Application of remote sensing techniques in hydrogeological mapping of parts of Bosso Area, Minna, North-Central Nigeria. International Journal of Physical Sciences, 5(9), pp. 1465-1474. Aplin, P., & Smith, G. (2008). Advances in object-based image classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B7), pp. 725-728. Ayele, G. T., Tebeje, A. K., Demissie, S. S., Belete, M. A., Jemberrie, M. A., Teshome, W. M., . . . Teshale, E. Z. (2018). Time Series Land Cover Mapping and Change Detection Analysis Using Geographic Information System and Remote Sensing, Northern Ethiopia. Air, Soil and Water Research, 11, p 1178622117751603. Azevedo, J. A., Chapman, L., & Muller, C. L. (2016). Quantifying the daytime and night-time urban heat island in Birmingham, UK: a comparison of satellite derived land surface temperature and high resolution air temperature observations. Remote Sensing, 8(2), p 153. Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., . . . van Coillie, F. (2014). Geographic object-based image analysis–towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, pp. 180-191. Bukata, R. P., Jerome, J. H., Kondratyev, A. S., & Pozdnyakov, D. V. (2018). Optical properties and remote sensing of inland and coastal waters: CRC press. Camps-Valls, G., Tuia, D., Bruzzone, L., & Benediktsson, J. A. (2014). Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE signal processing magazine, 31(1), pp. 45-54. Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., . . . Lu, M. (2015). Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, pp. 7-27. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), pp. 171-209. Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., & Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE transactions on geoscience and remote sensing, 53(8), pp. 4238-4249. Cheng, G., Han, J., Zhou, P., & Guo, L. (2014). Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry and Remote Sensing, 98, pp. 119-132. Coale, A. J., & Hoover, E. M. (2015). Population growth and economic development: Princeton University Press. Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: principles and practices: CRC press. Corner, R. J., Dewan, A. M., & Chakma, S. (2014). Monitoring and prediction of land-use and land-cover (LULC) change Dhaka megacity (pp. 75-97): Springer. Coutts, A. M., Harris, R. J., Phan, T., Livesley, S. J., Williams, N. S., & Tapper, N. J. (2016). Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sensing of Environment, 186, pp. 637-651. Debnath, A., Debnath, J., Ahmed, I., & Pan, N. D. (2017). Change detection in Land use/cover of a hilly area by Remote Sensing and GIS technique: A study on Tropical forest hill range, Baramura, Tripura, Northeast India. International journal of geomatics and geosciences, 7(3), pp. 293-309. Desheng, L., & Xia, F. (2010). Assessing object-based classification: advantages and limitations. Remote Sensing Letters, 1(4), pp. 187-194. Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29(3), pp. 390-401. Dronova, I., Gong, P., Wang, L., & Zhong, L. (2015). Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sensing of Environment, 158, pp. 193-206. Duro, D. C., Franklin, S. E., & Dubé, M. G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 118, pp. 259-272. Elmhagen, B., Destouni, G., Angerbjörn, A., Borgström, S., Boyd, E., Cousins, S., . . . Hambäck, P. (2015). Interacting effects of change in climate, human population, land use, and water use on biodiversity and ecosystem services. Ecology and Society, 20(1) Farhani, S., & Ozturk, I. (2015). Causal relationship between CO 2 emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia. Environmental Science and Pollution Research, 22(20), pp. 15663-15676. Feng, L., Chen, B., Hayat, T., Alsaedi, A., & Ahmad, B. (2017). The driving force of water footprint under the rapid urbanization process: a structural decomposition analysis for Zhangye city in China. Journal of Cleaner Production, 163, pp. S322-S328. Fensham, R., & Fairfax, R. (2002). Aerial photography for assessing vegetation change: a review of applications and the relevance of findings for Australian vegetation history. Australian Journal of Botany, 50(4), pp. 415-429. Ferreira, N., Lage, M., Doraiswamy, H., Vo, H., Wilson, L., Werner, H., . . . Silva, C. (2015). Urbane: A 3d framework to support data driven decision making in urban development. Visual Analytics Science and Technology (VAST), 2015 IEEE Conference on. Garschagen, M., & Romero-Lankao, P. (2015). Exploring the relationships between urbanization trends and climate change vulnerability. Climatic Change, 133(1), pp. 37-52. Gokturk, S. B., Sumengen, B., Vu, D., Dalal, N., Yang, D., Lin, X., . . . Torresani, L. (2015). System and method for search portions of objects in images and features thereof: Google Patents. Government, N. S. (2007). Niger state (The Power State). Retrieved from http://nigerstate.blogspot.com.ng/ Green, K., Kempka, D., & Lackey, L. (1994). Using remote sensing to detect and monitor land-cover and land-use change. Photogrammetric engineering and remote sensing, 60(3), pp. 331-337. Gu, W., Lv, Z., & Hao, M. (2017). Change detection method for remote sensing images based on an improved Markov random field. Multimedia Tools and Applications, 76(17), pp. 17719-17734. Guo, Y., & Shen, Y. (2015). Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 2. Trends and implications to water resources. Journal of Hydrology, 527, pp. 251-261. Hadi, F., Thapa, R. B., Helmi, M., Hazarika, M. K., Madawalagama, S., Deshapriya, L. N., & Center, G. (2016). Urban growth and land use/land cover modeling in Semarang, Central Java, Indonesia: Colombo-Srilanka, ACRS2016. Hagolle, O., Huc, M., Villa Pascual, D., & Dedieu, G. (2015). A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images. Remote Sensing, 7(3), pp. 2668-2691. Hegazy, I. R., & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment, 4(1), pp. 117-124. Henderson, J. V., Storeygard, A., & Deichmann, U. (2017). Has climate change driven urbanization in Africa? Journal of development economics, 124, pp. 60-82. Hu, L., & Brunsell, N. A. (2015). A new perspective to assess the urban heat island through remotely sensed atmospheric profiles. Remote Sensing of Environment, 158, pp. 393-406. Hughes, S. J., Cabral, J. A., Bastos, R., Cortes, R., Vicente, J., Eitelberg, D., . . . Santos, M. (2016). A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive. Science of the Total Environment, 565, pp. 427-439. Hussain, M., Chen, D., Cheng, A., Wei, H., & Stanley, D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, pp. 91-106. Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S., & Zhu, Y.-H. (2000). Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management, 128(1-2), pp. 109-120. Jiang, L., Wu, F., Liu, Y., & Deng, X. (2014). Modeling the impacts of urbanization and industrial transformation on water resources in China: an integrated hydro-economic CGE analysis. Sustainability, 6(11), pp. 7586-7600. Jin, S., Yang, L., Zhu, Z., & Homer, C. (2017). A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sensing of Environment, 195, pp. 44-55. Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., . . . Mitchard, E. T. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8(1), p 70. Kaliraj, S., Chandrasekar, N., & Magesh, N. (2015). Evaluation of multiple environmental factors for site-specific groundwater recharge structures in the Vaigai River upper basin, Tamil Nadu, India, using GIS-based weighted overlay analysis. Environmental earth sciences, 74(5), pp. 4355-4380. Koop, S. H., & van Leeuwen, C. J. (2015). Assessment of the sustainability of water resources management: A critical review of the City Blueprint approach. Water Resources Management, 29(15), pp. 5649-5670. Kumar, P., Masago, Y., Mishra, B. K., & Fukushi, K. (2018). Evaluating future stress due to combined effect of climate change and rapid urbanization for Pasig-Marikina River, Manila. Groundwater for Sustainable Development, 6, pp. 227-234. Lang, S. (2008). Object-based image analysis for remote sensing applications: modeling reality–dealing with complexity Object-based image analysis (pp. 3-27): Springer. Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatio-contextual information. European Journal of Remote Sensing, 47(1), pp. 389-411. Liddle, B. (2014). Impact of population, age structure, and urbanization on carbon emissions/energy consumption: evidence from macro-level, cross-country analyses. Population and Environment, 35(3), pp. 286-304. Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation: John Wiley & Sons. Liu, Y., Wang, Y., Peng, J., Du, Y., Liu, X., Li, S., & Zhang, D. (2015). Correlations between urbanization and vegetation degradation across the world’s metropolises using DMSP/OLS nighttime light data. Remote Sensing, 7(2), pp. 2067-2088. López, E., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land-cover and land-use change in the urban fringe: a case in Morelia city, Mexico. Landscape and urban planning, 55(4), pp. 271-285. Luo, M., & Lau, N.-C. (2017). Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. Journal of Climate, 30(2), pp. 703-720. Mahboob, M. A., Atif, I., & Iqbal, J. (2015). Remote sensing and GIS applications for assessment of urban sprawl in Karachi, Pakistan. Science, Technology and Development, 34(3), pp. 179-188. Mallinis, G., Koutsias, N., Tsakiri-Strati, M., & Karteris, M. (2008). Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2), pp. 237-250. Mas, J.-F., Velázquez, A., Díaz-Gallegos, J. R., Mayorga-Saucedo, R., Alcántara, C., Bocco, G., . . . Pérez-Vega, A. (2004). Assessing land use/cover changes: a nationwide multidate spatial database for Mexico. International Journal of Applied Earth Observation and Geoinformation, 5(4), pp. 249-261. Mathew, A., Chaudhary, R., Gupta, N., Khandelwal, S., & Kaul, N. (2015). Study of Urban Heat Island Effect on Ahmedabad City and Its Relationship with Urbanization and Vegetation Parameters. International Journal of Computer & Mathematical Science, 4, pp. 2347-2357. Megahed, Y., Cabral, P., Silva, J., & Caetano, M. (2015). Land cover mapping analysis and urban growth modelling using remote sensing techniques in greater Cairo region—Egypt. ISPRS International Journal of Geo-Information, 4(3), pp. 1750-1769. Metternicht, G. (2001). Assessing temporal and spatial changes of salinity using fuzzy logic, remote sensing and GIS. Foundations of an expert system. Ecological modelling, 144(2-3), pp. 163-179. Miller, R. B., & Small, C. (2003). Cities from space: potential applications of remote sensing in urban environmental research and policy. Environmental Science & Policy, 6(2), pp. 129-137. Mirzaei, P. A. (2015). Recent challenges in modeling of urban heat island. Sustainable Cities and Society, 19, pp. 200-206. Mohammed, I., Aboh, H., & Emenike, E. (2007). A regional geoelectric investigation for groundwater exploration in Minna area, north west Nigeria. Science World Journal, 2(4) Morenikeji, G., Umaru, E., Liman, S., & Ajagbe, M. (2015). Application of Remote Sensing and Geographic Information System in Monitoring the Dynamics of Landuse in Minna, Nigeria. International Journal of Academic Research in Business and Social Sciences, 5(6), pp. 320-337. Mukherjee, A. B., Krishna, A. P., & Patel, N. (2018). Application of Remote Sensing Technology, GIS and AHP-TOPSIS Model to Quantify Urban Landscape Vulnerability to Land Use Transformation Information and Communication Technology for Sustainable Development (pp. 31-40): Springer. Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5), pp. 1145-1161. Nemmour, H., & Chibani, Y. (2006). Multiple support vector machines for land cover change detection: An application for mapping urban extensions. ISPRS Journal of Photogrammetry and Remote Sensing, 61(2), pp. 125-133. Niu, X., & Ban, Y. (2013). Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. International journal of remote sensing, 34(1), pp. 1-26. Nogueira, K., Penatti, O. A., & dos Santos, J. A. (2017). Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognition, 61, pp. 539-556. Oguz, H., & Zengin, M. (2011). Analyzing land use/land cover change using remote sensing data and landscape structure metrics: a case study of Erzurum, Turkey. Fresenius Environmental Bulletin, 20(12), pp. 3258-3269. Pohl, C., & Van Genderen, J. L. (1998). Review article multisensor image fusion in remote sensing: concepts, methods and applications. International journal of remote sensing, 19(5), pp. 823-854. Price, O., & Bradstock, R. (2014). Countervailing effects of urbanization and vegetation extent on fire frequency on the Wildland Urban Interface: Disentangling fuel and ignition effects. Landscape and urban planning, 130, pp. 81-88. Prosdocimi, I., Kjeldsen, T., & Miller, J. (2015). Detection and attribution of urbanization effect on flood extremes using nonstationary flood‐frequency models. Water resources research, 51(6), pp. 4244-4262. Rawat, J., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), pp. 77-84. Rokni, K., Ahmad, A., Solaimani, K., & Hazini, S. (2015). A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques. International Journal of Applied Earth Observation and Geoinformation, 34, pp. 226-234. Sakieh, Y., Amiri, B. J., Danekar, A., Feghhi, J., & Dezhkam, S. (2015). Simulating urban expansion and scenario prediction using a cellular automata urban growth model, SLEUTH, through a case study of Karaj City, Iran. Journal of Housing and the Built Environment, 30(4), pp. 591-611. Santra, A. (2016). Land Surface Temperature Estimation and Urban Heat Island Detection: A Remote Sensing Perspective. Remote Sensing Techniques and GIS Applications in Earth and Environmental Studies, p 16. Shrivastava, L., & Nag, S. (2017). MONITORING OF LAND USE/LAND COVER CHANGE USING GIS AND REMOTE SENSING TECHNIQUES: A CASE STUDY OF SAGAR RIVER WATERSHED, TRIBUTARY OF WAINGANGA RIVER OF MADHYA PRADESH, INDIA. Shuaibu, M., & Sulaiman, I. (2012). Application of remote sensing and GIS in land cover change detection in Mubi, Adamawa State, Nigeria. J Technol Educ Res, 5, pp. 43-55. Song, B., Li, J., Dalla Mura, M., Li, P., Plaza, A., Bioucas-Dias, J. M., . . . Chanussot, J. (2014). Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE transactions on geoscience and remote sensing, 52(8), pp. 5122-5136. Song, X.-P., Sexton, J. O., Huang, C., Channan, S., & Townshend, J. R. (2016). Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sensing of Environment, 175, pp. 1-13. Tayyebi, A., Shafizadeh-Moghadam, H., & Tayyebi, A. H. (2018). Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran. Land Use Policy, 71, pp. 459-469. Teodoro, A. C., Gutierres, F., Gomes, P., & Rocha, J. (2018). Remote Sensing Data and Image Classification Algorithms in the Identification of Beach Patterns Beach Management Tools-Concepts, Methodologies and Case Studies (pp. 579-587): Springer. Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, pp. 22-36. Tuholske, C., Tane, Z., López-Carr, D., Roberts, D., & Cassels, S. (2017). Thirty years of land use/cover change in the Caribbean: Assessing the relationship between urbanization and mangrove loss in Roatán, Honduras. Applied Geography, 88, pp. 84-93. Tuia, D., Flamary, R., & Courty, N. (2015). Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions. ISPRS Journal of Photogrammetry and Remote Sensing, 105, pp. 272-285. Tzotsos, A., & Argialas, D. (2008). Support vector machine classification for object-based image analysis Object-Based Image Analysis (pp. 663-677): Springer. Wang, L., Sousa, W., & Gong, P. (2004). Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International journal of remote sensing, 25(24), pp. 5655-5668. Wang, Q., Zeng, Y.-e., & Wu, B.-w. (2016). Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renewable and Sustainable Energy Reviews, 54, pp. 1563-1579. Wang, S., Ma, H., & Zhao, Y. (2014). Exploring the relationship between urbanization and the eco-environment—A case study of Beijing–Tianjin–Hebei region. Ecological Indicators, 45, pp. 171-183. Weitkamp, C. (2006). Lidar: range-resolved optical remote sensing of the atmosphere: Springer Science & Business. Wellmann, T., Haase, D., Knapp, S., Salbach, C., Selsam, P., & Lausch, A. (2018). Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecological Indicators, 85, pp. 190-203. Whiteside, T. G., Boggs, G. S., & Maier, S. W. (2011). Comparing object-based and pixel-based classifications for mapping savannas. International Journal of Applied Earth Observation and Geoinformation, 13(6), pp. 884-893. Willhauck, G., Schneider, T., De Kok, R., & Ammer, U. (2000). Comparison of object oriented classification techniques and standard image analysis for the use of change detection between SPOT multispectral satellite images and aerial photos. Proceedings of XIX ISPRS congress. Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., . . . Young, S. A. (2009). Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11), pp. 2310-2323. Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., & Tucker III, C. J. (2015). Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations: Springer. Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., & Schirokauer, D. (2006). Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72(7), pp. 799-811. Zhou, D., Zhao, S., Zhang, L., & Liu, S. (2016). Remotely sensed assessment of urbanization effects on vegetation phenology in China's 32 major cities. Remote Sensing of Environment, 176, pp. 272-281. Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C., . . . Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sensing of Environment, 185, pp. 243-257.
APA, Harvard, Vancouver, ISO, and other styles
18

Ngoc, Hoang Thi Huyen, Tran Thi Thuy Van, Nguyen Manh Ha, Nguyen Quoc Binh, and Mai Thanh Tan. "Bioclimatic assessments for tea cultivation in Western Nghe An." VIETNAM JOURNAL OF EARTH SCIENCES 41, no. 1 (January 8, 2019): 81–94. http://dx.doi.org/10.15625/0866-7187/41/1/13586.

Full text
Abstract:
Bioclimatology is applied for growing tea in the West of Nghe An province, where the tea is considered as a high economic efficient plant to be priorly cultivated for reducing poverty and getting rich. Based on the bioclimatic characteristics of tea plant and regional climatic data from 1980 to 2014, the bioclimatic diagrams are built and the tea cultivability is mapped in term of annual average temperature and total precipitation, for this region with regarding its district of Con Cuong as an analytical key. The climate, including both temperature and precipitation, in Con Cuong is relatively suitable for the tea plantation. The Western Nghe An, a land of approx. 1.4 million ha, could be classified in five areas with different suitability for tea plant. The unfavorable area occupies only 1% of total region and the four favorable rests account for 99% of total, in which, the most favorable area is largest with about 746,355 ha, i.e. over 50% of whole region. The three other areas are cultivable but they are less favorable in terms of either temperature or precipitation. Growing tea in Western Nghe An, even in favorable areas, it should be taken into account of the weather disadvantages in certain moments of the year such as extreme dry, cold, hot and rainy events.ReferencesAhmed S., 2014. Tea and the taste of climate change, www.herbalgram.org, issue, 103, 44–51.Ahmed S., Stepp J.R., Orians C., Griffin T., Matyas C., 2014. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PloS one, 9(10), e109126.Bhagat R.M., Deb Baruah R., Safique S., 2010. climate and tea [camellia sinensis (l.) o. kuntze] Production with Special Reference to North Eastern India: A Review. Journal of Environmental Research And Development, 4(4), 1017–1028.Carr M., 1972. The Climatic Requirements of the Tea Plant: A Review. Experimental Agriculture, 8(01), 1–14. https://doi.org/10.1017/S0014479700023449.Carr M.K.V., Stephen W., 1992. Climate, weather and the yield of tea. In: Tea Cultivation to consumtpion. K.C. Wilson and M.N. Clifford (Eds). Chapman and Hall, 87–135.Daleen Lotter, David le Maitre, 2014. Modeling the distribution of Aspalathus linearis (Rooibos tea): implications of climate change for livelihoods dependent on both cultivation and harvesting from the wild. Ecology and Evolution, 4(8), 1209–1221.Ducan J.M.A., Saikia S.D., Gupta N., Biggs E.M., 2016. Observing climate impacts on tea yield in Assam, India. Applied Geogr., 77, 64–71.Institute of Geography, 2016. Department of Climatically Geography. The precipitation and temperature data at meteorological measuring stations in the West of Nghe An Province between 1984 and 2014. Data stored at Department of Climatically Geography, Institute of Geography, Ha Noi, 46p.Gaussen H., 1954. 8 ème Congrès international de Botanique. Section 7 et 3. Paris.Hadfield W., 1976. The effect of high temperature on some aspects of the physiology and cultivation of tea bush (Camellia sinensis) in North East India. In: Light as an Ecological factor. G.C. Evans, R. Bainbridge and O. Rackham (Eds.) Blackwel Sci. Publ., London, 477–495.Hoang Luu Thu Thuy, 2012. The comprehensive assessment of natural, socio-economic and environmental conditions for environmental protection planning in Nghe An Province. Doctoral Thesis. Institude of Geography, Hanoi, 150p.Huang Shoubo, 1989. Meteorology of tea plants in China: a review. Agri. Forest Meteorol., 47, 19–30.Huang Shoubo, 1991. A study on the ecological climates of some famous tea growing areas in high mountainous regions of China. Chinese Geographical Science, 1(2), 121–128.International Center for Tropical Agriculture, 2017. Identification of suitable tea growing areas in Malawi under climate change scenarios. Ciat report, Cali, Colombia, 39p.Kabir S.E., 2001. A study on Ecophysiology of Tea (Camellia sinensis) with special reference to the influence of climatic factors on physiology of a few selected Tea clones of Darjeering. International Journal of Tea Science, 1(4), 1–9.Kandiah S., Thevadasan T., 1980. Quantification of weather parameters to predict tea yields. Tea Q., Srilanka, 49(1), 25–33.Kaye L., 2014. Climate change threatens Sri Lanka’s tea industry. Triple Pundit: People, Planet, Profit. Available at: www.triplepundit.com/2014/06/climate-changethreatens-sri-lanka-tea-industry. Accessed July 25, 2014.Nakayama A., Harada S., 1962. Studies on the effect on the growth of tea plant. IV. The effect of temperature on the growth of young plants in summer. Bull. Tea Res. Station, Japan, 1, 28–40.Nguyen Bao Ve, 2005. The syllabus of industrial trees. Hanoi Argricultural Publishing House, 224p.Nguyen Dai Khanh, 2003. The assessment of agricultural climatic conditions for tea’s growth in major tea regions of Vietnam. Doctoral Thesis. Institute of Meteorology and Hydrology, 149p.Nguyen Khanh Van, Nguyen Thi Hien, Phan Ke Loc, Nguyen Tien Hiep, 2000. The bioclimatic diagrams of Vietnam. Vietnam National University Publishing House, Ha Noi, 126p.Nguyen Van Hong, 2017. Analyzing, assessing landscape for agriculture, forestry development and biodiversity conservation in the southwestern border districts in Nghe An province. Doctoral thesis. Vietnam National University, Hanoi, 150p.Nguyen Van Tao (ed.), 2004. Completing the asexual propagation process of LDP1 and LDP2 cultivars by cuttings in order to transfer to production. State Project of production pilot, coded KC.06.DA.09.NN. Institute of Tea Research, Phu Tho, 50p.Nkomwa E.C., Joshua M.K., Ngongondo C., Monjerezi M., Chipungu F., 2014. Assessing indigenous knowledge systems and climate change adaptation strategies in agriculture: A case study of Chagaka Village, Chikhwawa, Southern Malawi. Physics and Chemistry of the Earth, Parts A/B/C, 67–69, 164–172.Pham Hoang Ho, 2003. An Illustrated Flora of Vietnam, 2, 430–434. Youth Publishing House, 952p.Rebecca Boehm, Sean B. Cash, Bruce T. Anderson, Selena Ahmed, Timothy S. Griffin, Albert Robbat Jr., John Richard Stepp, Wenyan Han, Matt Hazel and Colin M. Orians, 2016. Association between Empirically Estimated Monsoon Dynamics and Other Weather Factors and Historical Tea Yields in China: Results from a Yield Response Model. Climate, 4, 20; doi:10.3390/cli4020020. www.mdpi.com/journal/climate.Schepp K., 2014. Strategy to adapt to climate change for Michimikuru tea farmers in Kenya. Adap CC Report. 2008. Available at: www.adapcc.org/en/kenya.htm. Accessed July 25, 2014.Sen A.R., Biswas A.K., Sanyal D.K., 1966. The Influence of Climatic Factors on the Yield of Tea in the Assam Valley, J. App. Meteo., 5(6), 789–800.Statistics Office of Nghe An Province, 2016. The annual abstracts of statistics 2015. Nghe An Publishing House, Nghe An, 453p.Tanton T.W., 1982. Environmental factors affecting yield of tea (camellia sinensis). Effect of air temperature. Expl. Agri., 18, 47–52.The People’s Committee of Nghe An Province, 2013. The Decision No. 448/QĐ-UBND dated 31/01/2013 to approve the hi-tech agriculture planning on the production of tea in Nghe An Province.The People’s Committee of Nghe An Province, 2013. The Decision No. 6290/QĐ-UBND dated 24/12/2013 to approve the adjustments and supplements for the development of Nghe An tea Industrial zone planning in 2013–2020.Walter H, Lieth, 1967. Klimadiagram - Weltatlas. Veb Gustav Fischer Verlag Jena.Wijeratne M.A., 1996. Vulnerability of Sri Lanka tea production to global climate change. Water, Air and Soil Pollution, 92(1-2), 87–94.Wijeratne M.A., Anandacoomaraswamy A., Amarathunga M., Ratnasiri J., 2007. Assessment of impact of climate change on productivity of tea (Camellia sinensis L.) plantations in Sri Lanka, 119–126.http://nghean.gov.vn, 05/06/2015. Many crops are withered in Con Cuong.http://baonghean.vn, 25/03/2013. Drought threaten rice and tea in Con Cuong. http://baonghean.vn/con-cuong-han-han-de-doa-lua-che-44581.html.
APA, Harvard, Vancouver, ISO, and other styles
19

Hens, Luc, Nguyen An Thinh, Tran Hong Hanh, Ngo Sy Cuong, Tran Dinh Lan, Nguyen Van Thanh, and Dang Thanh Le. "Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 2 (January 19, 2018): 127–53. http://dx.doi.org/10.15625/0866-7187/40/2/11107.

Full text
Abstract:
Climate change induced sea-level rise (SLR) is on its increase globally. Regionally the lowlands of China, Vietnam, Bangladesh, and islands of the Malaysian, Indonesian and Philippine archipelagos are among the world’s most threatened regions. Sea-level rise has major impacts on the ecosystems and society. It threatens coastal populations, economic activities, and fragile ecosystems as mangroves, coastal salt-marches and wetlands. This paper provides a summary of the current state of knowledge of sea level-rise and its effects on both human and natural ecosystems. The focus is on coastal urban areas and low lying deltas in South-East Asia and Vietnam, as one of the most threatened areas in the world. About 3 mm per year reflects the growing consensus on the average SLR worldwide. The trend speeds up during recent decades. The figures are subject to local, temporal and methodological variation. In Vietnam the average values of 3.3 mm per year during the 1993-2014 period are above the worldwide average. Although a basic conceptual understanding exists that the increasing global frequency of the strongest tropical cyclones is related with the increasing temperature and SLR, this relationship is insufficiently understood. Moreover the precise, complex environmental, economic, social, and health impacts are currently unclear. SLR, storms and changing precipitation patterns increase flood risks, in particular in urban areas. Part of the current scientific debate is on how urban agglomeration can be made more resilient to flood risks. Where originally mainly technical interventions dominated this discussion, it becomes increasingly clear that proactive special planning, flood defense, flood risk mitigation, flood preparation, and flood recovery are important, but costly instruments. Next to the main focus on SLR and its effects on resilience, the paper reviews main SLR associated impacts: Floods and inundation, salinization, shoreline change, and effects on mangroves and wetlands. The hazards of SLR related floods increase fastest in urban areas. This is related with both the increasing surface major cities are expected to occupy during the decades to come and the increasing coastal population. In particular Asia and its megacities in the southern part of the continent are increasingly at risk. The discussion points to complexity, inter-disciplinarity, and the related uncertainty, as core characteristics. An integrated combination of mitigation, adaptation and resilience measures is currently considered as the most indicated way to resist SLR today and in the near future.References Aerts J.C.J.H., Hassan A., Savenije H.H.G., Khan M.F., 2000. Using GIS tools and rapid assessment techniques for determining salt intrusion: Stream a river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265-273. Doi: 10.1016/S1464-1909(00)00014-9. Alongi D.M., 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349. Doi: 10.1017/S0376892902000231 Alongi D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1, 30-39. Doi: 10.1007/s404641-015-0002-x. Anderson F., Al-Thani N., 2016. Effect of sea level rise and groundwater withdrawal on seawater intrusion in the Gulf Coast aquifer: Implications for agriculture. Journal of Geoscience and Environment Protection, 4, 116-124. Doi: 10.4236/gep.2016.44015. Anguelovski I., Chu E., Carmin J., 2014. Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. Global Environmental Change, 27, 156-167. Doi: 10.1016/j.gloenvcha.2014.05.010. Arustienè J., Kriukaitè J., Satkunas J., Gregorauskas M., 2013. Climate change and groundwater - From modelling to some adaptation means in example of Klaipèda region, Lithuania. In: Climate change adaptation in practice. P. Schmidt-Thomé, J. Klein Eds. John Wiley and Sons Ltd., Chichester, UK., 157-169. Bamber J.L., Aspinall W.P., Cooke R.M., 2016. A commentary on “how to interpret expert judgement assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik S.W. Van de Wal. Climatic Change, 137, 321-328. Doi: 10.1007/s10584-016-1672-7. Barnes C., 2014. Coastal population vulnerability to sea level rise and tropical cyclone intensification under global warming. BSc-thesis. Department of Geography, University of Lethbridge, Alberta Canada. Be T.T., Sinh B.T., Miller F., 2007. Challenges to sustainable development in the Mekong Delta: Regional and national policy issues and research needs. The Sustainable Mekong Research Network, Bangkok, Thailand, 1-210. Bellard C., Leclerc C., Courchamp F., 2014. Impact of sea level rise on 10 insular biodiversity hotspots. Global Ecology and Biogeography, 23, 203-212. Doi: 10.1111/geb.12093. Berg H., Söderholm A.E., Sönderström A.S., Nguyen Thanh Tam, 2017. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong delta, Vietnam. Sustainability Science, 12, 137-154. Doi: 10.1007/s11625-016-0409-x. Bilskie M.V., Hagen S.C., Medeiros S.C., Passeri D.L., 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41, 927-934. Doi: 10.1002/2013GL058759. Binh T.N.K.D., Vromant N., Hung N.T., Hens L., Boon E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau penisula, Vietnam. Environment, Development and Sustainability, 7, 519-536. Doi: 10.1007/s10668-004-6001-z. Blankespoor B., Dasgupta S., Laplante B., 2014. Sea-level rise and coastal wetlands. Ambio, 43, 996- 005.Doi: 10.1007/s13280-014-0500-4. Brockway R., Bowers D., Hoguane A., Dove V., Vassele V., 2006. A note on salt intrusion in funnel shaped estuaries: Application to the Incomati estuary, Mozambique.Estuarine, Coastal and Shelf Science, 66, 1-5. Doi: 10.1016/j.ecss.2005.07.014. Cannaby H., Palmer M.D., Howard T., Bricheno L., Calvert D., Krijnen J., Wood R., Tinker J., Bunney C., Harle J., Saulter A., O’Neill C., Bellingham C., Lowe J., 2015. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci. Discuss, 12, 2955-3001. Doi: 10.5194/osd-12-2955-2015. Carraro C., Favero A., Massetti E., 2012. Investment in public finance in a green, low carbon economy. Energy Economics, 34, S15-S18. Castan-Broto V., Bulkeley H., 2013. A survey ofurban climate change experiments in 100 cities. Global Environmental Change, 23, 92-102. Doi: 10.1016/j.gloenvcha.2012.07.005. Cazenave A., Le Cozannet G., 2014. Sea level rise and its coastal impacts. GeoHealth, 2, 15-34. Doi: 10.1002/2013EF000188. Chu M.L., Guzman J.A., Munoz-Carpena R., Kiker G.A., Linkov I., 2014. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion and nourishment. Environmental modelling and software, 52, 111-120. Doi.org/10.1016/j.envcsoft.2013.10.020. Church J.A. et al., 2013. Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of Intergovernmental Panel on Climate Change. Eds: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Cambridge University Press, Cambridge, UK. Connell J., 2016. Last days of the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pacific Viewpoint, 57, 3-15. Doi: 10.1111/apv.12118. Dasgupta S., Laplante B., Meisner C., Wheeler, Yan J., 2009. The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379-388. Doi: 10.1007/s 10584-008-9499-5. Delbeke J., Vis P., 2015. EU climate policy explained, 136p. Routledge, Oxon, UK. DiGeorgio M., 2015. Bargaining with disaster: Flooding, climate change, and urban growth ambitions in QuyNhon, Vietnam. Public Affairs, 88, 577-597. Doi: 10.5509/2015883577. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, 2015. Enhancement of coastal protection under the context of climate change: A case study of Hai Hau coast, Vietnam. Proceedings of the 10th Asian Regional Conference of IAEG, 1-8. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, Lan Nguyen Chau, 2017. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. Journal of Coastal Conservation, 21, 47-62. Donner S.D., Webber S., 2014. Obstacles to climate change adaptation decisions: A case study of sea level rise; and coastal protection measures in Kiribati. Sustainability Science, 9, 331-345. Doi: 10.1007/s11625-014-0242-z. Driessen P.P.J., Hegger D.L.T., Bakker M.H.N., Van Renswick H.F.M.W., Kundzewicz Z.W., 2016. Toward more resilient flood risk governance. Ecology and Society, 21, 53-61. Doi: 10.5751/ES-08921-210453. Duangyiwa C., Yu D., Wilby R., Aobpaet A., 2015. Coastal flood risks in the Bangkok Metropolitan region, Thailand: Combined impacts on land subsidence, sea level rise and storm surge. American Geophysical Union, Fall meeting 2015, abstract#NH33C-1927. Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marba N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. Doi: 10.1038/nclimate1970. Erban L.E., Gorelick S.M., Zebker H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9, 1-20. Doi: 10.1088/1748-9326/9/8/084010. FAO - Food and Agriculture Organisation, 2007.The world’s mangroves 1980-2005. FAO Forestry Paper, 153, Rome, Italy. Farbotko C., 2010. Wishful sinking: Disappearing islands, climate refugees and cosmopolitan experimentation. Asia Pacific Viewpoint, 51, 47-60. Doi: 10.1111/j.1467-8373.2010.001413.x. Goltermann D., Ujeyl G., Pasche E., 2008. Making coastal cities flood resilient in the era of climate change. Proceedings of the 4th International Symposium on flood defense: Managing flood risk, reliability and vulnerability, 148-1-148-11. Toronto, Canada. Gong W., Shen J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China.Continental Shelf Research, 31, 769-788. Doi: 10.1016/j.csr.2011.01.011. Gosian L., 2014. Protect the world’s deltas. Nature, 516, 31-34. Graham S., Barnett J., Fincher R., Mortreux C., Hurlimann A., 2015. Towards fair outcomes in adaptation to sea-level rise. Climatic Change, 130, 411-424. Doi: 10.1007/s10584-014-1171-7. COASTRES-D-12-00175.1. Güneralp B., Güneralp I., Liu Y., 2015. Changing global patterns of urban expoàsure to flood and drought hazards. Global Environmental Change, 31, 217-225. Doi: 10.1016/j.gloenvcha.2015.01.002. Hallegatte S., Green C., Nicholls R.J., Corfee-Morlot J., 2013. Future flood losses in major coastal cities. Nature Climate Change, 3, 802-806. Doi: 10.1038/nclimate1979. Hamlington B.D., Strassburg M.W., Leben R.R., Han W., Nerem R.S., Kim K.-Y., 2014. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4, 782-785. Doi: 10.1038/nclimate2307. Hashimoto T.R., 2001. Environmental issues and recent infrastructure development in the Mekong Delta: Review, analysis and recommendations with particular reference to large-scale water control projects and the development of coastal areas. Working paper series (Working paper No. 4). Australian Mekong Resource Centre, University of Sydney, Australia, 1-70. Hibbert F.D., Rohling E.J., Dutton A., Williams F.H., Chutcharavan P.M., Zhao C., Tamisiea M.E., 2016. Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. Doi: 10.1016/j.quascirev.2016.04.019. Hinkel J., Lincke D., Vafeidis A., Perrette M., Nicholls R.J., Tol R.S.J., Mazeion B., Fettweis X., Ionescu C., Levermann A., 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292-3297. Doi: 10.1073/pnas.1222469111. Hinkel J., Nicholls R.J., Tol R.S.J., Wang Z.B., Hamilton J.M., Boot G., Vafeidis A.T., McFadden L., Ganapolski A., Klei R.J.Y., 2013. A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. Doi: 10.1016/j.gloplacha.2013.09.002. Huong H.T.L., Pathirana A., 2013. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci., 17, 379-394. Doi: 10.5194/hess-17-379-2013. Hurlimann A., Barnett J., Fincher R., Osbaldiston N., Montreux C., Graham S., 2014. Urban planning and sustainable adaptation to sea-level rise. Landscape and Urban Planning, 126, 84-93. Doi: 10.1016/j.landurbplan.2013.12.013. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, 2011. Climate change vulnerability and risk assessment study for Ca Mau and KienGiang provinces, Vietnam. Hanoi, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN), 250p. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, Ca Mau PPC, 2011. Climate change impact and adaptation study in The Mekong Delta - Part A: Ca Mau Atlas. Hanoi, Vietnam: Institute of Meteorology, Hydrology and Environment (IMHEN), 48p. IPCC-Intergovernmental Panel on Climate Change, 2014. Fifth assessment report. Cambridge University Press, Cambridge, UK. Jevrejeva S., Jackson L.P., Riva R.E.M., Grinsted A., Moore J.C., 2016. Coastal sea level rise with warming above 2°C. Proceedings of the National Academy of Sciences, 113, 13342-13347. Doi: 10.1073/pnas.1605312113. Junk W.J., AN S., Finlayson C.M., Gopal B., Kvet J., Mitchell S.A., Mitsch W.J., Robarts R.D., 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Science, 75, 151-167. Doi: 10.1007/s00027-012-0278-z. Jordan A., Rayner T., Schroeder H., Adger N., Anderson K., Bows A., Le Quéré C., Joshi M., Mander S., Vaughan N., Whitmarsh L., 2013. Going beyond two degrees? The risks and opportunities of alternative options. Climate Policy, 13, 751-769. Doi: 10.1080/14693062.2013.835705. Kelly P.M., Adger W.N., 2000. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47, 325-352. Doi: 10.1023/A:1005627828199. Kirwan M.L., Megonigal J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rice. Nature, 504, 53-60. Doi: 10.1038/nature12856. Koerth J., Vafeidis A.T., Hinkel J., Sterr H., 2013. What motivates coastal households to adapt pro actively to sea-level rise and increased flood risk? Regional Environmental Change, 13, 879-909. Doi: 10.1007/s10113-12-399-x. Kontgis K., Schneider A., Fox J;,Saksena S., Spencer J.H., Castrence M., 2014. Monitoring peri urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377-388. Doi: 10.1016/j.apgeogr.2014.06.029. Kopp R.E., Horton R.M., Little C.M., Mitrovica J.X., Oppenheimer M., Rasmussen D.J., Strauss B.H., Tebaldi C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383-406. Doi: 10.1002/2014EF000239. Kuenzer C., Bluemel A., Gebhardt S., Quoc T., Dech S., 2011. Remote sensing of mangrove ecosystems: A review.Remote Sensing, 3, 878-928. Doi: 10.3390/rs3050878. Lacerda G.B.M., Silva C., Pimenteira C.A.P., Kopp Jr. R.V., Grumback R., Rosa L.P., de Freitas M.A.V., 2013. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: Adaptive measures to the impacts of sea level rise. Mitigation and Adaptation Strategies for Global Change, 19, 104-1062. Doi: 10.1007/s11027-013-09459-x. Lam Dao Nguyen, Pham Van Bach, Nguyen Thanh Minh, Pham Thi Mai Thy, Hoang Phi Hung, 2011. Change detection of land use and river bank in Mekong Delta, Vietnam using time series remotely sensed data. Journal of Resources and Ecology, 2, 370-374. Doi: 10.3969/j.issn.1674-764x.2011.04.011. Lang N.T., Ky B.X., Kobayashi H., Buu B.C., 2004. Development of salt tolerant varieties in the Mekong delta. JIRCAS Project, Can Tho University, Can Tho, Vietnam, 152. Le Cozannet G., Rohmer J., Cazenave A., Idier D., Van de Wal R., de Winter R., Pedreros R., Balouin Y., Vinchon C., Oliveros C., 2015. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 44-56. Doi: 10.1016/j.envsoft.2015.07.021. Le Cozannet G., Manceau J.-C., Rohmer J., 2017. Bounding probabilistic sea-level projections with the framework of the possible theory. Environmental Letters Research, 12, 12-14. Doi.org/10.1088/1748-9326/aa5528.Chikamoto Y., 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888-892. Doi: 10.1038/nclimate2330. Lovelock C.E., Cahoon D.R., Friess D.A., Gutenspergen G.R., Krauss K.W., Reef R., Rogers K., Saunders M.L., Sidik F., Swales A., Saintilan N., Le Xuan Tuyen, Tran Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559-563. Doi: 10.1038/nature15538. MA Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Current state and trends. Island Press, Washington DC, 266p. Masterson J.P., Fienen M.N., Thieler E.R., Gesch D.B., Gutierrez B.T., Plant N.G., 2014. Effects of sea level rise on barrier island groundwater system dynamics - ecohydrological implications. Ecohydrology, 7, 1064-1071. Doi: 10.1002/eco.1442. McGanahan G., Balk D., Anderson B., 2007. The rising tide: Assessing the risks of climate changes and human settlements in low elevation coastal zones.Environment and urbanization, 19, 17-37. Doi: 10.1177/095624780707960. McIvor A., Möller I., Spencer T., Spalding M., 2012. Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International, 1-27. Merryn T., Pidgeon N., Whitmarsh L., Ballenger R., 2016. Expert judgements of sea-level rise at the local scale. Journal of Risk Research, 19, 664-685. Doi.org/10.1080/13669877.2015.1043568. Monioudi I.N., Velegrakis A.F., Chatzipavlis A.E., Rigos A., Karambas T., Vousdoukas M.I., Hasiotis T., Koukourouvli N., Peduzzi P., Manoutsoglou E., Poulos S.E., Collins M.B., 2017. Assessment of island beach erosion due to sea level rise: The case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci., 17, 449-466. Doi: 10.5194/nhess-17-449-2017. MONRE - Ministry of Natural Resources and Environment, 2016. Scenarios of climate change and sea level rise for Vietnam. Publishing House of Environmental Resources and Maps Vietnam, Hanoi, 188p. Montz B.E., Tobin G.A., Hagelman III R.R., 2017. Natural hazards. Explanation and integration. The Guilford Press, NY, 445p. Morgan L.K., Werner A.D., 2014. Water intrusion vulnerability for freshwater lenses near islands. Journal of Hydrology, 508, 322-327. Doi: 10.1016/j.jhydrol.2013.11.002. Muis S., Güneralp B., Jongman B., Aerts J.C.H.J., Ward P.J., 2015. Science of the Total Environment, 538, 445-457. Doi: 10.1016/j.scitotenv.2015.08.068. Murray N.J., Clemens R.S., Phinn S.R., Possingham H.P., Fuller R.A., 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and Environment, 12, 267-272. Doi: 10.1890/130260. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding. A global assessment. Plos One, 10, 1-22. Doi: 10.1371/journal.pone.0118571. Nguyen A. Duoc, Savenije H. H., 2006. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 10, 743-754. Doi: 10.5194/hess-10-743-2006. Nguyen An Thinh, Nguyen Ngoc Thanh, Luong Thi Tuyen, Luc Hens, 2017. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An, World Heritage site. Journal of Environment, Development and Sustainability. Nguyen An Thinh, Luc Hens (Eds.), 2018. Human ecology of climate change associated disasters in Vietnam: Risks for nature and humans in lowland and upland areas. Springer Verlag, Berlin.Nguyen An Thinh, Vu Anh Dung, Vu Van Phai, Nguyen Ngoc Thanh, Pham Minh Tam, Nguyen Thi Thuy Hang, Le Trinh Hai, Nguyen Viet Thanh, Hoang Khac Lich, Vu Duc Thanh, Nguyen Song Tung, Luong Thi Tuyen, Trinh Phuong Ngoc, Luc Hens, 2017. Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam). Environ Dev Sustain, 19, 745-767. Doi: 10.1007/s/10668-016-9761-3. Nguyen Van Hoang, 2017. Potential for desalinization of brackish groundwater aquifer under a background of rising sea level via salt-intrusion prevention river gates in the coastal area of the Red River delta, Vietnam. Environment, Development and Sustainability. Nguyen Tho, Vromant N., Nguyen Thanh Hung, Hens L., 2008. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environmental Geology, 54, 1739-1746. Doi: 10.1007/s00254-007-0951-z. Nguyen Thang T.X., Woodroffe C.D., 2016. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River delta. Sustainability Science, 11, 645-659. Doi: 10.1007/s11625-015-0336-2. Nicholls N.N., Hoozemans F.M.J., Marchand M., Analyzing flood risk and wetland losses due to the global sea-level rise: Regional and global analyses.Global Environmental Change, 9, S69-S87. Doi: 10.1016/s0959-3780(99)00019-9. Phan Minh Thu, 2006. Application of remote sensing and GIS tools for recognizing changes of mangrove forests in Ca Mau province. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh City, Vietnam, 9-11 November, 1-17. Reise K., 2017. Facing the third dimension in coastal flatlands.Global sea level rise and the need for coastal transformations. Gaia, 26, 89-93. Renaud F.G., Le Thi Thu Huong, Lindener C., Vo Thi Guong, Sebesvari Z., 2015. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre province, Mekong Delta. Climatic Change, 133, 69-84. Doi: 10.1007/s10584-014-1113-4. Serra P., Pons X., Sauri D., 2008. Land cover and land use in a Mediterranean landscape. Applied Geography, 28, 189-209. Shearman P., Bryan J., Walsh J.P., 2013.Trends in deltaic change over three decades in the Asia-Pacific Region. Journal of Coastal Research, 29, 1169-1183. Doi: 10.2112/JCOASTRES-D-12-00120.1. SIWRR-Southern Institute of Water Resources Research, 2016. Annual Report. Ministry of Agriculture and Rural Development, Ho Chi Minh City, 1-19. Slangen A.B.A., Katsman C.A., Van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M., 2012. Towards regional projections of twenty-first century sea-level change based on IPCC RES scenarios. Climate Dynamics, 38, 1191-1209. Doi: 10.1007/s00382-011-1057-6. Spencer T., Schuerch M., Nicholls R.J., Hinkel J., Lincke D., Vafeidis A.T., Reef R., McFadden L., Brown S., 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Global and Planetary Change, 139, 15-30. Doi:10.1016/j.gloplacha.2015.12.018. Stammer D., Cazenave A., Ponte R.M., Tamisiea M.E., 2013. Causes of contemporary regional sea level changes. Annual Review of Marine Science, 5, 21-46. Doi: 10.1146/annurev-marine-121211-172406. Tett P., Mee L., 2015. Scenarios explored with Delphi. In: Coastal zones ecosystems services. Eds., Springer, Berlin, Germany, 127-144. Tran Hong Hanh, 2017. Land use dynamics, its drivers and consequences in the Ca Mau province, Mekong delta, Vietnam. PhD dissertation, 191p. VUBPRESS Brussels University Press, ISBN 9789057186226, Brussels, Belgium. Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, Mai Van Khiem, Nguyen Xuan Hien, Doan Ha Phong, 2016. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam. Tran Hong Hanh, Tran Thuc, Kervyn M., 2015. Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau province, Vietnam. Remote Sensing, 7, 2899-2925. Doi: 10.1007/s00254-007-0951-z Van Lavieren H., Spalding M., Alongi D., Kainuma M., Clüsener-Godt M., Adeel Z., 2012. Securing the future of Mangroves. The United Nations University, Okinawa, Japan, 53, 1-56. Water Resources Directorate. Ministry of Agriculture and Rural Development, 2016. Available online: http://www.tongcucthuyloi.gov.vn/Tin-tuc-Su-kien/Tin-tuc-su-kien-tong-hop/catid/12/item/2670/xam-nhap-man-vung-dong-bang-song-cuu-long--2015---2016---han-han-o-mien-trung--tay-nguyen-va-giai-phap-khac-phuc. Last accessed on: 30/9/2016. Webster P.J., Holland G.J., Curry J.A., Chang H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Doi: 10.1126/science.1116448. Were K.O., Dick O.B., Singh B.R., 2013. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage Basin, Kenya. Applied Geography, 41, 75-86. Williams G.A., Helmuth B., Russel B.D., Dong W.-Y., Thiyagarajan V., Seuront L., 2016. Meeting the climate change challenge: Pressing issues in southern China an SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373-381. Doi: 10.1016/j.rsma.2016.07.002. Woodroffe C.D., Rogers K., McKee K.L., Lovdelock C.E., Mendelssohn I.A., Saintilan N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. Doi: 10.1146/annurev-marine-122414-034025.
APA, Harvard, Vancouver, ISO, and other styles
20

Hung, Tran Trong, Tran Anh Tu, Dang Thuong Huyen, and Marc Desmet. "Presence of trace elements in sediment of Can Gio mangrove forest, Ho Chi Minh city, Vietnam." VIETNAM JOURNAL OF EARTH SCIENCES 41, no. 1 (January 8, 2019): 21–35. http://dx.doi.org/10.15625/0866-7187/41/1/13543.

Full text
Abstract:
Can Gio mangrove forest (CGM) is located downstream of Ho Chi Minh City (HCMC), situated between an estuarine system of Dong Nai - Sai Gon river and a part of Vam Co river. The CGM is the largest restored mangrove forest in Vietnam and the UNESCO’s Mangrove Biosphere Reserve. The CGM has been gradually facing to numeric challenges of global climate change, environmental degradation and socio-economic development for the last decades. To evaluate sediment quality in the CGM, we collected 13 cores to analyze for sediment grain size, organic matter content, and trace element concentration of Cd, Cr, Cu, Ni, Pb, Zn. Results showed that trace element concentrations ranged from uncontaminated (Cd, Cu, and Zn) to very minor contaminated (Cr, Ni, and Pb). The concentrations were gradually influenced by suspended particle size and the mangrove plants.ReferencesAnh M.T., Chi D.H., Vinh N.N., Loan T.T., Triet L.M., Slootenb K.B.-V., Tarradellas J., 2003. Micropollutants in the sediment of Sai Gon – Dong Nai rivers: Situation and ecological risks. Chimia International Journal for Chemistry, 57, 09(0009–4293), 537–541.Baruddin N.A., Shazili N.A., Pradit S., 2017. Sequential extraction analysis of heavy metals in relation to bioaccumulation in mangroves, Rhizophora mucronata from Kelantan delta, Malaysia. AACL Bioflux, 10(2), 172-181. Retrieved from www.bioflux.com/aacl.Bravard J.-P., Goichot M., Tronchere H., 2014. An assessment of sediment transport processes in the lower Mekong river based on deposit grain size, the CM technique and flow energy data. Geomorphology, 207, 174-189.Cang L.T., Thanh N.C. 2008. Importing and exporting sediment to and from mangrove forest at Dong Trang estuary, Can Gio district, Ho Chi Minh city. Science & Technology Development, 11(04), 12-18.Carignan J., Hild P., Mevelle G., Morel J., Yeghicheyan D., 2001. Routine analyses of trace elements in geological samples using flow injection and low-pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. The Journal of Geo standard and Geoanalysis, 187-198.Carlson P.R., Yarbro L.A., Zimmermann C.F., Montgomery J.R., 1983. Pore water chemistry of an overwash mangrove island. Academy Symposium: Future of the Indian River System, 46(3/4), 239-249. https://www.jstor.org/stable/24320336.Chatterjee M., Canário J., Sarkar S.K., Branco V., Godhantaraman N., Bhattacharya B.D., Bhattacharya A., 2012. Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India—a UNESCO World Heritage Site. Environ Monit Assess, 184, 5239–5254.Claudia R., Huy N.V., 2004. Water allocation policies for the Dong Nai river basin in Viet Nam: An integrated perspective. EPTD Discussion Paper, 127, 01-52.Folk R.L., Ward W.C., 1957. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27(1), 3-26.Furukawaa K., Wolanski E., Mueller H., 1997. Currents and sediment transport in mangrove forests. Estuarine, Coastal and Shelf Science, 44, 301-310.Hai H.Q., Tuyen N.N., 2011. Coastal Erosion of Can Gio district Ho Chi Minh City due to the global climate change. The journal of development of technology and science, 14, 17-28.HCM SO S.O., 2015. Annual statistic data in 2015 for HCM city. Ho Chi Minh city: Statistic office of HCM city.HCMC, 2017. Decision No. 3901 on approving the areas of forest and land in HCM city in 2016. Ho Chi Minh: The people's committee of HCM city.Herut B., Sandler A., 2006. Normalization methods for pollutants in marine sediments: review and recommendations for the Mediterranean. Haifa 31080: Israel Oceanographic & Limnological Research: IOLR Report H18/2006.Hong P.N., San H.T., 1993. Mangroves of Vietnam: Chapter VI Human impacts on the mangrove ecosystem. Bangkok 10501: IUCN - The International Union for Conservation of Nature, ISBN: 2-8317-0166-x.Hubner R., Astin K.B., Herbert R.J., 2009. Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. Journal of Environmental Monitoring, 11, 713–722.IAEA, 2003. Collection and preparation of bottom sediment samples for analysis of radionuclides and trace elements. Vienna, Austria: International Atomic Energy Agency, IAEA-TECDOC-1360, ISBN 92–0–109003–X.Jingchun L., Chongling Y., Ruifeng Z., Haoliang L., Guangqiu Q., 2008. Speciation changes of Cd in mangrove (Kandelia Candel L.) rhizosphere sediments. Bull Environ Contam Toxicol, 231-236. Doi:10.1007/s00128-007-9351-z.Kalaivanan R., Jayaprakash M., Nethaji S., Arya V., Giridharan L., 2017. Geochemistry of Core Sediments from Tropical Mangrove Region of Tamil Nadu: Implications on Trace Metals. Journal of Earth Science & Climatic Change, ISSN: 2157-7617., 8(1.1000385), 1-10. Doi:10.4172/2157-7617.1000385.Kathiresan K., Saravanakumar K., Mullai P., 2014. Bioaccumulation of trace elements by Avicennia marina. Journal of Coastal Life Medicine, 2(11), 888-894.Kitazawa T., Nakagawa T., Hashimoto T., Tateishi M., 2006. Stratigraphy and optically stimulated luminescence (OSL) dating of a Quaternary sequence along the Dong Nai River, southern Vietnam. Journal of Asian Earth Sciences, 27, 788–804.Lacerda L.D., 1998. Trace metals of biogeochemistry and diffuse pollution in mangrove (M. Vannucci, Ed.) Mangrove ecosystem occassional papers (ISSN: 0919-1348), 2, 1-72.Laura H., Probsta A., Probsta J.L., Ulrich E., 2003. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. The Science of Total Environment, 195-210.Li R., Li R., Chai M., Shen X., Xu H., Qiu G., 2015. Heavy metal contamination and ecological risk in Futian mangrove forest sediment in Shenzhen Bay, South China. Marine Pollution Bulletin, 101, 448–456.Long E., Morgan L.G., 1990. The potential for biological effects of sediment-sorted contaminants tested in the national status and trends program. Seattle, Washington: NOAA Technical Memorandum NOS OMA 52.Long E.R., Field L.J., MacDonald D.D., 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry, 17, 714–727. http://onlinelibrary.wiley.com/doi/10.1002/etc.5620170428/abstract;jsessionid=C5264A1AD0.7ACCA9B4EF9A088BE2EDE9.f04t04Long E.R., MacDonald D.D., Smith S.L., Calder F.D., 1995. Incidence of adverse biological effects within ranges of chemical concentration in marine and estuarine sediments. Environmental management, 19, 81-97.Maiti S.K., Chowdhury A., 2013. Effects of Anthropogenic Pollution on Mangrove Biodiversity: A Review. Journal of Environmental Protection, 4, 1428-1434.Marchand C., Allenbach M., Lallier-Verges E., 2011. Relation between heavy metal distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma, Elsevier, 160 (3-4), 444-456.Mohd F.N., Nor R.H., 2010. Heavy metal concentrations in an important mangrove species, Sonneratia caseolaris, in Peninsular Malaysia. Environment Asia, 3, 50-53.Muller G., 1979. Schwermetalle in den Sedimenten des Rheins - Veränderungen seit 1971. Umschau, 778-783.Nam V.N., 2007. Restoration of Can Gio mangrove forest: Its structure and function in comparison between the ecosytems of plantion and nature mangrove forest. Workshop on the thesis between Germany and Vietnam.Nickerson N.H., Thibodeau F.R., 1985. Association between pore water sulfide concentrations and the distribution of mangroves. Biogeochemistry, 1, 183-192.Ong Che R.G., 1999. Concentration of 7 Heavy Metals in Sediments and Mangrove Root Samples from Mai Po, Hong Kong. Marine Pollution Bulletin, 39, 269-279.Passega R., 1957. Texture as characteristics of clastic deposition. Publisher: American Association of Petroleum Geologists.Passega R., 1964. Grain size representation by CM patterns as a geological tool. J Sediment Petrol, 34, 830–847.Phuoc V.L., An D.T., Cang L.T., Chung B.N., Tien N.V., 2010. Study the sediment dynamics in Can Gio mangrove forest (Nang Hai site, Ho Chi Minh city). Ho Chi Minh city: The final report of National University Ho Chi Minh city, No. B2009-18-36.Pumijumnong N., Danpradit S., 2016. Heavy metal accumulation in sediments and mangrove forest stems from Surat Thani province, Thailand. The Malaysian forester, 79(1&2), 212-228.QCVN43:2012/BTNMT, 2012. QCVN43:2012/BTNMT: National technical regulation on the sediment quality, Ha Noi: Ministry of natural resources and environment of Vietnam.Qiao S., Shi X., Fang X., Liu S., Kornkanitnan N., Gao J., Yu Y., 2015. Heavy metal and clay mineral analyses in the sediments of Upper Gulf of Thailand and their implications on sedimentary provenance and dispersion pattern. Journal of Asian Earth Sciences, 114, 488–496.Rollinson H. R., 1993. Using geochemical data for evaluation, presentation and interpretation. UK: Longman Group UK Limited ISBN-0-582-06701-4.Spalding M., Blasco F., Field C., 2010. World atlas of mangrove. Cambridge: Earthscan in UK and US, ISBN: 978-1-84407-657-4.Strady E., Dang V.B., Némery J., Guédron S., Dinh Q.T., Denis H., Nguyen P.D., 2016. Baseline seasonal investigation of nutrients and trace metals in surface waters and sediments along the Saigon River basin impacted by the megacity of HCM, Viet Nam. Environ Sci Pollut Res, 1-18. doi:10.1007/s11356-016-7660-7.Tam N.F., Wong Y.S., 1996. Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environment pollution, 94(5), 283-291.Thomas N., Lucas R., Bunting P., Hardy A., Rosenqvist A., Simard M., 2017. Distribution and drivers of global mangrove forest change, 1996– 2010. PLoS ONE, 12(6): e0179302, 1-14. Doi:10.1371/journal.pone.0179302.Thuy H.T., Loan T.T., Vy N.N., 2007. Study on environmental geochemistry of heavy metals in urban canal sediments of Ho Chi Minh city. Science and Technology Development, 10(01), 1-9.Toan T.T., Bay N.T., 2006. A study on the tendency of accretion and erosion in Can Gio coastal zone. Vietnam-Japan estuary workshop, 184-194.Tri N.H., Hong P.N., Cuc L.T., 2000. Can Gio Mangrove Biosphere Reserve Ho Chi Minh city, Ha Noi, Viet Nam. Ha Noi: Hanoi University Publisher.Truong T.V., 2007. Planning for water source of Dong Nai river basin. Retrieved from Water Resources Planning: http://siwrp.org.vn/tin-tuc/quy-hoach-tai-nguyen-nuoc-luu-vuc-song-dong-nai_143.html.Tuan L.D., Oanh T.T., Thanh C.V., Quy N.D., 2002. Can Gio mangrove biosphere reserve. HCM city, Vietnam: Agriculture Publisher.Tue N.T., Quy T.D., Amono A., 2012. Historical profiles of trace element concentrations in Mangrove sediments from the Ba Lat estuary, Red river, Vietnam. Water, Air & Soil Pollution, ISSN 0049-6979, 223(3), 1315-1330.Twilley R., Chen R., Hargis T., 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air & Soil pollution, Netherland, 64, 265-288.UN Environment Program, 2006. Methods for sediment sampling and analysis. Palermo (Sicily), Italy: United Nation Environment Program.UNESCO, 2000. List of Biosphere reserves approved by MAB committee belonging to UNESCO. Retrieved from United Nations, Educational, Scientific, Cultural Organization (UNESCO): http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/asia-and-the-pacific.Vandenberghe N., 1975. An evaluation of CM patterns for grain size studies of fine grained sediments. Sedimentology, 22, 615-622.Vinh B.T., Ichiro D., 2012. Erosion mechanism of cohesive river bank and bed of Soai Rap river (Ho Chi Minh city). J. Sci. of the Earth, 34(2), 153-161.Wang J., Du H., Xu Y., Chen K., Liang J., Ke H., Cai M., 2016. Environmental and Ecological Risk Assessment of Trace Metal Contamination in Mangrove Ecosystems. BioMed Research International, Article ID 2167053, 1-14. Doi:10.1155/2016/2167053.Wedepohl K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217-1232.Woodroffe C., Rogers K., McKee K., Lovelock C., Mendelssohn I., Saintilan N., 2016. Mangrove sedimentation and response to relative sea level rise. The Annual Review of Marine Science, 8, 243-266.Zhang J., Liu C.L., 2002. Riverine Composition and Estuarine Geochemistry of Particulate Metals in China-Weathering Features, Anthropogenic Impact and Chemical Fluxes. Estuarine, Coastal and Shelf Science, 54(6), 1051-1070.Zhang W., Feng H., Chang J., Qu J., Xie H., Yu L., 2009. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environmental Pollution, 157, 1533-1543.Zheng W.-j., Xiao-yong C., Peng L., 1997. Accumulation and biological cycling of heavy metal elements in Rhizophora stylosa mangroves in Yingluo Bay, China. Marine ecology progress series, 159, 293-301.
APA, Harvard, Vancouver, ISO, and other styles
21

Nesrine, Lenchi, Kebbouche Salima, Khelfaoui Mohamed Lamine, Laddada Belaid, BKhemili Souad, Gana Mohamed Lamine, Akmoussi Sihem, and Ferioune Imène. "Phylogenetic characterization and screening of halophilic bacteria from Algerian salt lake for the production of biosurfactant and enzymes." World Journal of Biology and Biotechnology 5, no. 2 (August 15, 2020): 1. http://dx.doi.org/10.33865/wjb.005.02.0294.

Full text
Abstract:
Environments containing significant concentration of NaCl such as salt lakes harbor extremophiles microorganisms which have a great biotechnology interest. To explore the diversity of Bacteria in Chott Tinsilt (Algeria), an isolation program was performed. Water samples were collected from the saltern during the pre-salt harvesting phase. This Chott is high in salt (22.47% (w/v). Seven halophiles Bacteria were selected for further characterization. The isolated strains were able to grow optimally in media with 10–25% (w/v) total salts. Molecular identification of the isolates was performed by sequencing the 16S rRNA gene. It showed that these cultured isolates included members belonging to the Halomonas, Staphylococcus, Salinivibrio, Planococcus and Halobacillus genera with less than 98% of similarity with their closest phylogenetic relative. The halophilic bacterial isolates were also characterized for the production of biosurfactant and industrially important enzymes. Most isolates produced hydrolases and biosurfactants at high salt concentration. In fact, this is the first report on bacterial strains (A4 and B4) which were a good biosurfactant and coagulase producer at 20% and 25% ((w/v)) NaCl. In addition, the biosurfactant produced by the strain B4 at high salinity (25%) was also stable at high temperature (30-100°C) and high alkalinity (pH 11).Key word: Salt Lake, Bacteria, biosurfactant, Chott, halophiles, hydrolases, 16S rRNAINTRODUCTIONSaline lakes cover approximately 10% of the Earth’s surface area. The microbial populations of many hypersaline environments have already been studied in different geographical regions such as Great Salt Lake (USA), Dead Sea (Israel), Wadi Natrun Lake (Egypt), Lake Magadi (Kenya), Soda Lake (Antarctica) and Big Soda Lake and Mono Lake (California). Hypersaline regions differ from each other in terms of geographical location, salt concentration and chemical composition, which determine the nature of inhabitant microorganisms (Gupta et al., 2015). Then low taxonomic diversity is common to all these saline environments (Oren et al., 1993). Halophiles are found in nearly all major microbial clades, including prokaryotic (Bacteria and Archaea) and eukaryotic forms (DasSarma and Arora, 2001). They are classified as slight halophiles when they grow optimally at 0.2–0.85 M (2–5%) NaCl, as moderate halophiles when they grow at 0.85–3.4 M (5–20%) NaCl, and as extreme halophiles when they grow at 3.4–5.1 M (20–30%) NaCl. Hyper saline environments are inhabited by extremely halophilic and halotolerant microorganisms such as Halobacillus sp, Halobacterium sp., Haloarcula sp., Salinibacter ruber , Haloferax sp and Bacillus spp. (Solomon and Viswalingam, 2013). There is a tremendous demand for halophilic bacteria due to their biotechnological importance as sources of halophilic enzymes. Enzymes derived from halophiles are endowed with unique structural features and catalytic power to sustain the metabolic and physiological processes under high salt conditions. Some of these enzymes have been reported to be active and stable under more than one extreme condition (Karan and Khare, 2010). Applications are being considered in a range of industries such as food processing, washing, biosynthetic processes and environmental bioremediation. Halophilic proteases are widely used in the detergent and food industries (DasSarma and Arora, 2001). However, esterases and lipases have also been useful in laundry detergents for the removal of oil stains and are widely used as biocatalysts because of their ability to produce pure compounds. Likewise, amylases are used industrially in the first step of the production of high fructose corn syrup (hydrolysis of corn starch). They are also used in the textile industry in the de-sizing process and added to laundry detergents. Furthermore, for the environmental applications, the use of halophiles for bioremediation and biodegradation of various materials from industrial effluents to soil contaminants and accidental spills are being widely explored. In addition to enzymes, halophilic / halotolerants microorganisms living in saline environments, offer another potential applications in various fields of biotechnology like the production of biosurfactant. Biosurfactants are amphiphilic compounds synthesized from plants and microorganisms. They reduce surface tension and interfacial tension between individual molecules at the surface and interface respectively (Akbari et al., 2018). Comparing to the chemical surfactant, biosurfactant are promising alternative molecules due to their low toxicity, high biodegradability, environmental capability, mild production conditions, lower critical micelle concentration, higher selectivity, availability of resources and ability to function in wide ranges of pH, temperature and salinity (Rocha et al., 1992). They are used in various industries which include pharmaceuticals, petroleum, food, detergents, cosmetics, paints, paper products and water treatment (Akbari et al., 2018). The search for biosurfactants in extremophiles is particularly promising since these biomolecules can adapt and be stable in the harsh environments in which they are to be applied in biotechnology.OBJECTIVESEastern Algeria features numerous ecosystems including hypersaline environments, which are an important source of salt for food. The microbial diversity in Chott Tinsilt, a shallow Salt Lake with more than 200g/L salt concentration and a superficies of 2.154 Ha, has never yet been studied. The purpose of this research was to chemically analyse water samples collected from the Chott, isolate novel extremely or moderate halophilic Bacteria, and examine their phenotypic and phylogenetic characteristics with a view to screening for biosurfactants and enzymes of industrial interest.MATERIALS AND METHODSStudy area: The area is at 5 km of the Commune of Souk-Naâmane and 17 km in the South of the town of Aïn-Melila. This area skirts the trunk road 3 serving Constantine and Batna and the railway Constantine-Biskra. It is part the administrative jurisdiction of the Wilaya of Oum El Bouaghi. The Chott belongs to the wetlands of the High Plains of Constantine with a depth varying rather regularly without never exceeding 0.5 meter. Its length extends on 4 km with a width of 2.5 km (figure 1).Water samples and physico-chemical analysis: In February 2013, water samples were collected from various places at the Chott Tinsilt using Global Positioning System (GPS) coordinates of 35°53’14” N lat. and 06°28’44”E long. Samples were collected randomly in sterile polythene bags and transported immediately to the laboratory for isolation of halophilic microorganisms. All samples were treated within 24 h after collection. Temperature, pH and salinity were measured in situ using a multi-parameter probe (Hanna Instruments, Smithfield, RI, USA). The analytical methods used in this study to measure ions concentration (Ca2+, Mg2+, Fe2+, Na+, K+, Cl−, HCO3−, SO42−) were based on 4500-S-2 F standard methods described elsewhere (Association et al., 1920).Isolation of halophilic bacteria from water sample: The media (M1) used in the present study contain (g/L): 2.0 g of KCl, 100.0/200.0 g of NaCl, 1.0 g of MgSO4.7HO2, 3.0 g of Sodium Citrate, 0.36 g of MnCl2, 10.0 g of yeast extract and 15.0 g agar. The pH was adjusted to 8.0. Different dilutions of water samples were added to the above medium and incubated at 30°C during 2–7 days or more depending on growth. Appearance and growth of halophilic bacteria were monitored regularly. The growth was diluted 10 times and plated on complete medium agar (g/L): glucose 10.0; peptone 5.0; yeast extract 5.0; KH2PO4 5.0; agar 30.0; and NaCl 100.0/200.0. Resultant colonies were purified by repeated streaking on complete media agar. The pure cultures were preserved in 20% glycerol vials and stored at −80°C for long-term preservation.Biochemical characterisation of halophilic bacterial isolates: Bacterial isolates were studied for Gram’s reaction, cell morphology and pigmentation. Enzymatic assays (catalase, oxidase, nitrate reductase and urease), and assays for fermentation of lactose and mannitol were done as described by Smibert (1994).Optimization of growth conditions: Temperature, pH, and salt concentration were optimized for the growth of halophilic bacterial isolates. These growth parameters were studied quantitatively by growing the bacterial isolates in M1 medium with shaking at 200 rpm and measuring the cell density at 600 nm after 8 days of incubation. To study the effect of NaCl on the growth, bacterial isolates were inoculated on M1 medium supplemented with different concentration of NaCl: 1%-35% (w/v). The effect of pH on the growth of halophilic bacterial strains was studied by inoculating isolates on above described growth media containing NaCl and adjusted to acidic pH of 5 and 6 by using 1N HCl and alkaline pH of 8, 9, 10, 11 and 12 using 5N NaOH. The effect of temperature was studied by culturing the bacterial isolates in M1 medium at different temperatures of incubation (4°C–55°C).Screening of halophilic bacteria for hydrolytic enzymes: Hydrolase producing bacteria among the isolates were screened by plate assay on starch, tributyrin, gelatin and DNA agar plates respectively for amylase, lipase, protease and DNAse activities. Amylolytic activity of the cultures was screened on starch nutrient agar plates containing g/L: starch 10.0; peptone 5.0; yeast extract 3.0; agar 30.0; NaCl 100.0/250.0. The pH was 7.0. After incubation at 30 ºC for 7 days, the zone of clearance was determined by flooding the plates with iodine solution. The potential amylase producers were selected based on ratio of zone of clearance diameter to colony diameter. Lipase activity of the cultures was screened on tributyrin nutrient agar plates containing 1% (v/v) of tributyrin. Isolates that showed clear zones of tributyrin hydrolysis were identified as lipase producing bacteria. Proteolytic activity of the isolates was similarly screened on gelatin nutrient agar plates containing 10.0 g/L of gelatin. The isolates showing zones of gelatin clearance upon treatment with acidic mercuric chloride were selected and designated as protease producing bacteria. The presence of DNAse activity on plates was determined on DNAse test agar (BBL) containing 10%-25% (w/v) total salt. After incubation for 7days, the plates were flooded with 1N HCl solution. Clear halos around the colonies indicated DNAse activity (Jeffries et al., 1957).Milk clotting activity (coagulase activity) of the isolates was also determined following the procedure described (Berridge, 1952). Skim milk powder was reconstituted in 10 mM aqueous CaCl2 (pH 6.5) to a final concentration of 0.12 kg/L. Enzyme extracts were added at a rate of 0.1 mL per mL of milk. The coagulation point was determined by manual rotating of the test tube periodically, at short time intervals, and checking for visible clot formation.Screening of halophilic bacteria for biosurfactant production. Oil spread Assay: The Petridis base was filled with 50 mL of distilled water. On the water surface, 20μL of diesel and 10μl of culture were added respectively. The culture was introduced at different spots on the diesel, which is coated on the water surface. The occurrence of a clear zone was an indicator of positive result (Morikawa et al., 2000). The diameter of the oil expelling circles was measured by slide caliber (with a degree of accuracy of 0.02 mm).Surface tension and emulsification index (E24): Isolates were cultivated at 30 °C for 7 days on the enrichment medium containing 10-25% NaCl and diesel oil as the sole carbon source. The medium was centrifuged (7000 rpm for 20 min) and the surface tension of the cell-free culture broth was measured with a TS90000 surface tensiometer (Nima, Coventry, England) as a qualitative indicator of biosurfactant production. The culture broth was collected with a Pasteur pipette to remove the non-emulsified hydrocarbons. The emulsifying capacity was evaluated by an emulsification index (E24). The E24 of culture samples was determined by adding 2 mL of diesel oil to the same amount of culture, mixed for 2 min with a vortex, and allowed to stand for 24 h. E24 index is defined as the percentage of height of emulsified layer (mm) divided by the total height of the liquid column (mm).Biosurfactant stability studies : After growth on diesel oil as sole source of carbone, cultures supernatant obtained after centrifugation at 6,000 rpm for 15 min were considered as the source of crude biosurfactant. Its stability was determined by subjecting the culture supernatant to various temperature ranges (30, 40, 50, 60, 70, 80 and 100 °C) for 30 min then cooled to room temperature. Similarly, the effect of different pH (2–11) on the activity of the biosurfactant was tested. The activity of the biosurfactant was investigated by measuring the emulsification index (El-Sersy, 2012).Molecular identification of potential strains. DNA extraction and PCR amplification of 16S rDNA: Total cellular DNA was extracted from strains and purified as described by Sambrook et al. (1989). DNA was purified using Geneclean® Turbo (Q-BIO gene, Carlsbad, CA, USA) before use as a template in polymerase chain reaction (PCR) amplification. For the 16S rDNA gene sequence, the purified DNA was amplified using a universal primer set, forward primer (27f; 5′-AGA GTT TGA TCM TGG CTC AG) and a reverse primer (1492r; 5′-TAC GGY TAC CTT GTT ACG ACT T) (Lane, 1991). Agarose gel electrophoresis confirmed the amplification product as a 1400-bp DNA fragment.16S rDNA sequencing and Phylogenic analysis: Amplicons generated using primer pair 27f-1492r was sequenced using an automatic sequencer system at Macrogene Company (Seoul, Korea). The sequences were compared with those of the NCBI BLAST GenBank nucleotide sequence databases. Phylogenetic trees were constructed by the neighbor-joining method using MEGA version 5.05 software (Tamura et al., 2011). Bootstrap resembling analysis for 1,000 replicates was performed to estimate the confidence of tree topologies.Nucleotide sequence accession numbers: The nucleotide sequences reported in this work have been deposited in the EMBL Nucleotide Sequence Database. The accession numbers are represented in table 5.Statistics: All experiments were conducted in triplicates. Results were evaluated for statistical significance using ANOVA.RESULTSPhysico-chemical parameters of the collected water samples: The physicochemical properties of the collected water samples are reported in table 1. At the time of sampling, the temperature was 10.6°C and pH 7.89. The salinity of the sample, as determined in situ, was 224.70 g/L (22,47% (w/v)). Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions (table 1). SO4-2 and Mg+2 was present in much smaller amounts compared to Na +and Cl- concentration. Low levels of calcium, potassium and bicarbonate were also detected, often at less than 1 g/L.Characterization of isolates. Morphological and biochemical characteristic feature of halophilic bacterial isolates: Among 52 strains isolated from water of Chott Tinsilt, seven distinct bacteria (A1, A2, A3, A4, B1, B4 and B5) were chosen for further characterization (table 2). The colour of the isolates varied from beige, pale yellow, yellowish and orange. The bacterial isolates A1, A2, A4, B1 and B5 were rod shaped and gram negative (except B5), whereas A3 and B4 were cocci and gram positive. All strains were oxidase and catalase positive except for B1. Nitrate reductase and urease activities were observed in all the bacterial isolates, except B4. All the bacterial isolates were negative for H2S formation. B5 was the only strain positive for mannitol fermentation (table 2).We isolated halophilic bacteria on growth medium with NaCl supplementation at pH 7 and temperature of 30°C. We studied the effect of NaCl, temperature and pH on the growth of bacterial isolates. All the isolates exhibited growth only in the presence of NaCl indicating that these strains are halophilic. The optimum growth of isolates A3 and B1 was observed in the presence of 10% NaCl, whereas it was 15% NaCl for A1, A2 and B5. A4 and B4 showed optimum growth in the presence of 20% and 25% NaCl respectively. A4, B4 and B5 strains can tolerate up to 35% NaCl.The isolate B1 showed growth in medium supplemented with 10% NaCl and pH range of 7–10. The optimum pH for the growth B1 was 9 and they did not show any detectable growth at or below pH 6 (table 2), which indicates the alkaliphilic nature of B1 isolate. The bacterial isolates A1, A2 and A4 exhibited growth in the range of pH 6–10, while A3 and B4 did not show any growth at pH greater than 8. The optimum pH for growth of all strains (except B1) was pH 7.0 (table 2). These results indicate that A1, A2, A3, A4, B4 and B5 are neutrophilic in nature. All the bacterial isolates exhibited optimal growth at 30°C and no detectable growth at 55°C. Also, detectable growth of isolates A1, A2 and A4 was observed at 4°C. However, none of the bacterial strains could grow below 4°C and above 50°C (table 2).Screening of the halophilic enzymes: To characterize the diversity of halophiles able to produce hydrolytic enzymes among the population of microorganisms inhabiting the hypersaline habitats of East Algeria (Chott Tinsilt), a screening was performed. As described in Materials and Methods, samples were plated on solid media containing 10%-25% (w/v) of total salts and different substrates for the detection of amylase, protease, lipase and DNAse activities. However, coagulase activity was determined in liquid medium using milk as substrate (figure 3). Distributions of hydrolytic activity among the isolates are summarized in table 4.From the seven bacterial isolates, four strains A1, A2, A4 and B5 showed combined hydrolytic activities. They were positive for gelatinase, lipase and coagulase. A3 strain showed gelatinase and lipase activities. DNAse activities were detected with A1, A4, B1 and B5 isolates. B4 presented lipase and coagulase activity. Surprisingly, no amylase activity was detected among all the isolates.Screening for biosurfactant producing isolates: Oil spread assay: The results showed that all the strains could produce notable (>4 cm diameter) oil expelling circles (ranging from 4.11 cm to 4.67 cm). The average diameter for strain B5 was 4.67 cm, significantly (P < 0.05) higher than for the other strains.Surface tension and emulsification index (E24): The assimilation of hydrocarbons as the sole sources of carbon by the isolate strains led to the production of biosurfactants indicated by the emulsification index and the lowering of the surface tension of cell-free supernatant. Based on rapid growth on media containing diesel oil as sole carbon source, the seven isolates were tested for biosurfactant production and emulsification activity. The obtained values of the surface tension measurements as well as the emulsification index (E24) are shown in table 3. The highest reduction of surface tension was achieved with B5 and A3 isolates with values of 25.3 mN m−1 and 28.1 mN m−1 respectively. The emulsifying capacity evaluated by the E24 emulsification index was highest in the culture of isolate B4 (78%), B5 (77%) and A3 (76%) as shown in table 3 and figure 2. These emulsions were stable even after 4 months. The bacteria with emulsification indices higher than 50 % and/or reduction in the surface tension (under 30 mN/m) have been defined as potential biosurfactant producers. Based on surface tension and the E24 index results, isolates B5, B4, A3 and A4 are the best candidates for biosurfactant production. It is important to note that, strains B4 and A4 produce biosurfactant in medium containing respectively 25% and 20% (w/v) NaCl.Stability of biosurfactant activities: The applicability of biosurfactants in several biotechnological fields depends on their stability at different environmental conditions (temperatures, pH and NaCl). For this study, the strain B4 appear very interesting (It can produce biosurfactant at 25 % NaCl) and was choosen for futher analysis for biosurfactant stability. The effects of temperature and pH on the biosurfactant production by the strain B4 are shown in figure 4.biosurfactant in medium containing respectively 25% and 20% (w/v) NaCl.Stability of biosurfactant activities: The applicability of biosurfactants in several biotechnological fields depends on their stability at different environmental conditions (temperatures, pH and NaCl). For this study, the strain B4 appear very interesting (It can produce biosurfactant at 25 % NaCl) and was chosen for further analysis for biosurfactant stability. The effects of temperature and pH on the biosurfactant production by the strain B4 are shown in figure 4. The biosurfactant produced by this strain was shown to be thermostable giving an E-24 Index value greater than 78% (figure 4A). Heating of the biosurfactant to 100 °C caused no significant effect on the biosurfactant performance. Therefore, the surface activity of the crude biosurfactant supernatant remained relatively stable to pH changes between pH 6 and 11. At pH 11, the value of E24 showed almost 76% activity, whereas below pH 6 the activity was decreased up to 40% (figure 4A). The decreases of the emulsification activity by decreasing the pH value from basic to an acidic region; may be due to partial precipitation of the biosurfactant. This result indicated that biosurfactant produced by strain B4 show higher stability at alkaline than in acidic conditions.Molecular identification and phylogenies of potential isolates: To identify halophilic bacterial isolates, the 16S rDNA gene was amplified using gene-specific primers. A PCR product of ≈ 1.3 kb was detected in all the seven isolates. The 16S rDNA amplicons of each bacterial isolate was sequenced on both strands using 27F and 1492R primers. The complete nucleotide sequence of 1336,1374, 1377,1313, 1305,1308 and 1273 bp sequences were obtained from A1, A2, A3, A4, B1, B4 and B5 isolates respectively, and subjected to BLAST analysis. The 16S rDNA sequence analysis showed that the isolated strains belong to the genera Halomonas, Staphylococcus, Salinivibrio, Planococcus and Halobacillus as shown in table 5. The halophilic isolates A2 and A4 showed 97% similarity with the Halomonas variabilis strain GSP3 (accession no. AY505527) and the Halomonas sp. M59 (accession no. AM229319), respectively. As for A1, it showed 96% similarity with the Halomonas venusta strain GSP24 (accession no. AY553074). B1 and B4 showed for their part 96% similarity with the Salinivibrio costicola subsp. alcaliphilus strain 18AG DSM4743 (accession no. NR_042255) and the Planococcus citreus (accession no. JX122551), respectively. The bacterial isolate B5 showed 98% sequence similarity with the Halobacillus trueperi (accession no. HG931926), As for A3, it showed only 95% similarity with the Staphylococcus arlettae (accession no. KR047785). The 16S rDNA nucleotide sequences of all the seven halophilic bacterial strains have been submitted to the NCBI GenBank database under the accession number presented in table 5. The phylogenetic association of the isolates is shown in figure 5.DICUSSIONThe physicochemical properties of the collected water samples indicated that this water was relatively neutral (pH 7.89) similar to the Dead Sea and the Great Salt Lake (USA) and in contrast to the more basic lakes such as Lake Wadi Natrun (Egypt) (pH 11) and El Golea Salt Lake (Algeria) (pH 9). The salinity of the sample was 224.70 g/L (22,47% (w/v). This range of salinity (20-30%) for Chott Tinsilt is comparable to a number of well characterized hypersaline ecosystems including both natural and man-made habitats, such as the Great Salt Lake (USA) and solar salterns of Puerto Rico. Thus, Chott Tinsilt is a hypersaline environment, i.e. environments with salt concentrations well above that of seawater. Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions, as in most hypersaline ecosystems (with some exceptions such as the Dead Sea). These chemical water characteristics were consistent with the previously reported data in other hypersaline ecosystems (DasSarma and Arora, 2001; Oren, 2002; Hacěne et al., 2004). Among 52 strains isolated from this Chott, seven distinct bacteria (A1, A2, A3, A4, B1, B4 and B5) were chosen for phenotypique, genotypique and phylogenetique characterization.The 16S rDNA sequence analysis showed that the isolated strains belong to the genera Halomonas, Staphylococcus, Salinivibrio, Planococcus and Halobacillus. Genera obtained in the present study are commonly occurring in various saline habitats across the globe. Staphylococci have the ability to grow in a wide range of salt concentrations (Graham and Wilkinson, 1992; Morikawa et al., 2009; Roohi et al., 2014). For example, in Pakistan, Staphylococcus strains were isolated from various salt samples during the study conducted by Roohi et al. (2014) and these results agreed with previous reports. Halomonas, halophilic and/or halotolerant Gram-negative bacteria are typically found in saline environments (Kim et al., 2013). The presence of Planococcus and Halobacillus has been reported in studies about hypersaline lakes; like La Sal del Rey (USA) (Phillips et al., 2012) and Great Salt Lake (Spring et al., 1996), respectively. The Salinivibrio costicola was a representative model for studies on osmoregulatory and other physiological mechanisms of moderately halophilic bacteria (Oren, 2006).However, it is interesting to note that all strains shared less than 98.7% identity (the usual species cut-off proposed by Yarza et al. (2014) with their closest phylogenetic relative, suggesting that they could be considered as new species. Phenotypic, genetic and phylogenetic analyses have been suggested for the complete identification of these strains. Theses bacterial strains were tested for the production of industrially important enzymes (Amylase, protease, lipase, DNAse and coagulase). These isolates are good candidates as sources of novel enzymes with biotechnological potential as they can be used in different industrial processes at high salt concentration (up to 25% NaCl for B4). Prominent amylase, lipase, protease and DNAase activities have been reported from different hypersaline environments across the globe; e.g., Spain (Sánchez‐Porro et al., 2003), Iran (Rohban et al., 2009), Tunisia (Baati et al., 2010) and India (Gupta et al., 2016). However, to the best of our knowledge, the coagulase activity has never been detected in extreme halophilic bacteria. Isolation and characterization of crude enzymes (especially coagulase) to investigate their properties and stability are in progress.The finding of novel enzymes with optimal activities at various ranges of salt concentrations is of great importance. Besides being intrinsically stable and active at high salt concentrations, halophilic and halotolerant enzymes offer great opportunities in biotechnological applications, such as environmental bioremediation (marine, oilfiel) and food processing. The bacterial isolates were also characterized for production of biosurfactants by oil-spread assay, measurement of surface tension and emulsification index (E24). There are few reports on biosurfactant producers in hypersaline environments and in recent years, there has been a greater increase in interest and importance in halophilic bacteria for biomolecules (Donio et al., 2013; Sarafin et al., 2014). Halophiles, which have a unique lipid composition, may have an important role to play as surface-active agents. The archae bacterial ether-linked phytanyl membrane lipid of the extremely halophilic bacteria has been shown to have surfactant properties (Post and Collins, 1982). Yakimov et al. (1995) reported the production of biosurfactant by a halotolerant Bacillus licheniformis strain BAS 50 which was able to produce a lipopeptide surfactant when cultured at salinities up to 13% NaCl. From solar salt, Halomonas sp. BS4 and Kocuria marina BS-15 were found to be able to produce biosurfactant when cultured at salinities of 8% and 10% NaCl respectively (Donio et al., 2013; Sarafin et al., 2014). In the present work, strains B4 and A4 produce biosurfactant in medium containing respectively 25% and 20% NaCl. To our knowledge, this is the first report on biosurfactant production by bacteria under such salt concentration. Biosurfactants have a wide variety of industrial and environmental applications (Akbari et al., 2018) but their applicability depends on their stability at different environmental conditions. The strain B4 which can produce biosurfactant at 25% NaCl showed good stability in alkaline pH and at a temperature range of 30°C-100°C. Due to the enormous utilization of biosurfactant in detergent manufacture the choice of alkaline biosurfactant is researched (Elazzazy et al., 2015). On the other hand, the interesting finding was the thermostability of the produced biosurfactant even after heat treatment (100°C for 30 min) which suggests the use of this biosurfactant in industries where heating is of a paramount importance (Khopade et al., 2012). To date, more attention has been focused on biosurfactant producing bacteria under extreme conditions for industrial and commercial usefulness. In fact, the biosurfactant produce by strain B4 have promising usefulness in pharmaceutical, cosmetics and food industries and for bioremediation in marine environment and Microbial enhanced oil recovery (MEOR) where the salinity, temperature and pH are high.CONCLUSIONThis is the first study on the culturable halophilic bacteria community inhabiting Chott Tinsilt in Eastern Algeria. Different genera of halotolerant bacteria with different phylogeneticaly characteristics have been isolated from this Chott. Culturing of bacteria and their molecular analysis provides an opportunity to have a wide range of cultured microorganisms from extreme habitats like hypersaline environments. Enzymes produced by halophilic bacteria show interesting properties like their ability to remain functional in extreme conditions, such as high temperatures, wide range of pH, and high salt concentrations. These enzymes have great economical potential in industrial, agricultural, chemical, pharmaceutical, and biotechnological applications. Thus, the halophiles isolated from Chott Tinsilt offer an important potential for application in microbial and enzyme biotechnology. In addition, these halo bacterial biosurfactants producers isolated from this Chott will help to develop more valuable eco-friendly products to the pharmacological and food industries and will be usefulness for bioremediation in marine environment and petroleum industry.ACKNOWLEDGMENTSOur thanks to Professor Abdelhamid Zoubir for proofreading the English composition of the present paper.CONFLICT OF INTERESTThe authors declare that they have no conflict of interest.Akbari, S., N. H. Abdurahman, R. M. Yunus, F. Fayaz and O. R. Alara, 2018. Biosurfactants—a new frontier for social and environmental safety: A mini review. Biotechnology research innovation, 2(1): 81-90.Association, A. P. H., A. W. W. Association, W. P. C. Federation and W. E. Federation, 1920. Standard methods for the examination of water and wastewater. American Public Health Association.Baati, H., R. Amdouni, N. Gharsallah, A. Sghir and E. Ammar, 2010. Isolation and characterization of moderately halophilic bacteria from tunisian solar saltern. Current microbiology, 60(3): 157-161.Berridge, N., 1952. Some observations on the determination of the activity of rennet. Analyst, 77(911): 57b-62.DasSarma, S. and P. Arora, 2001. Halophiles. Encyclopedia of life sciences. Nature publishishing group: 1-9.Donio, M. B. S., F. A. Ronica, V. T. Viji, S. Velmurugan, J. S. C. A. Jenifer, M. Michaelbabu, P. Dhar and T. Citarasu, 2013. Halomonas sp. Bs4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. SpringerPlus, 2(1): 149.El-Sersy, N. A., 2012. Plackett-burman design to optimize biosurfactant production by marine Bacillus subtilis n10. Roman biotechnol lett, 17(2): 7049-7064.Elazzazy, A. M., T. Abdelmoneim and O. Almaghrabi, 2015. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi journal of biological Sciences, 22(4): 466-475.Graham, J. E. and B. Wilkinson, 1992. Staphylococcus aureus osmoregulation: Roles for choline, glycine betaine, proline, and taurine. Journal of bacteriology, 174(8): 2711-2716.Gupta, S., P. Sharma, K. Dev and A. Sourirajan, 2016. Halophilic bacteria of lunsu produce an array of industrially important enzymes with salt tolerant activity. Biochemistry research international, 1: 1-10.Gupta, S., P. Sharma, K. Dev, M. Srivastava and A. Sourirajan, 2015. A diverse group of halophilic bacteria exist in lunsu, a natural salt water body of Himachal Pradesh, India. SpringerPlus 4(1): 274.Hacěne, H., F. Rafa, N. Chebhouni, S. Boutaiba, T. Bhatnagar, J. C. Baratti and B. Ollivier, 2004. Biodiversity of prokaryotic microflora in el golea salt lake, Algerian Sahara. Journal of arid environments, 58(3): 273-284.Jeffries, C. D., D. F. Holtman and D. G. Guse, 1957. Rapid method for determining the activity of microorgan-isms on nucleic acids. Journal of bacteriology, 73(4): 590.Karan, R. and S. Khare, 2010. Purification and characterization of a solvent‐stable protease from Geomicrobium sp. Emb2. Environmental technology, 31(10): 1061-1072.Khopade, A., R. Biao, X. Liu, K. Mahadik, L. Zhang and C. Kokare, 2012. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, 3: 198-204.Kim, K. K., J.-S. Lee and D. A. Stevens, 2013. Microbiology and epidemiology of Halomonas species. Future microbiology, 8(12): 1559-1573.Lane, D., 1991. 16s/23s rRNA sequencing in nucleic acid techniques in bacterial systematics. Stackebrandt e., editor;, and goodfellow m., editor. Chichester, UK: John Wiley & Sons.Morikawa, K., R. L. Ohniwa, T. Ohta, Y. Tanaka, K. Takeyasu and T. Msadek, 2009. Adaptation beyond the stress response: Cell structure dynamics and population heterogeneity in Staphylococcus aureus. Microbes environments, 25: 75-82.Morikawa, M., Y. Hirata and T. J. B. e. B. A.-M. Imanaka, 2000. A study on the structure–function relationship of lipopeptide biosurfactants. Biochimica et biophysica acta, 1488(3): 211-218.Oren, A., 2002. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of industrial microbiology biotechnology, 28(1): 56-63.Oren, A., 2006. Halophilic microorganisms and their environments. Springer science & business media.Oren, A., R. Vreeland and L. Hochstein, 1993. Ecology of extremely halophilic microorganisms. The biology of halophilic bacteria, 2(1): 1-8.Phillips, K., F. Zaidan, O. R. Elizondo and K. L. Lowe, 2012. Phenotypic characterization and 16s rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, la sal del rey, in extreme south texas (USA). Aquatic biosystems, 8(1): 1-5.Post, F. and N. Collins, 1982. A preliminary investigation of the membrane lipid of Halobacterium halobium as a food additive 1. Journal of food biochemistry, 6(1): 25-38.Rocha, C., F. San-Blas, G. San-Blas and L. Vierma, 1992. Biosurfactant production by two isolates of Pseudomonas aeruginosa. World Journal of microbiology biotechnology, 8(2): 125-128.Rohban, R., M. A. Amoozegar and A. Ventosa, 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from howz soltan lake, Iran. Journal of industrial microbiology biotechnology, 36(3): 333-340.Roohi, A., I. Ahmed, N. Khalid, M. Iqbal and M. Jamil, 2014. Isolation and phylogenetic identification of halotolerant/halophilic bacteria from the salt mines of Karak, Pakistan. International journal of agricultural and biology, 16: 564-570.Sambrook, J., E. F. Fritsch and T. Maniatis, 1989. Molecular cloning: A laboratory manual, 2nd edn. Cold spring harbor laboratory, cold spring harbor, New York.Sánchez‐Porro, C., S. Martin, E. Mellado and A. Ventosa, 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of applied microbiology, 94(2): 295-300.Sarafin, Y., M. B. S. Donio, S. Velmurugan, M. Michaelbabu and T. Citarasu, 2014. Kocuria marina bs-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi journal of biological sciences, 21(6): 511-519.Smibert, R., 1994. Phenotypic characterization. In methods for general and molecular bacteriology. American society for microbiology: 611-651.Solomon, E. and K. J. I. Viswalingam, 2013. Isolation, characterization of halotolerant bacteria and its biotechnological potentials. International journal scientific research paper publication sites, 4: 1-7.Spring, S., W. Ludwig, M. Marquez, A. Ventosa and K.-H. Schleifer, 1996. Halobacillus gen. Nov., with descriptions of Halobacillus litoralis sp. Nov. and Halobacillus trueperi sp. Nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. Nov. International journal of systematic evolutionary microbiology, 46(2): 492-496.Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, 2011. Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology evolution, 28(10): 2731-2739.Yakimov, M. M., K. N. Timmis, V. Wray and H. L. Fredrickson, 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis bas50. Applied and environmental microbiology, 61(5): 1706-1713.Yarza, P., P. Yilmaz, E. Pruesse, F. O. Glöckner, W. Ludwig, K.-H. Schleifer, W. B. Whitman, J. Euzéby, R. Amann and R. Rosselló-Móra, 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16s rRNA gene sequences. Nature reviews microbiology, 12(9): 635-645
APA, Harvard, Vancouver, ISO, and other styles
22

Bomfim, Aline da Costa, Daniel Solon Dias de Farias, Flávio José de Lima Silva, Silmara Rossi, Simone Almeida Gavilan, Vinícius Gabriel da Silva Santana, and Cibele Soares Pontes. "Long-term monitoring of marine turtle nests in northeastern Brazil." Biota Neotropica 21, no. 3 (2021). http://dx.doi.org/10.1590/1676-0611-bn-2020-1159.

Full text
Abstract:
Abstract: This study monitored marine turtle nests in a region known as the Potiguar Basin, which stretches from the northern region of Rio Grande do Norte State (5°4’1.15” S, 36°4’36.41” W) to eastern Ceará State (4°38’48.28” S, 37°32’52.08” W) in Brazil. We collected data from January 2011 to December 2019 to identify species of sea turtles that spawn in the basin, to analyze the nesting spatial-temporal pattern and nests characteristics, and to record effects of environmental and anthropic factors on nests. A field team examined sea turtle tracks and nests signs. Turtle clutches were monitored daily until hatchings emerged from the nests. We monitored nests of hawksbill (Eretmochelys imbricata; n = 238) and olive Ridley turtles (Lepidochelys olivacea; n = 103). The nesting season for E. imbricata occurred between December and May and for L. olivacea from March to August. Hawksbills had clutch size, incubation time, number of unhatched eggs, and dead hatchlings higher than olive Ridley turtles; nevertheless, they presented lower hatching success. Precipitation between 0 and 22 mm and relative humidity (RH) higher than 69% increased the hatching success rate for E. imbricata; however, rainfall above 11 mm and RH 64% had the same effect for L. olivacea. Signs of egg theft and human presence (e.g. vehicle traffic and plastic residues on the beach) were recorded and are considered threats to nests. The results of our long-term monitoring study in the Potiguar Basin provide basis for the implementation of mitigation measures and adoption of management policies at nesting beaches in this Brazilian region.
APA, Harvard, Vancouver, ISO, and other styles
23

Гиоргобиани, Т. В. "Conditions of formation of the alpine folded system of the Greater Caucasus and unique features of it's structure." Геология и геофизика Юга России, no. 1 (March 21, 2019). http://dx.doi.org/10.23671/vnc.2019.1.26787.

Full text
Abstract:
В статье рассмотрены условия формирования складчатой системы Большого Кавказа в альпийскую эпоху. Показано, что главная зональная линейная складчатая структура региона была сформирована на ранне- и среднеальпийской стадиях развития в результате проявления батской и пиренейской фаз складчатости. Установлено, что причиной складкообразования было активное столкновение Черноморско-Закавказского микроконтинента на юго-западе с пассивной окраиной Большого Кавказа. Определено, что позднеальпийская стадия в регионе проходила в условиях субмеридионального тангенциального давления, во время проявления плиоцен-четвертичных фаз складчатости. В это время на Большой Кавказ воздействовал не целостный Черноморско-Закавказский микроконтинент, а слагающие его мелкие плиты и блоки-шоли. Выяснено, что они в процессе тектогенеза перемещались и косо вдвигались в складчатую систему Большого Кавказа, вызывая преобразование первичной структуры и возникновение интерференционной складчатости. В результате повторного деформирования отдельных участков региона в его пределах образовалась неоднородная складчатая структура. Изучена основная особенность складчатой системы Большого Кавказа, выраженная структурной неоднородностью складчатости в поперечном и продольном направлениях. Установлено, что она отражает поэтапную и разноплановую деформацию отдельных участков, возникающую в результате последовательного проявления в регионе локальной и региональной геодинамики микроконтинента, а также связанных с ними общих и частных механизмов его формирования. Структурный анализ морфологии складчатости БК действительно показал неравномерную дислоцированность его – С-З и Ю-В сегментов, сложенных в основном ранне- и среднеальпийскими структурами, выраженную в разной степени осложненности коллизионными деформациями. Так, в пределах мальм-эоценового структурного этажа С-З Кавказа, раннеальпийская структура которого меньше всех остальных сегментов усложнена коллизионными деформациями, четко проявлена латеральная асимметричная зональность его складчатой структуры. Она выражена в последовательной смене с юго-запада на северо-восток интенсивной линейной сильно сжатой складчатости линейными гребневидными, а затем слабо вытянутыми типичными брахиморфными складками, переходящими, в свою очередь, в полого наклонную на северо-восток моноклиналь The article considers the conditions of formation of folded system of the Greater Caucasus in the Alpine Epoch. It is shown that main zonal linear folded structure of the region was formed at the early and middle Alpine stages of the evolution in the result of manifestation of Bathonian and Pyrenean stages of folding. It was established that the cause of the folding was an active collision of the Black Sea-Transcaucasian microcontinent in the south-west with the passive margin of the Greater Caucasus. It was also determined that the Late Alpine stage in the region took place under the conditions ofsubmeridional tangential stress, during the Pliocene-Quarternary folding phases. During this period the Greater Caucasus was affected not by the whole Black Sea-Transcaucasian microcontinent, but by its smaller plates and blocks. It was found out that during the process of tectogenesis they drifted and obliquely moved into the folded system of the Greater Caucasus, causing the transformation of the initial structure and the occurrence of interferential folding. In the result of repeated deformation of separate areas of the region the heterogeneous folded structure was formed. The main feature of the folded structures of the Greater Caucasus (expressed by a structural heterogeny in transversal and longitudinal directions) was studied. It was determined that it reflects the gradual and diverse deformation of individual sections, resulting from the consistent manifestation of the local and regional geodynamics of the microcontinent, as well as the common and specific mechanisms of its formation associated with them. The structural analysis of the morphology of folding of the Great Caucasus really showed its uneven dislocation, i.e. the N-W and S-E of the segments, composed mainly of early and middle Alpine structures, expressed in varying degrees of complication by collisional deformations. So, within the Malm-Eocene structural floor of the northwestern Caucasus, the Early Alpine structure of which is less than all the other segments, is complicated by collimated deformations, the lateral asymmetric zonality of its folded structure is clearly manifested. It is expressed in a successive change from the south-west to the north-east of intensive linear highly compressed folding with linear ridge-like, and then slightly elongated typical brachymorphic folds, which turn into a hollow sloping to the north-east monocline
APA, Harvard, Vancouver, ISO, and other styles
24

Thai, Tran Thanh, and Ngo Xuan Quang. "The Seasonal Variability in The Genus-Family Structure of Free-Living Nematode Communities in Organic Shrimp Farming Ponds, Ca Mau Province." VNU Journal of Science: Natural Sciences and Technology, March 27, 2019. http://dx.doi.org/10.25073/2588-1140/vnunst.4864.

Full text
Abstract:
This study determined the seasonal variability of free-living nematode communities structure (genus/family level) in organic shrimp farms ponds in Tam Giang commune, Nam Can district, Ca Mau province. Based on the result of SIMPER analysis, the average similarity in nematode communities at genus level was low with 30.75% and 30.81% (in dry and rainy season, respectively). However, the average dissimilarity between seasons was considerably high with 71.75%. Terschellingia, Daptonema, and Parodontophora were main genera contributing to similarity/dissimilarity between seasons. At the family level, results of SIMPER analysis showed that the average similarity was low with 37.12% and 39.02% (dry and rainy, respectively). Additionally, the average dissimilarity between dry and rainy season was fairly high with 64.06%. Specifically, four families such as Linhomoeidae, Xyalidae, Axonolaimidae, and Chromadoridae were the main families contributing to similarity/dissimilarity between seasons. Differences in sediment environmental characteristics between dry and rainy season are the reason for dissimilarity in the nematode communities structure. The high abundance of genus Terschellingia, Daptonema, Parodontophora may be indicative of organic enrichment conditions in shrimp pond sediment in both seasons. Nematodes with their rapid adaptation to changing environments can be used as a potential tool for bio-indicator. Keywords Bio-indicator, Ca Mau province, nematode communities, organic shrimp farms ponds, simper analysis References [1] Lin, F. Y., Vo, A. H., Phan, V. B., Nguyen, T. T., Bryla, D., Tran, C. T., ... & Robbins, J. B., The epidemiology of typhoid fever in the Dong Thap Province, Mekong Delta region of Vietnam, The American journal of tropical medicine and hygiene 62(5) (2000) 644-648.[2] Semprucci F, Moreno M, Sbrocca S, Rocchi M, AlbertelliG, Balsamo, M., The nematode assemblage as a tool for the assessment of marine ecological quality status: a case-study in the Central Adriatic Sea, Mediterranean Marine Science 14(1) (2013) 48-57.[3] Ngo, Q. X., Nguyen, N. C., Nguyen, D. T., & Vanreusel, A., Distribution pattern of free living nematode communities in the eight Mekong estuaries by seasonal factor, Journal of Vietnamese Environment 4(1) (2013) 28-33.[4] Heip, C., Vincx, M., Vranken G., The ecology of marine nematodes, Oceanography and Marine Biology: An Annual Review 23 (1985) 399-489.[5] Hodda, M., Nicholas, W.L., Nematode diversity and industrial pollution in the Hunter River Estuary, NSW, Australia, Marine Pollution Bulletin 17 (1986) 251-255.[6] Alongi D.M., Intertidal zonation and seasonality of meiobenthos in tropical mangrove estuaries, Marine Biology 95 (1987) 447-458.[7] Tudorancea, C., & Zullini, A., Associations and distribution of benthic nematodes in the Ethiopian Rift Valley lakes, Hydrobiologia, 179(1) (1989) 81-96.[8] Hodda M., Nicholas W.L., Production of meiofauna in an Australian estuary, Wetland 9 (1990) 41-48.[9] Beier, S., & Traunspurger, W., Seasonal distribution of free-living nematodes in the Körsch, a coarse-grained submountain carbonate stream in southwest Germany, Nematology 5(4) (2003) 481-504.[10] Hourston, M., Potter, I. C., Warwick, R. M., Valesini, F. J., & Clarke, K. R., Spatial and seasonal variations in the ecological characteristics of the free-living nematode assemblages in a large microtidal estuary, Estuarine, Coastal and Shelf Science 82(2) (2009) 309-322.[11] Tran, T.T., Pham, T.L., Nguyen, T., Ngo, X. Q., Relationship of free-lingving nematode communities to some environmental characteristics in the organic shrimp farms, Ca Mau province, Vietnam Journal of Science and Technology 56(5) (2018).[12] Tran, T. T., Nguyen, T. M. Y., Nguyen, T., Ngo, X. Q., Meiofauna in the mangrove–shrimp farms ponds, Ca Mau province, Vietnam Journal of Science and Technology 55(3) (2017) 271.[13] El Hag E. A., Food and food selection of the Penaeid prawn Penaeus monodon (Fabricius), In Limnology and Marine Biology in the Sudan, Springer Netherlands, (1984) 213-217.[14] Chong V. C., Sasekumar A., Food and feeding habits of the white prawn Penaeus merguiensis, Marine ecology progress series 5 (20) (1981) 185-191.[15] Nguyen Thi My Yen, Tran Thanh Thai, Nguyen Tan Duc, Ngo Xuan Quang, Free living nematode communities as fundamental food for shrimps in the ecological - model of mangrove - shrimp farming ponds, Nam Can district, Ca Mau province, Vietnam Journal of Biotechnology, 16(3) (2018), 581 -588.[16] Clarke, K.R. and Gorley, R.N., PRIMER v6: User Manual/Tutorial PRIMER-E: Plymouth (2006).[17] Ingels, J., Tchesunov, A. V. and Vanreusel, A., Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin—how local environmental conditions shape nematode structure and function, PLoS One 6(5) (2011) e20094.[18] Cai, L., Fu, S., Yang, J. and Zhou, X., Distribution of meiofaunal abundance in relation to environmental factors in Beibu Gulf, South China Sea, Acta Oceanologica Sinica 31(6) (2012) 92-103.[19] Ngo, X. Q., Smol, N. and Vanreusel, A., The meiofauna distribution in correlation with environmental characteristics in 5 Mekong estuaries, Vietnam, Cahiers de Biologie Marine 54 (2013) 71 -83.[20] Górska, B., Grzelak, K., Kotwicki, L., Hasemann, C., Schewe, I., Soltwedel, T. and W łodarska-Kowalczuk, M., Bathymetric variations in vertical distribution patterns of meiofauna in the surface sediments of the deep Arctic ocean (HAUSGARTEN, Fram strait), Deep Sea Research Part I: Oceanographic Research 91 (2014) 36-49.[21] Mueller, M., Pander, J., & Geist, J., The effects of weirs on structural stream habitat and biological communities, Journal of Applied Ecology 48(6) (2011) 1450-1461.[22] Schratzberger, M., Warr, K., Rogers, S. I., Patterns of nematode populations in the southwestern North Sea and their link to other components of the benthic fauna, Journal of Sea Research 55 (2006) 113–127.[23] Moreno, M., Albertelli, G., and Fabiano, M., Nematode response to metal, PAHs and organic enrichment in tourist marinas of the mediterranean sea, Marine Pollution Bulletin 58(8) (2009) 1192-1201.[24] Alves, A. S., Adão, H., Ferrero, T. J., Marques, J. C., Costa, M. J., & Patrício, J., Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment, Ecological Indicators 24 (2013) 462-475.[25] Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M., & Albertelli, G., The use of nematodes in assessing ecological quality status in the Mediterranean (2) (2011) 328-336.
APA, Harvard, Vancouver, ISO, and other styles
25

Bac, Bui Van. "Effects of Land use Change on Coprini dung Beetles in Tropical Karst Ecosystems of Puluong Nature Reserve." VNU Journal of Science: Natural Sciences and Technology 35, no. 4 (December 23, 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4930.

Full text
Abstract:
I examined variation in community structure, species richness, biomass and abundance of Coprini dung beetles from 45 trapping sites in meadows, 35-year-old secondary forests and primary forests in tropical, high-elevation karst ecosystems of Puluong Nature Reserve, Thanh Hoa Province. My main aim was to explore community response to the influence of land use change. By comparing the structure and community attributes of the beetles between 35-year-old secondary forests and primary forests, I expected to give indications on the conservation value of the old secondary forests for beetle conservation. Community structure significantly differed among land-use types. Species richness, abundance and biomass were significantly higher in forest habitats than in meadows. The cover of ground vegetation, soil clay content and tree diameter are important factors structuring Coprini communities in karst ecosystems of Pu Luong. The secondary forests, after 35 years of regrowth showed similarities in species richness, abundance and biomass to primary forests. This gives hope for the recovery of Coprini communities during forest succession. Keywords: Coprini, dung beetles, karst ecosystems, land use change, Pu Luong. References: [1] I. Hanski, Y. Cambefort, Dung beetle ecology, Princeton University Press, Princeton, 1991.[2] C.H. Scholtz, A.L.V. Davis, U. Kryger, Evolutionary biology and conservation of dung beetles, Pensoft Publisher, Bulgaria, 2009.[3] E. Nichols, S. Spector, J. Louzada, T. Larsen, S. Amezquita, M.E. Favila et al., Ecological functions and ecosystem services provided by Scarabaeinae dung beetles, Biol. Conserv. 141 (2008) 1461-1474. https://doi.org/10.1016/j.biocon.2008.04.011.[4] H.K. Gibbsa, A.S. Rueschb, F. Achardc, M.K. Claytond, P. Holmgrene, N. Ramankuttyf, J.A. Foleyg, Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s, Proc Natl Acad Sci USA 107 (2010) 16732-16737. https://doi.org/10.1073/pnas.0910275107.[5] L.D. Audino, J. Louzada, L. Comita, Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity? Biol. Conserv. 169 (2014) 248-257. https://doi.org/10.1016/j.biocon.2013.11.023.[6] W. Beiroz, E.M. Slade, J. Barlow, J.M. Silveira, J. Louzada, E. Sayer, Dung beetle community dynamics in undisturbed tropical forests: implications for ecological evaluations of land-use change, Insect Conservation and Diversity 10 (2017) 94-106. https://doi.org/10.1111/icad.12206.[7] S. Boonrotpong, S. Sotthibandhu, C. Pholpunthin, Species composition of dung beetles in the primary and secondary forests at Ton Nga Chang Wildlife Sanctuary, ScienceAsia 30 (2004) 59-65. https: // doi.org/10.2306/scienceasia1513-1874.2004.30.059.[8] S. Boonrotpong, S. Sotthibandhu, C. Satasook, Species turnover and diel flight activity of species of dung beetles, Onthophagus, in the tropical lowland forest of peninsular Thailand, Journal of Insect Science 12 (77) (2012). https://doi.org/10. 1673/031.012.7701.[9] A.J. Davis, J.D. Holloway, H. Huijbregts, J. Krikken, A.H. Kirk-Spriggs, S.L. Sutton, Dung beetles as indicators of change in the forests of northern Borneo, Journal of Applied Ecology 38 (2001) 593-616. https://doi.org/10.1046/j.1365-2664.2001.00619.x.[10] K. Frank, M. Hülsmann, T. Assmann, T. Schmitt, N. Blüthgen, Land use affects dung beetle communities and their ecosystem service in forests and grasslands, Agriculture, Ecosystems & Environment 243 (2017) 114-122.[11] T.A. Gardner, M.I.M. Hernández, J. Barlow, C.A. Peres, Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles, Journal of Applied Ecology 45 (2008) 883-893. https://doi.org/10.1111/j.1365-2664. 2008.01454.x.[12] L. Hayes, D.J. Mann, A.L. Monastyrskii, O.T. Lewis, Rapid assessments of tropical dung beetle and butterfly assemblages: contrasting trends along a forest disturbance gradient, Insect Conservation and Diversity 2 (2009) 194-203. https://doi.org/ 10.1111/j.1752-4598.2009.00058.x.[13] I. Quintero, T. Roslin, Rapid recovery of dung beetle communities following habitat fragmentation in central Amazonia, Ecology 12 (2005) 3303-3311. https://doi.org/10.1890/04-1960.[14] Shahabuddin, C.H. Schulze, T. Tscharntke, Changes of dung beetle communities from rainforests towards agroforestry systems and annual cultures in Sulawesi (Indonesia), Biodiversity and Conservation 14 (2005) 863-877. https://doi.org/10.1007/s10531-004-0654-7.[15] K. Vulinec, Dung beetle communities and seed dispersal in primary forest and disturbed land in Amazonia, Biotropica 34 (2002) 297-309. https:// doi.org/10.1111/j.1744-7429.2002.tb00541.x.[16] K. Vulinec, J.E. Lambert, D.J. Mellow, Primate and dung beetle communities in secondary growth rain forests: implications for conservation of seed dispersal systems, International Journal of Primatology 27 (2006) 855-879. https://doi.org/10. 1007/s10764-006-9027-2.[17] E. Nichols, T. Larsen, S. Spector, A.L. Davis, F. Escobar, M. Favila, K. Vulinec, Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis, Biological Conservation 137 (2007) 1-19. https://doi.org/10.1016/j.biocon.2007.01.023.[18] R. Clements, N.S. Sodhi, M. Schilthuizen, K.L.Ng. Peter, Limestone karsts of Southeast Asia: imperiled arks of biodiversity, BioScience 56 (2006) 733-742. https://doi.org/10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2.[19] M. Schilthuizen, T.S. Liew, B.B. Elahan, I. Lackman-Ancrenaz, Effects of karst forest degradation on pulmonate and prosobranch land snail communities in Sabah, Malaysian Borneo, Conservation Biology 19 (2005) 949-954. https://doi.org/10.1111/j.1523-1739.2005.00209.x.[20] C. Costa, V.H.F. Oliveira, R. Maciel, W. Beiroz, V. Korasaki, J. Louzada, Variegated tropical landscapes conserve diverse dung beetle communities, PeerJ 5 (2017). https://doi.org/10. 7717/peerj.3125.[21] R.P. Salomão, D. González-Tokmana, W. Dáttilo, J.C. López-Acosta, M.E. Favila, Landscape structure and composition define the body condition of dung beetles (Coleoptera: Scarabaeinae) in a fragmented tropical rainforest, Ecol. Indic. 88 (2018) 144-151. https://doi.org/ 10.1016/j.ecolind.2018.01.033.[22] R.C. Campos, M.I.M. Hernández, Dung beetle assemblages (Coleoptera, Scarabaeinae) in Atlantic forest fragments in southern Brazil, Revista Brasileira de Entomologia 57 (2013) 47-54.[23] E. Nichols, Fear begets function in the ‘brown’ world of detrital food webs, Journal of Animal Ecology 82(4) (2013) 717-720. https://doi.org/ 10.1111/1365-2656.12099.[24] Tixier, J.M.G. Bloor, J.-P. Lumaret, Species-specific effects of dung beetle abundance on dung removal and leaf litter decomposition, Acta Oecologica 69 (2015) 31-34. https://doi.org/10. 1016/j.actao.2015.08.003.[25] P.M. Farias, L. Arellano, M.I.M. Hernández, S.L. Ortiz, Response of the copro- necrophagous beetle (Coleoptera: Scarabaeinae) assemblage to a range of soil characteristics and livestock management in a tropical landscape, Journal of Insect Conservation 19 (2015) 947-960. https://doi.org/10.1007/s 108 41-015-9812-3.[26] D.C. Osberg, B.M. Doube, S.A. Hanrahan, Habitat specificity in African dung beetles: the effect of soil type on the survival ofdung beetle immatures (Coleoptera: Scarabaeidae), Tropical Zoology 7 (1994) 1-10. https://doi.org/10.1080/03946975. 1994.10539236.[27] E. Andresen, S. Laurance, Possible indirect effects of mammal hunting on dung beetle assemblages in Panama, Biotropica 39 (2006) 141-146. https://doi.org/10.1111/j.1744-7429.2006.00239.x.[28] H. Enari, S. Koike, H. Sakamaki, Influences of different large mammalian fauna on dung beetle diversity in beech forests, Journal of Insect Science 13(54)(2013).https://doi.org/10.1673/031.013. 5401.[29] A. Estrada, D.A. Anzuras, R. Coastes-Estrada, Tropical forest fragmentation, howler monkeys (Alouatta palliata) and dung beetles at Los Tuxtlas, Mexico, American Journal of Primatology 48 (1999) 353-362.[30] C.A. Harvey, J. Gonzalez, E. Somarriba, Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica, Biodiversity and Conservation 15 (2006) 555-585. https://doi.org/10.1007/s10531-005-2088-2.[31] K.V. Nguyễn, T.H. Nguyễn, K.L. Phan, T.H. Nguyễn, Bản đồ sinh khí hậu Việt Nam, Nhà xuất bản Đại học Quốc gia, Hà Nội, 2000.[32] E.J. Sterling, M.M. Hurley, M.D. Le, Vietnam–a natural history, Yale University Press, New Haven, CT, 2006.[33] T. Do, Characteristics of karst ecosystems of Vietnam and their vulnerability to human impact, Acta Geologica Sinica 75 (2001) 325-329.[34] V.T. Thái, Thảm thực vật rừng Việt Nam, Nhà xuất bản Khoa học và kỹ thuật, Hà Nội, 1978. [35] P.G.d. Silva, M.I.M. Hernández, Spatial patterns of movement of dung beetle species in a tropical forest suggest a new trap spacing for dung beetle biodiversity studies. PloS ONE 10 (5) (e0126112) (2015). https://doi.org/10.1371/journal.pone.0126112.[36] V.B. Bui, K. Dumack, M. Bonkowski, Two new species and one new record for the genus Copris (Coleoptera: Scarabaeidae: Scarabaeinae) from Vietnam with a key to Vietnamese species, European Journal of Entomology 115 (2018) 167-191. https://doi.org/10.14411/eje.2018.016.[37] V.B. Bui, M. Bonkowski, Synapsis puluongensis sp. nov. and new data on the poorly known species Synapsis horaki (Coleoptera: Scarabaeidae) from Vietnam with a key to Vietnamese species. Acta Entomologica Musei Nationalis Pragae 58 (2018) 407-418. https://doi.org/10.2478/aemnp-2018-0032.[38] O.N. Kabakov, A. Napolov, Fauna and ecology of Lamellicornia of subfamily Scarabaeinae of Vietnam and some parts of adjacent countries: South China, Laos, and Thailand, Latvijas Entomologs 37 (1999) 58-96.[39] J.E. Brower, J.H. Zar, C.N. Von-Ende, Field and laboratory methods for general ecology, 4th ed. Boston, WCB. McGraw-Hill, 1998.[40] R Core Team, R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (accessed 15 May 2017).[41] J. Oksanen, F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn et al., Vegan: Community Ecology Package, R package version 2.4–5 (2017). https://cran.r-project.org/web/packages/vegan.[42] R. Clements, P.K.L. Nga, X.X. Lub, S. Ambu, M. Schilthuizen, C.J.A. Bradshaw, Using biogeographical patterns of endemic land snails to improve conservation planning for limestone karsts, Biological Conservation 141 (2751e2764) (2008). https://doi.org/10.1016/j.biocon.2008.08.011.[43] P.K.L. Ng, D. Guinot, T.M. Iliffe, Revision of the anchialine varunine crabs of the genus Orcovita Ng & Tomascik, 1994 (Crustacea: Decapoda: Brachyura: Grapsidae), with descriptions of four new species, Raffles Bulletin of Zoology 44 (1996) 109-134.[44] P.K.L. Ng, Cancrocaeca xenomorpha, new genus and species, a blind troglobitic freshwater hymenosomatid (Crustacea: Decapoda: Brachyura) from Sulawesi, Indonesia, Raffles Bulletin of Zoology 39 (1991) 59-73.[45] V. Balthasar, Monographie der Scarabaeidae und Aphodiidae der Palaearktischen und Orientalischen Region. Coleoptera: Lamellicornia. Band 1. Allgemeiner Teil, Systematischer Teil: 1. Scarabaeinae, 2. Coprinae (Pinotini, Coprini). Verlag der Tschechoslowakischen Akademie der Wissenschaften, Prag, 1963.[46] Y. Hanboonsong, K. Masumoto, T. Ochi, Dung beetles (Coleoptera, Scarabaeidae) of Thailand. Part 5. Genera Copris and Microcopris (Coprini), Elytra 31 (2003) 103-124.[47] D. Král, J. Rejsek, Synapsis naxiorum sp. n. from Yunnan (Coleoptera: Scarabaeidae), Acta Societatis Zoologicae Bohemicae 64 (2000) 267-270.[48] D. Král, Distribution and taxonomy of some Synapsis species, with description of S. strnadi sp. n. from Vietnam (Coleoptera: Scarabaeidae), Acta Societatis Zoologicae Bohemicae 66 (2002) 279-289.[49] T. Ochi, M. Kon, Notes on the coprophagous scarab beetles (Coleoptera, Scarabaeidae) from Southeast Asia (IV). A new horned species of Microcopris from Vietnam and a new subspecies of Copris erratus from Peleng off Sulawesi, Kogane 5 (2004) 25-30.[50] T. Ochi, M. Kon, H.T. Pham, Five new taxa of Copris (Coleoptera: Scarabaeidae) from Vietnam and Laos, Giornale Italiano di Entomologia 15 (64) (2019) 435-446.[51] T. Ochi, M. Kon, H.T. Pham, Two new species of Copris (Copris) (Coleoptera: Scarabaeidae) and a new subspecies of Phelotrupes (Sinogeotrupes) strnadi Král, Malý & Schneider (Coleoptera: Geotrupidae) from Vietnam, Giornale Italiano di Entomologia 15 (63) (2018) 159-168.[52] J. Zídek, S. Pokorný, Review of Synapsis Bates (Scarabaeidae: Scarabaeinae: Coprini), with description of a new species, Insecta Mundi 142 (2010) 1-21.[53] H.F. Howden, V.G. Nealis, Observations on height of perching in some tropical dung beetles (Scarabaeidae), Biotropica 10 (1978) 43-46. https://doi.org/10.1111/j.1752-4598.2009.00058.x.[54] T.H. Larsen, A. Lopera, A. Forsyth, Understanding trait-dependent community disassembly: Dung beetles, density functions, and forest fragmentation, Conservation Biology 22 (2008) 1288-1298. https://doi.org/10.1111/j.1523-1739.2008.00969.x.[55] S.B. Peck, A. Forsyth, Composition, structure, and competitive behaviour in a guild of Ecuadorian rain forest dung beetles (Coleoptera; Scarabaeidae), Canadian Journal of Zoology 60(7) (1982) 1624-1634. https://doi.org/10.1139/z82-213.
APA, Harvard, Vancouver, ISO, and other styles
26

Chavdarov, Anatoliy V. "Special Issue No. – 10, June, 2020 Journal > Special Issue > Special Issue No. – 10, June, 2020 > Page 5 “Quantative Methods in Modern Science” organized by Academic Paper Ltd, Russia MORPHOLOGICAL AND ANATOMICAL FEATURES OF THE GENUS GAGEA SALISB., GROWING IN THE EAST KAZAKHSTAN REGION Authors: Zhamal T. Igissinova,Almash A. Kitapbayeva,Anargul S. Sharipkhanova,Alexander L. Vorobyev,Svetlana F. Kolosova,Zhanat K. Idrisheva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00041 Abstract: Due to ecological preferences among species of the genus GageaSalisb, many plants are qualified as rare and/or endangered. Therefore, the problem of rational use of natural resources, in particular protection of early spring plant species is very important. However, literary sources analysis only reveals data on the biology of species of this genus. The present research,conducted in the spring of 2017-2019, focuses on anatomical and morphological features of two Altai species: Gagealutea and Gagea minima; these features were studied, clarified and confirmed by drawings and photographs. The anatomical structure of the stem and leaf blade was studied in detail. The obtained research results will prove useful for studies of medicinal raw materials and honey plants. The aforementioned species are similar in morphological features, yet G. minima issmaller in size, and its shoots appear earlier than those of other species Keywords: Flora,gageas,Altai species,vegetative organs., Refference: I. Atlas of areas and resources of medicinal plants of Kazakhstan.Almaty, 2008. II. Baitenov M.S. Flora of Kazakhstan.Almaty: Ġylym, 2001. III. DanilevichV. G. ThegenusGageaSalisb. of WesternTienShan. PhD Thesis, St. Petersburg,1996. IV. EgeubaevaR.A., GemedzhievaN.G. The current state of stocks of medicinal plants in some mountain ecosystems of Kazakhstan.Proceedings of the international scientific conference ‘”Results and prospects for the development of botanical science in Kazakhstan’, 2002. V. Kotukhov Yu.A. New species of the genus Gagea (Liliaceae) from Southern Altai. Bot. Journal.1989;74(11). VI. KotukhovYu.A. ListofvascularplantsofKazakhstanAltai. Botan. Researches ofSiberiaandKazakhstan.2005;11. VII. KotukhovYu. The current state of populations of rare and endangered plants in Eastern Kazakhstan. Almaty: AST, 2009. VIII. Kotukhov Yu.A., DanilovaA.N., AnufrievaO.A. Synopsisoftheonions (AlliumL.) oftheKazakhstanAltai, Sauro-ManrakandtheZaisandepression. BotanicalstudiesofSiberiaandKazakhstan. 2011;17: 3-33. IX. Kotukhov, Yu.A., Baytulin, I.O. Rareandendangered, endemicandrelictelementsofthefloraofKazakhstanAltai. MaterialsoftheIntern. scientific-practical. conf. ‘Sustainablemanagementofprotectedareas’.Almaty: Ridder, 2010. X. Krasnoborov I.M. et al. The determinant of plants of the Republic of Altai. Novosibirsk: SB RAS, 2012. XI. Levichev I.G. On the species status of Gagea Rubicunda. Botanical Journal.1997;6:71-76. XII. Levichev I.G. A new species of the genus Gagea (Liliaceae). Botanical Journal. 2000;7: 186-189. XIII. Levichev I.G., Jangb Chang-gee, Seung Hwan Ohc, Lazkovd G.A.A new species of genus GageaSalisb.(Liliaceae) from Kyrgyz Republic (Western Tian Shan, Chatkal Range, Sary-Chelek Nature Reserve). Journal of Asia-Pacific Biodiversity.2019; 12: 341-343. XIV. Peterson A., Levichev I.G., Peterson J. Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Molecular Phylogenetics and Evolution.2008; 46. XV. Peruzzi L., Peterson A., Tison J.-M., Peterson J. Phylogenetic relationships of GageaSalisb.(Liliaceae) in Italy, inferred from molecular and morphological data matrices. Plant Systematics and Evolution; 2008: 276. XVI. Rib R.D. Honey plants of Kazakhstan. Advertising Digest, 2013. XVII. Scherbakova L.I., Shirshikova N.A. Flora of medicinal plants in the vicinity of Ust-Kamenogorsk. Collection of materials of the scientific-practical conference ‘Unity of Education, Science and Innovation’. Ust-Kamenogorsk: EKSU, 2011. XVIII. syganovA.P. PrimrosesofEastKazakhstan. Ust-Kamenogorsk: EKSU, 2001. XIX. Tsyganov A.P. Flora and vegetation of the South Altai Tarbagatay. Berlin: LAP LAMBERT,2014. XX. Utyasheva, T.R., Berezovikov, N.N., Zinchenko, Yu.K. ProceedingsoftheMarkakolskStateNatureReserve. Ust-Kamenogorsk, 2009. XXI. Xinqi C, Turland NJ. Gagea. Flora of China.2000;24: 117-121. XXII. Zarrei M., Zarre S., Wilkin P., Rix E.M. Systematic revision of the genus GageaSalisb. (Liliaceae) in Iran.BotJourn Linn Soc.2007;154. XXIII. Zarrei M., Wilkin P., Ingroille M.J., Chase M.W. A revised infrageneric classification for GageaSalisb. (Tulipeae; Liliaceae): insights from DNA sequence and morphological data.Phytotaxa.2011:5. View | Download INFLUENCE OF SUCCESSION CROPPING ON ECONOMIC EFFICIENCY OF NO-TILL CROP ROTATIONS Authors: Victor K. Dridiger,Roman S. Stukalov,Rasul G. Gadzhiumarov,Anastasiya A. Voropaeva,Viktoriay A. Kolomytseva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00042 Abstract: This study was aimed at examining the influence of succession cropping on the economic efficiency of no-till field crop rotations on the black earth in the zone of unstable moistening of the Stavropol krai. A long-term stationary experiment was conducted to examine for the purpose nine field crop rotation patterns different in the number of fields (four to six), set of crops, and their succession in crop rotation. The respective shares of legumes, oilseeds, and cereals in the cropping pattern were 17 to 33, 17 to 40, and 50 to 67 %. It has been established that in case of no-till field crop cultivation the economic efficiency of plant production depends on the set of crops and their succession in rotation. The most economically efficient type of crop rotation is the soya-winter wheat-peas-winter wheat-sunflower-corn six-field rotation with two fields of legumes: in this rotation 1 ha of crop rotation area yields 3 850 grain units per ha at a grain unit prime cost of 5.46 roubles; the plant production output return and profitability were 20,888 roubles per ha and 113 %, respectively. The high production profitabilities provided by the soya-winter wheat-sunflower four-field and the soya-winter-wheat-sunflower-corn-winter wheat five-field crop rotation are 108.7 and 106.2 %, respectively. The inclusion of winter wheat in crop rotation for two years in a row reduces the second winter wheat crop yield by 80 to 100 %, which means a certain reduction in the grain unit harvesting rate to 3.48-3.57 thousands per ha of rotation area and cuts the production profitability down to 84.4-92.3 %. This is why, no-till cropping should not include winter wheat for a second time Keywords: No-till technology,crop rotation,predecessor,yield,return,profitability, Refference: I Badakhova G. Kh. and Knutas A. V., Stavropol Krai: Modern Climate Conditions [Stavropol’skiykray: sovremennyyeklimaticheskiyeusloviya]. Stavropol: SUE Krai Communication Networks, 2007. II Cherkasov G. N. and Akimenko A. S. Scientific Basis of Modernization of Crop Rotations and Formation of Their Systems according to the Specializations of Farms in the Central Chernozem Region [Osnovy moderniz atsiisevooborotoviformirovaniyaikh sistem v sootvetstvii so spetsi-alizatsiyeykhozyaystvTsentral’nogoChernozem’ya]. Zemledelie. 2017; 4: 3-5. III Decree 330 of July 6, 2017 the Ministry of Agriculture of Russia “On Approving Coefficients of Converting to Agricultural Crops to Grain Units [Ob utverzhdeniikoeffitsiyentovperevoda v zernovyyee dinitsysel’s kokhozyaystvennykhkul’tur]. IV Dridiger V. K., About Methods of Research of No-Till Technology [O metodikeissledovaniytekhnologii No-till]//Achievements of Science and Technology of AIC (Dostizheniyanaukiitekhniki APK). 2016; 30 (4): 30-32. V Dridiger V. K. and Gadzhiumarov R. G. Growth, Development, and Productivity of Soya Beans Cultivated On No-Till Technology in the Zone of Unstable Moistening of Stavropol Region [Rost, razvitiyeiproduktivnost’ soiprivozdelyvaniipotekhnologii No-till v zone ne-ustoychivog ouvlazhneniyaStavropol’skogokraya]//Oil Crops RTBVNIIMK (Maslichnyyekul’turyNTBVNIIMK). 2018; 3 (175): 52–57. VI Dridiger V. K., Godunova E. I., Eroshenko F. V., Stukalov R. S., Gadzhiumarov, R. G., Effekt of No-till Technology on erosion resistance, the population of earthworms and humus content in soil (Vliyaniyetekhnologii No-till naprotivoerozionnuyuustoychivost’, populyatsiyudozhdevykhcherveyisoderzhaniyegumusa v pochve)//Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9 (2): 766-770. VII Karabutov A. P., Solovichenko V. D., Nikitin V. V. et al., Reproduction of Soil Fertility, Productivity and Energy Efficiency of Crop Rotations [Vosproizvodstvoplodorodiyapochv, produktivnost’ ienergeticheskayaeffektivnost’ sevooborotov]. Zemledelie. 2019; 2: 3-7. VIII Kulintsev V. V., Dridiger V. K., Godunova E. I., Kovtun V. I., Zhukova M. P., Effekt of No-till Technology on The Available Moisture Content and Soil Density in The Crop Rotation [Vliyaniyetekhnologii No-till nasoderzhaniyedostupnoyvlagiiplotnost’ pochvy v sevoob-orote]// Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2017; 8 (6): 795-99. IX Kulintsev V. V., Godunova E. I., Zhelnakova L. I. et al., Next-Gen Agriculture System for Stavropol Krai: Monograph [SistemazemledeliyanovogopokoleniyaStavropol’skogokraya: Monogtafiya]. Stavropol: AGRUS Publishers, Stavropol State Agrarian University, 2013. X Lessiter Frank, 29 reasons why many growers are harvesting higher no-till yields in their fields than some university scientists find in research plots//No-till Farmer. 2015; 44 (2): 8. XI Rodionova O. A. Reproduction and Exchange-Distributive Relations in Farming Entities [Vosproizvodstvoiobmenno-raspredelitel’nyyeotnosheniya v sel’skokhozyaystvennykhorganizatsiyakh]//Economy, Labour, and Control in Agriculture (Ekonomika, trud, upravleniye v sel’skomkhozyaystve). 2010; 1 (2): 24-27. XII Sandu I. S., Svobodin V. A., Nechaev V. I., Kosolapova M. V., and Fedorenko V. F., Agricultural Production Efficiency: Recommended Practices [Effektivnost’ sel’skokhozyaystvennogoproizvodstva (metodicheskiyerekomendatsii)]. Moscow: Rosinforagrotech, 2013. XIII Sotchenko V. S. Modern Corn Cultivation Technologies [Sovremennayatekhnologiyavozdelyvaniya]. Moscow: Rosagrokhim, 2009. View | Download DEVELOPMENT AND TESTING OF AUTONOMOUS PORTABLE SEISMOMETER DESIGNED FOR USE AT ULTRALOW TEMPERATURES IN ARCTIC ENVIRONMENT Authors: Mikhail A. Abaturov,Yuriy V. Sirotinskiy, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00043 Abstract: This paper is concerned with solving one of the issues of the general problem of designing geophysical equipment for the natural climatic environment of the Arctic. The relevance of the topic has to do with an increased global interest in this region. The paper is aimed at considering the basic principles of developing and the procedure of testing seismic instruments for use at ultralow climatic temperatures. In this paper the indicated issue is considered through the example of a seismic module designed for petroleum and gas exploration by passive seismoacoustic methods. The seismic module is a direct-burial portable unit of around 5 kg in weight, designed to continuously measure and record microseismic triaxial orthogonal (ZNE) noise in a range from 0.1 to 45 Hz during several days in autonomous mode. The functional chart of designing the seismic module was considered, and concrete conclusions were made for choosing the necessary components to meet the ultralow-temperature operational requirements. The conclusions made served for developing appropriate seismic module. In this case, the components and tools used included a SAFT MP 176065 xc low-temperature lithium cell, industrial-spec electronic component parts, a Zhaofeng Geophysical ZF-4.5 Chinese primary electrodynamic seismic sensor, housing seal parts made of frost-resistant silicone materials, and finely dispersed silica gel used as water-retaining sorbent to avoid condensation in the housing. The paper also describes a procedure of low-temperature collation tests at the lab using a New Brunswick Scientific freezing plant. The test results proved the operability of the developed equipment at ultralow temperatures down to -55°C. In addition, tests were conducted at low microseismic noises in the actual Arctic environment. The possibility to detect signals in a range from 1 to 10 Hz at the level close to the NLNM limit (the Peterson model) has been confirmed, which allows monitoring and exploring petroleum and gas deposits by passive methods. As revealed by this study, the suggested approaches are efficient in developing high-precision mobile seismic instruments for use at ultralow climatic temperatures. The solution of the considered instrumentation and methodical issues is of great practical significance as a constituent of the generic problem of Arctic exploration. Keywords: Seismic instrumentation,microseismic monitoring,Peterson model,geological exploration,temperature ratings,cooling test, Refference: I. AD797: Ultralow Distortion, Ultralow Noise Op Amp, Analog Devices, Inc., Data Sheet (Rev. K). Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf(Date of access September 2, 2019). II. Agafonov, V. M., Egorov, I. V., and Shabalina, A. S. Operating Principles and Technical Characteristics of a Small-Sized Molecular–Electronic Seismic Sensor with Negative Feedback [Printsipyraboty I tekhnicheskiyekharakteristikimalogabaritnogomolekulyarno-elektronnogoseysmodatchika s otritsatel’noyobratnoysvyaz’yu]. SeysmicheskiyePribory (Seismic Instruments). 2014; 50 (1): 1–8. DOI: 10.3103/S0747923914010022. III. Antonovskaya, G., Konechnaya, Ya.,Kremenetskaya, E., Asming, V., Kvaema, T., Schweitzer, J., Ringdal, F. Enhanced Earthquake Monitoring in the European Arctic. Polar Science. 2015; 1 (9): 158-167. IV. Anthony, R. E., Aster, R. C., Wiens, D., Nyblade, Andr., Anandakrishnan, Sr., Huerta, Audr., Winberry, J. P., Wilson, T., and Rowe, Ch. The Seismic Noise Environment of Antarctica. Seismological Research Letters. 2015; 86(1): 89-100. DOI: 10.1785/0220150005 V. Brincker, R., Lago, T. L., Andersen, P., and Ventura, C. Improving the Classical Geophone Sensor Element by Digital Correction. In Conference Proceedings: IMAC-XXIII: A Conference & Exposition on Structural Dynamics Society for Experimental Mechanics, 2005. URL: https://www.researchgate.net/publication/242452637_Improving_the_Classical_Geophone_Sensor_Element_by_Digital_Correction(Date of access September 2, 2019). VI. Bylaw 164 of the State Committee for Construction of the Russian Federation “On adopting amendments to SNiP 31-01-99 “Construction climatology”. URL: https://base.garant.ru/2322381/(Date of access September 2, 2019). VII. Chao Xu, Junbo Wang, Deyong Chen, Jian Chen, Bowen Liu, Wenjie Qi, XichenZheng, Hua Wei, Guoqing Zhang. The Electrochemical Seismometer Based on a Novel Designed.Sensing Electrode for Undersea Exploration. 20th International Conference on Solid-State Sensors, Actuators and Microsystems &Eurosensors XXXIII (TRANSDUCERS &EUROSENSORS XXXIII). IEEE, 2019. DOI: 10.1109/TRANSDUCERS.2019.8808450. VIII. Chebotareva, I. Ya. New algorithms of emission tomography for passive seismic monitoring of a producing hydrocarbon deposit: Part I. Algorithms of processing and numerical simulation [Novyye algoritmyemissionnoyto mografiidlyapassivnogoseysmicheskogomonitoringarazrabatyvayemykhmestorozhdeniyuglevodorodov. Chast’ I: Algoritmyobrabotki I chislennoyemodelirovaniye]. FizikaZemli. 2010; 46(3):187-98. DOI: 10.1134/S106935131003002X IX. Danilov, A. V. and Konechnaya, Ya. V. Analytical comparison of seismic instruments for stationary surveys in the Arctic [Sravnitel’nyyanalizseysmicheskoyapparaturydlyastatsionarnykhnablyudeniy v Arktike]. DSYS. URL: https://dsys.ru/upload/id254_docPDF_FranzJosefLand.pdf(Date of access September 2, 2019). X. Dew point temperature calculator. Maple Tech. International LLC. URL: https://www.calculator.net/dew-point-calculator.html?airtemperature=20&airtemperatureunit=celsius&humidity=0.34&dewpoint=&dewpointunit=celsius&x=51&y=14(Date of access September 2, 2019). XI. Frolov, A. S. Matching of wave fields recorded by different geophysical receivers [Soglasovaniyevolnovykhpoley, poluchennykh s primeneniyemrazlichnoyregistriruyushcheyapparatury]. Abstracts IX International scientific and technical conference competition of young specialists “Geophysics-2013”. Saint-Petersburg: Gubkin University, 2013. URL: https://www.gubkin.ru/faculty/geology_and_geophysics/chairs_and_departments/exploration_geophysics_and_computers_systems/files/2013_SPb_Frolov.pdf. (Date of access September 2, 2019). XII. Gibbons, S. J., Asming, V., Fedorov, A., Fyen, J., Kero, J., Kozlovskaya, E., Kværna, T., Liszka, L., Näsholm, S.P., Raita, T., Roth, M., Tiira, T., Vinogradov, Yu. The European Arctic: A laboratory for seismoacoustic studies. Seism. Res. Letters. 2015; 86 (3): 917–928. XIII. GOST 8.395-80. State system for ensuring the uniformity of measurements. Reference conditions of measurements while calibrating. General requirements [Gosudarstvennayasistemaobespecheniyaedinstvaizmereniy. Normal’nyyeusloviyaizmereniypripoverke. Obshchiyetrebovaniya]. Moscow: Standartinform, 2008. URL: http://gostrf.com/normadata/1/4294821/4294821960.pdf (Date of access September 2, 2019). XIV. Guralp 6TD. Operators’ Guide. Document Number: MAN-T60-0002, Issue J: April, 2017. Guralp Systems Limited. URL: https://www.guralp.com/documents/MAN-T60-0002.pdf (Date of access September 2, 2019). XV. Inshakova, A. S., Barykina, E. S., and Kozlov, V. V. Role of silica gel in adsorption air drying [Rol’ silikagelya v adsorbtsionnoyosushkevozdukha]. AlleyaNauki (Alley of Science). 2017; 15. URL: https://www.alley- science.ru/domains_data/files/November2017/ROL%20SILIKAGELYa%20V%20ADSORBCIONNOY%20OSUShKE%20VOZDUHA.pdf(Date of access September 2, 2019). XVI. Ioffe, D. and Pozdnyakov, P. Searching for Hidden Reserves of Modern Microchip Circuits. Part I [Poiskskrytykhrezervovsovremennykhmikroskhem. Chast’ I].Komponenty I tekhnologii (Components and Technologies). 2015; 4: 144-46. XVII. Jiang Xu, Xi Wang, Ningyi Yuan, Jianning Ding, Si Qin, Joselito M. Razal, Xuehang Wang, ShanhaiGe, Gogotsi, Yu. Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Materials (IF0). Published 2019-04-27. DOI: 10.1016/j.ensm.2019.04.033. XVIII. Kouznetsov, O. L., Lyasch, Y. F., Chirkin, I. A., Rizanov, E. G., LeRoy, S. D., Koligaev, S. O. Long-term monitoring of microseismic emissions: Earth tides, fracture distribution, and fluid content. SEG, APPG Interpretation. 2016: 4 (2): T191–T204. XIX. Laverov, N. P., Bogoyavlenskiy, V. I., Bogoyavlenskiy, I. V. Fundamental Aspects of Rational Management of the Petroleum and Gas Resources of the Arctic and the Russian Continental Shelf: Strategy, Prospects, and Problems [Fundamental’nyyeaspektyratsional’nogoosvoyeniyaresursovneftiigazaArktiki I shel’faRossii: strategiya, perspektivyi problem].Arktika: ekologiya I ekonomika [Arctic: Ecology and Economy]. 2016; 2 (22): 4-13. XX. Lee, P. Low Noise Amplifier Selection Guide for Optimal Noise Performance, Analog Devices, Inc., AN-940 Application Note. Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/application-notes/AN-940.pdf(Date of access September 2, 2019). XXI. Markatis, N., Polychronopoulou, K., Tselentis, Ak. Passive seismic tomography: A passive concept actively evolving. First Break. 2012; 30 (7): 83-90. XXII. Matveev, I. V. and Matveeva, N. V. Portable seismic recorder “SEISAR-5” with very low energy consumption for autonomous work in harsh climatic conditions [Portativnyyseysmicheskiyregistrator «Seysar-5» s ochen’ nizkimenergopotrebleniyemdlyaavtonomnoyraboty v slozhnykhklimatic heskikhusloviyakh]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2017; 96 (3): 33-40. [Special Issue “Applied Geophysics: New Developments and Results. Part 1. Seismology and Seismic Exploration]. DOI: 10.21455/std2017.3-3. XXIII. Mishra, R. The Temperature Ratings of Electronic Parts.Electronics Cooling magazine. URL: http://www.electronics-cooling.com/2004/02/the-temperature-ratings-of-electronic-parts(Date of access September 2, 2019). XXIV. Moore, Sue E.; Stabeno, Phyllis J.; Van Pelt, Thomas I. The Synthesis of Arctic Research (SOAR) project. Deep-Sea Research Part II. 152: 1-7. DOI: 10.1016/j.dsr2.2018.05.013. XXV. MS-SPORT Viscous Silicone Lubricant with Fluoroplastic. ToR2257-010-45540231-2003. OOO VMPAUTO, URL: https://smazka.ru/attachments/get/469/ms-sport-tds.pdf(Date of access September 2, 2019). XXVI. New Brunswick™ Premium -86 °C Freezers. Operating manual. URL: https://www.eppendorf.com/product-media/doc/en/142770_Operating-Manual/New-Brunswick_Freezers_Operating-manual-86-C-Premium-Freezers.pdf(Date of access September 2, 2019). XXVII. New seismic digitizer/recorder for passive seismic monitoring applications. LandTech Enterprises. URL: http://www.landtechsa.com/Images/Instrument/SRi32L/SRi32L.pdf(Date of access September 2, 2019). XXVIII. Parker, T., Winberry, P., Huerta, A., Bainbridge, G., Devanney, P. Direct Burial Broadband Seismic Instrumentation for Polar Environments. Nanometrics Inc. URL: https://www.nanometrics.ca/sites/default/files/2017-11/direct_burial_bb_seismic_instrumentation_for_polar_environments.pdf. (Date of access September 2, 2019). XXIX. Peterson, J. Observation and Modeling of Seismic Background Noise. Albuquerque, New Mexico: US Department of Interior Geological Survey, 1993. XXX. Razinkov, O.G., Sidorov-Biryukov, D. D., Townsend, B., Parker, T., Bainbridge, G., Greiss, R. Strengths and Applications of Direct Burial Seismic Instruments [Preimushchestva I oblastiprimeneniyaseysmicheskikhpriborovdlyapryamoyustanovki v grunt] in Proc. VI Sci. Tech. Conf. “Problems of Complex Geophysical Monitoring of the Russian Far East”, Petropavlovsk-Kamchatskiy: Geophysical Survey, Russian Academy of Sciences, 2017. URL: http://www.emsd.ru/conf2017lib/pdf/techn/razinkov.pdf (Date of access September 2, 2019). XXXI. Roux, Ph., Wathelet, M., Roueff, Ant. The San Andreas Fault revisited through seismic-noise and surface-wave tomography. Geophysical Research Letters. 2011; 38 (13). DOI: 10.1029/2011GL047811. XXXII. Rubber O-ring seals for hydraulic and pneumatic equipment. Specifications [Kol’tsarezinovyyeuplotnitel’nyyekruglogosecheniyadlyagidravlicheskikh I pnevmaticheskikhustroystv. Tekhnicheskiyeusloviya]. GOST 18829-2017 Interstate standard. Moscow: Standartinform, 2017. URL: https://files.stroyinf.ru/Data/645/64562.pdf (Date of access September 2, 2019). XXXIII. Sanina, I., Gabsatarova, I., Chernykh, О.,Riznichenko, О., Volosov, S., Nesterkina, M., Konstantinovskaya, N. The Mikhnevo small aperture array enhances the resolution property of seismological observations on the East European Platform. Journal of Seismology (JOSE). 2011; 15 (3): 545-56. (DOI: 10.1007/sl0950-010-9211-х). XXXIV. SM-3VK Magnetoelectric Seismic Pickup. Specifications. ToR-4314-001-02698826-01. N. Laverov Federal Centre for Integrated Arctic Research, Russian Academy of Sciences. URL: http://fciarctic.ru/index.php?page=ckpg (Date of access September 2, 2019). XXXV. Sobisevich, A. L.,Presnov, D. A.,Agafonov, V. M.,Sobisevich, L. E. Autonomous geohydroacoustic ice buoy of new generation [Vmorazhivayemyyavtonomnyygeogidroakusticheskiy buy novogopokoleniya]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2018; 97 (1): 25–34. [Special issue “Precise Geophysical Monitoring of Natural Hazards. Part 1. Instruments andTechnologies”]. DOI: 10.21455/ std2018.1-3. XXXVI. Zhukov, Y. V. Issues of resistance and reliability of electronic equipment products to the exposure factors [Voprosystoykosti i nadezhnostiizdeliyradioelektronnoytekhniki k vneshnimvozdeystvuyushchimfaktoram]. Provintsial’nyyenauchnyyezapiski (The journal Provincial scientific proceedings). 2019; 1 (9): 118-124. View | Download COMPARATIVE ANALYSIS OF RESULTS OF TREATMENT OF PATIENTS WITH FOOT PATHOLOGY WHO UNDERWENT WEIL OPEN OSTEOTOMY BY CLASSICAL METHOD AND WITHOUT STEOSYNTHESIS Authors: Yuriy V. Lartsev,Dmitrii A. Rasputin,Sergey D. Zuev-Ratnikov,Pavel V.Ryzhov,Dmitry S. Kudashev,Anton A. Bogdanov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00044 Abstract: The article considers the problem of surgical correction of the second metatarsal bone length. The article analyzes the results of treatment of patients with excess length of the second metatarsal bones that underwent osteotomy with and without osteosynthesis. The results of treatment of patients who underwent metatarsal shortening due to classical Weil-osteotomy with and without osteosynthesis were analyzed. The first group consisted of 34 patients. They underwent classical Weil osteotomy. The second group included 44 patients in whomosteotomy of the second metatarsal bone were not by the screw. When studying the results of the treatment in the immediate postoperative period, weeks 6, 12, slightly better results were observed in patients of the first group, while one year after surgical treatment the results in both groups were comparable. One year after surgical treatment, there were 2.9% (1 patient) of unsatisfactory results in the first group and 4.5% (2 patients) in the second group. Considering the comparability of the results of treatment in remote postoperative period, the choice of concrete method remains with the operating surgeon. Keywords: Flat feet,hallux valgus,corrective osteotomy,metatarsal bones, Refference: I. A novel modification of the Stainsby procedure: surgical technique and clinical outcome [Text] / E. Concannon, R. MacNiocaill, R. Flavin [et al.] // Foot Ankle Surg. – 2014. – Dec., Vol. 20(4). – P. 262–267. II. Accurate determination of relative metatarsal protrusion with a small intermetatarsal angle: a novel simplified method [Text] / L. Osher, M.M. Blazer, S. Buck [et al.] // J. Foot Ankle Surg. – 2014. – Sep.-Oct., Vol. 53(5). – P. 548–556. III. Argerakis, N.G. The radiographic effects of the scarf bunionectomy on rearfoot alignment [Text] / N.G. Argerakis, L.Jr. Weil, L.S. Sr. Weil // Foot Ankle Spec. – 2015. – Apr., Vol. 8(2). – P. 89–94. IV. Bauer, T. Percutaneous forefoot surgery [Text] / T. Bauer // Orthop. Traumatol. Surg. Res. – 2014. – Feb., Vol. 100(1 Suppl.). – P. S191–S204. V. Biomechanical Evaluation of Custom Foot Orthoses for Hallux Valgus Deformity [Text] // J. Foot Ankle Surg. – 2015. – Sep.-Oct., Vol.54(5). – P. 852–855. VI. Chopra, S. Characterization of gait in female patients with moderate to severe hallux valgus deformity [Text] / S. Chopra, K. Moerenhout, X. Crevoisier // Clin. Biomech. (Bristol, Avon). – 2015. – Jul., Vol. 30(6). – P. 629–635. VII. Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: a case report [Text] / M. Hirao, S. Ikemoto, H. Tsuboi [et al.] // Comput. Aided Surg. – 2014. – Vol. 19(1-3). – P. 13–19. VIII. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model [Text] / D.Y. Lee, S.G. Seo, E.J. Kim [et al.] // Foot Ankle Int. – 2015. – Jan., Vol.36(1). – P. 1–10. IX. Correlative study between length of first metatarsal and transfer metatarsalgia after osteotomy of first metatarsal [Text]: [Article in Chinese] / F.Q. Zhang, B.Y. Pei, S.T. Wei [et al.] // Zhonghua Yi XueZaZhi. – 2013. – Nov. 19, Vol. 93(43). – P. 3441–3444. X. Dave, M.H. Forefoot Deformity in Rheumatoid Arthritis: A Comparison of Shod and Unshod Populations [Text] / M.H. Dave, L.W. Mason, K. Hariharan // Foot Ankle Spec. – 2015. – Oct., Vol. 8(5). – P. 378–383. XI. Does arthrodesis of the first metatarsophalangeal joint correct the intermetatarsal M1M2 angle? Analysis of a continuous series of 208 arthrodeses fixed with plates [Text] / F. Dalat, F. Cottalorda, M.H. Fessy [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6). – P. 709–714. XII. Dynamic plantar pressure distribution after percutaneous hallux valgus correction using the Reverdin-Isham osteotomy [Text]: [Article in Spanish] / G. Rodríguez-Reyes, E. López-Gavito, A.I. Pérez-Sanpablo [et al.] // Rev. Invest. Clin. – 2014. – Jul., Vol. 66, Suppl. 1. – P. S79-S84. XIII. Efficacy of Bilateral Simultaneous Hallux Valgus Correction Compared to Unilateral [Text] / A.V. Boychenko, L.N. Solomin, S.G. Parfeyev [et al.] // Foot Ankle Int. – 2015. – Nov., Vol. 36(11). – P. 1339–1343. XIV. Endolog technique for correction of hallux valgus: a prospective study of 30 patients with 4-year follow-up [Text] / C. Biz, M. Corradin, I. Petretta [et al.] // J. OrthopSurg Res. – 2015. – Jul. 2, № 10. – P. 102. XV. First metatarsal proximal opening wedge osteotomy for correction of hallux valgus deformity: comparison of straight versus oblique osteotomy [Text] / S.H. Han, E.H. Park, J. Jo [et al.] // Yonsei Med. J. – 2015. – May, Vol. 56(3). – P. 744–752. XVI. Long-term outcome of joint-preserving surgery by combination metatarsal osteotomies for shortening for forefoot deformity in patients with rheumatoid arthritis [Text] / H. Niki, T. Hirano, Y. Akiyama [et al.] // Mod. Rheumatol. – 2015. – Sep., Vol. 25(5). – P. 683–638. XVII. Maceira, E. Transfer metatarsalgia post hallux valgus surgery [Text] / E. Maceira, M. Monteagudo // Foot Ankle Clin. – 2014. – Jun., Vol. 19(2). – P.285–307. XVIII. Nielson, D.L. Absorbable fixation in forefoot surgery: a viable alternative to metallic hardware [Text] / D.L. Nielson, N.J. Young, C.M. Zelen // Clin. Podiatr. Med. Surg. – 2013. – Jul., Vol. 30(3). – P. 283–293 XIX. Patient’s satisfaction after outpatient forefoot surgery: Study of 619 cases [Text] / A. Mouton, V. Le Strat, D. Medevielle [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6 Suppl.). – P. S217–S220. XX. Preference of surgical procedure for the forefoot deformity in the rheumatoid arthritis patients–A prospective, randomized, internal controlled study [Text] / M. Tada, T. Koike, T. Okano [et al.] // Mod. Rheumatol. – 2015. – May., Vol. 25(3). – P.362–366. XXI. Redfern, D. Percutaneous Surgery of the Forefoot [Text] / D. Redfern, J. Vernois, B.P. Legré // Clin. Podiatr. Med. Surg. – 2015. – Jul., Vol. 32(3). – P. 291–332. XXII. Singh, D. Bullous pemphigoid after bilateral forefoot surgery [Text] / D. Singh, A. Swann // Foot Ankle Spec. – 2015. – Feb., Vol. 8(1). – P. 68–72. XXIII. Treatment of moderate hallux valgus by percutaneous, extra-articular reverse-L Chevron (PERC) osteotomy [Text] / J. Lucas y Hernandez, P. Golanó, S. Roshan-Zamir [et al.] // Bone Joint J. – 2016. – Mar., Vol. 98-B(3). – P. 365–373. XXIV. Weil, L.Jr. Scarf osteotomy for correction of hallux abducto valgus deformity [Text] / L.Jr. Weil, M. Bowen // Clin. Podiatr. Med. Surg. – 2014. – Apr., Vol.31(2). – P. 233–246. View | Download QUANTITATIVE ULTRASONOGRAPHY OF THE STOMACH AND SMALL INTESTINE IN HEALTHYDOGS Authors: Roman A. Tcygansky,Irina I. Nekrasova,Angelina N. Shulunova,Alexander I.Sidelnikov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00045 Abstract: Purpose.To determine the quantitative echogenicity indicators (and their ratio) of the layers of stomach and small intestine wall in healthy dogs. Methods. A prospective 3-year study of 86 healthy dogs (aged 1-7 yrs) of different breeds and of both sexes. Echo homogeneity and echogenicity of the stomach and intestines wall were determined by the method of Silina, T.L., et al. (2010) in absolute values ​​of average brightness levels of ultrasound image pixels using the 8-bit scale with 256 shades of gray. Results. Quantitative echogenicity indicators of the stomach and the small intestine wall in dogs were determined. Based on the numerical values ​​characterizing echogenicity distribution in each layer of a separate structure of the digestive system, the coefficient of gastric echogenicity is determined as 1:2.4:1.1 (mucosa/submucosa/muscle layers, respectively), the coefficient of duodenum and jejunum echogenicity is determined as 1:3.5:2 and that of ileum is 1:1.8:1. Clinical significance. The echogenicity coefficient of the wall of the digestive system allows an objective assessment of the stomach and intestines wall and can serve as the basis for a quantitative assessment of echogenicity changes for various pathologies of the digestive system Keywords: Ultrasound (US),echogenicity,echogenicity coefficient,digestive system,dogs,stomach,intestines, Refference: I. Agut, A. Ultrasound examination of the small intestine in small animals // Veterinary focus. 2009.Vol. 19. No. 1. P. 20-29. II. Bull. 4.RF patent 2398513, IPC51A61B8 / 00 A61B8 / 14 (2006.01) A method for determining the homoechogeneity and the degree of echogenicity of an ultrasound image / T. Silina, S. S. Golubkov. – No. 2008149311/14; declared 12/16/2008; publ. 09/10/2010 III. Choi, M., Seo, M., Jung, J., Lee, K., Yoon, J., Chang, D., Park, RD. Evaluation of canine gastric motility with ultrasonography // J. of Veterinary Medical Science. – 2002. Vol. 64. – № 1. – P. 17-21. IV. Delaney, F., O’Brien, R.T., Waller, K.Ultrasound evaluation of small bowel thickness compared to weight in normal dogs // Veterinary Radiology and Ultrasound. 2003 Vol. 44, № 5. Р 577-580. V. Diana, A., Specchi, S., Toaldo, M.B., Chiocchetti, R., Laghi, A., Cipone, M. Contrast-enhanced ultrasonography of the small bowel in healthy cats // Veterinary Radiology and Ultrasound. – 2011. – Vol. 52, № 5. – Р. 555-559. VI. Garcia, D.A.A., Froes, T.R. Errors in abdominal ultrasonography in dogs and cats // J. of Small Animal Practice. – 2012. Vol. 53. – № 9. – P. 514-519. VII. Garcia, D.A.A., Froes, T.R. Importance of fasting in preparing dogs for abdominal ultrasound examination of specific organs // J. of Small Animal Practice. – 2014. Vol. 55. – № 12. – P. 630-634. VIII. Gaschen, L., Granger, L.A., Oubre, O., Shannon, D., Kearney, M., Gaschen, F. The effects of food intake and its fat composition on intestinal echogenicity in healthy dogs // Veterinary Radiology and Ultrasound. 2016. Vol. 57. № 5. P. 546-550 IX. Gaschen, L., Kircher, P., Stussi, A., Allenspach, K., Gaschen, F., Doherr, M., Grone, A. Comparison of ultrasonographic findings with clinical activity index (CIBDAI) and diagnosis in dogs with chronic enteropathies // Veterinary radiology and ultrasound. – 2008. – Vol. 49. – № 1. – Р. 56-64. X. Gil, E.M.U. Garcia, D.A.A. Froes, T.R. In utero development of the fetal intestine: Sonographic evaluation and correlation with gestational age and fetal maturity in dogs // Theriogenology. 2015. Vol. 84, №5. Р. 681-686. XI. Gladwin, N.E. Penninck, D.G., Webster, C.R.L. Ultrasonographic evaluation of the thickness of the wall layers in the intestinal tract of dogs // American Journal of Veterinary Research. 2014. Vol. 75, №4. Р. 349-353. XII. Gory, G., Rault, D.N., Gatel, L, Dally, C., Belli, P., Couturier, L., Cauvin, E. Ultrasonographic characteristics of the abdominal esophagus and cardia in dogs // Veterinary Radiology and Ultrasound. 2014. Vol. 55, № 5. P. 552-560. XIII. Günther, C.S. Lautenschläger, I.E., Scholz, V.B. Assessment of the inter- and intraobserver variability for sonographical measurement of intestinal wall thickness in dogs without gastrointestinal diseases | [Inter-und Intraobserver-Variabilitätbei der sonographischenBestimmung der Darmwanddicke von HundenohnegastrointestinaleErkrankungen] // Tierarztliche Praxis Ausgabe K: Kleintiere – Heimtiere. 2014. Vol. 42 №2. Р. 71-78. XIV. Hanazono, K., Fukumoto, S., Hirayama, K., Takashima, K., Yamane, Y., Natsuhori, M., Kadosawa, T., Uchide, T. Predicting Metastatic Potential of gastrointestinal stromal tumors in dog by ultrasonography // J. of Veterinary Medical Science. – 2012. Vol. 74. – № 11. – P. 1477-1482. XV. Heng, H.G., Lim, Ch.K., Miller, M.A., Broman, M.M.Prevalence and significance of an ultrasonographic colonic muscularishyperechoic band paralleling the serosal layer in dogs // Veterinary Radiology and Ultrasound. 2015. Vol. 56 № 6. P. 666-669. XVI. Ivančić, M., Mai, W. Qualitative and quantitative comparison of renal vs. hepatic ultrasonographic intensity in healthy dogs // Veterinary Radiology and Ultrasound. 2008. Vol. 49. № 4. Р. 368-373. XVII. Lamb, C.R., Mantis, P. Ultrasonographic features of intestinal intussusception in 10 dogs // J. of Small Animal Practice. – 2008. Vol. 39. – № 9. – P. 437-441. XVIII. Le Roux, A. B., Granger, L.A., Wakamatsu, N, Kearney, M.T., Gaschen, L.Ex vivo correlation of ultrasonographic small intestinal wall layering with histology in dogs // Veterinary Radiology and Ultrasound.2016. Vol. 57. № 5. P. 534-545. XIX. Nielsen, T. High-frequency ultrasound of Peyer’s patches in the small intestine of young cats / T. Nielsen [et al.] // Journal of Feline Medicine and Surgery. – 2015. – Vol. 18, № 4. – Р. 303-309. XX. PenninckD.G. Gastrointestinal tract. In Nyland T.G., Mattoon J.S. (eds): Small Animal Diagnostic Ultrasound. Philadelphia: WB Saunders. 2002, 2nd ed. Р. 207-230. XXI. PenninckD.G. Gastrointestinal tract. In: PenninckD.G.,d´Anjou M.A. Atlas of Small Animal Ultrasonography. Blackwell Publishing, Iowa. 2008. Р. 281-318. XXII. Penninck, D.G., Nyland, T.G., Kerr, L.Y., Fisher, P.E. Ultrasonographic evaluation of gastrointestinal diseases in small animals // Veterinary Radiology. 1990. Vol. 31. №3. P. 134-141. XXIII. Penninck, D.G.,Webster, C.R.L.,Keating, J.H. The sonographic appearance of intestinal mucosal fibrosis in cats // Veterinary Radiology and Ultrasound. – 2010. – Vol. 51, № 4. – Р. 458-461. XXIV. Pollard, R.E.,Johnson, E.G., Pesavento, P.A., Baker, T.W., Cannon, A.B., Kass, P.H., Marks, S.L. Effects of corn oil administered orally on conspicuity of ultrasonographic small intestinal lesions in dogs with lymphangiectasia // Veterinary Radiology and Ultrasound. 2013. Vol. 54. № 4. P. 390-397. XXV. Rault, D.N., Besso, J.G., Boulouha, L., Begon, D., Ruel, Y. Significance of a common extended mucosal interface observed in transverse small intestine sonograms // Veterinary Radiology and Ultrasound. 2004. Vol. 45. №2. Р. 177-179. XXVI. Sutherland-Smith, J., Penninck, D.G., Keating, J.H., Webster, C.R.L. Ultrasonographic intestinal hyperechoic mucosal striations in dogs are associated with lacteal dilation // Veterinary Radiology and Ultrasound. – 2007. Vol. 48. – № 1. – P. 51-57. View | Download EVALUATION OF ADAPTIVE POTENTIAL IN MEDICAL STUDENTS IN THE CONTEXT OF SEASONAL DYNAMICS Authors: Larisa A. Merdenova,Elena A. Takoeva,Marina I. Nartikoeva,Victoria A. Belyayeva,Fatima S. Datieva,Larisa R. Datieva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00046 Abstract: The aim of this work was to assess the functional reserves of the body to quantify individual health; adaptation, psychophysiological characteristics of the health quality of medical students in different seasons of the year. When studying the temporal organization of physiological functions, the rhythm parameters of physiological functions were determined, followed by processing the results using the Cosinor Analysis program, which reveals rhythms with an unknown period for unequal observations, evaluates 5 parameters of sinusoidal rhythms (mesor, amplitude, acrophase, period, reliability). The essence of desynchronization is the mismatch of circadian rhythms among themselves or destruction of the rhythms architectonics (instability of acrophases or their disappearance). Desynchronization with respect to the rhythmic structure of the body is of a disregulatory nature, most pronounced in pathological desynchronization. High neurotism, increased anxiety reinforces the tendency to internal desynchronization, which increases with stress. During examination stress, students experience a decrease in the stability of the temporary organization of the biosystem and the tension of adaptive mechanisms develops, which affects attention, mental performance and the quality of adaptation to the educational process. Time is shortened and the amplitude of the “initial minute” decreases, personal and situational anxiety develops, and the level of psychophysiological adaptation decreases. The results of the work are priority because they can be used in assessing quality and level of health. Keywords: Desynchronosis,biorhythms,psycho-emotional stress,mesor,acrophase,amplitude,individual minute, Refference: I. Arendt, J., Middleton, B. Human seasonal and circadian studies in Antarctica (Halley, 75_S) – General and Comparative Endocrinology. 2017: 250-259. (http://dx.doi.org/10.1016/j.ygcen.2017.05.010). II. BalandinYu.P. A brief methodological guide on the use of the agro-industrial complex “Health Sources” / Yu.P. Balandin, V.S. Generalov, V.F. Shishlov. Ryazan, 2007. III. Buslovskaya L.K. Adaptation reactions in students at exam stress/ L.K. Buslovskaya, Yu.P. Ryzhkova. Scientific bulletin of Belgorod State University. Series: Natural Sciences. 2011;17(21):46-52. IV. Chutko L. S. Sindromjemocionalnogovygoranija – Klinicheskie I psihologicheskieaspekty./ L.S Chutko. Moscow: MEDpress-inform, 2013. V. Eroshina K., Paul Wilkinson, Martin Mackey. The role of environmental and social factors in the occurrence of diseases of the respiratory tract in children of primary school age in Moscow. Medicine. 2013:57-71. VI. Fagrell B. “Microcirculation of the Skin”. The physiology and pharmacology of the microcirculation. 2013:423. VII. Gurova O.A. Change in blood microcirculation in students throughout the day. New research. 2013; 2 (35):66-71. VIII. Khetagurova L.G. – Stress/Ed. L.G. Khetagurov. Vladikavkaz: Project-Press Publishing House, 2010. IX. Khetagurova L.G., Urumova L.T. et al. Stress (chronomedical aspects). International Journal of Experimental Education 2010; 12: 30-31. X. Khetagurova L.G., Salbiev K.D., Belyaev S.D., Datieva F.S., Kataeva M.R., Tagaeva I.R. Chronopathology (experimental and clinical aspects/ Ed. L.G. Khetagurov, K.D. Salbiev, S.D.Belyaev, F.S. Datiev, M.R. Kataev, I.R. Tagaev. Moscow: Science, 2004. XI. KlassinaS.Ya. Self-regulatory reactions in the microvasculature of the nail bed of fingers in person with psycho-emotional stress. Bulletin of new medical technologies, 2013; 2 (XX):408-412. XII. Kovtun O.P., Anufrieva E.V., Polushina L.G. Gender-age characteristics of the component composition of the body in overweight and obese schoolchildren. Medical Science and Education of the Urals. 2019; 3:139-145. XIII. Kuchieva M.B., Chaplygina E.V., Vartanova O.T., Aksenova O.A., Evtushenko A.V., Nor-Arevyan K.A., Elizarova E.S., Efremova E.N. A comparative analysis of the constitutional features of various generations of healthy young men and women in the Rostov Region. Modern problems of science and education. 2017; 5:50-59. XIV. Mathias Adamsson1, ThorbjörnLaike, Takeshi Morita – Annual variation in daily light expo-sure and circadian change of melatonin and cortisol consent rations at a northern latitude with large seasonal differences in photoperiod length – Journal of Physiological Anthropology. 2017; 36: 6 – 15. XV. Merdenova L.A., Tagaeva I.R., Takoeva E.A. Features of the study of biological rhythms in children. The results of fundamental and applied research in the field of natural and technical sciences. Materials of the International Scientific and Practical Conference. Belgorod, 2017, pp. 119-123. XVI. Ogarysheva N.V. The dynamics of mental performance as a criterion for adapting to the teaching load. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences. 2014;16:5 (1): S.636-638. XVII. Pekmezovi T. Gene-environment interaction: A genetic-epidemiological approach. Journal of Medical Biochemistry. 2010;29:131-134. XVIII. Rapoport S.I., Chibisov S.M. Chronobiology and chronomedicine: history and prospects/Ed. S.M. Chibisov, S.I. Rapoport ,, M.L. Blagonravova. Chronobiology and Chronomedicine: Peoples’ Friendship University of Russia (RUDN) Press. Moscow, 2018. XIX. Roustit M., Cracowski J.L. “Non-invasive assessment of skin microvascular function in humans: an insight into methods” – Microcirculation 2012; 19 (1): 47-64. XX. Rud V.O., FisunYu.O. – References of the circadian desinchronosis in students. Ukrainian Bulletin of Psychoneurology. 2010; 18(2) (63): 74-77. XXI. Takoeva Z. A., Medoeva N. O., Berezova D. T., Merdenova L. A. et al. Long-term analysis of the results of chronomonitoring of the health of the population of North Ossetia; Vladikavkaz Medical and Biological Bulletin. 2011; 12(12,19): 32-38. XXII. Urumova L.T., Tagaeva I.R., Takoeva E.A., Datieva L.R. – The study of some health indicators of medical students in different periods of the year. Health and education in the XXI century. 2016; 18(4): 94-97. XXIII. Westman J. – Complex diseases. In: Medical genetics for the modern clinician. USA: Lippincott Williams & Wilkins, 2006. XXIV. Yadrischenskaya T.V. Circadian biorhythms of students and their importance in educational activities. Problems of higher education. Pacific State University Press. 2016; 2:176-178. View | Download TRIADIC COMPARATIVE ANALYSIS Authors: Stanislav A.Kudzh,Victor Ya. Tsvetkov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00047 Abstract: The present study of comparison methods based on the triadic model introduces the following concepts: the relation of comparability and the relation of comparison, and object comparison and attributive comparison. The difference between active and passive qualitative comparison is shown, two triadic models of passive and active comparison and models for comparing two and three objects are described. Triadic comparison models are proposed as an alternative to dyadic comparison models. Comparison allows finding the common and the different; this approach is proposed for the analysis of the nomothetic and ideographic method of obtaining knowledge. The nomothetic method identifies and evaluates the general, while the ideographic method searches for unique in parameters and in combinations of parameters. Triadic comparison is used in systems and methods of argumentation, as well as in the analysis of consistency/inconsistency. Keywords: Comparative analysis,dyad,triad,triadic model,comparability relation,object comparison,attributive comparison,nomothetic method,ideographic method, Refference: I. AltafS., Aslam.M.Paired comparison analysis of the van Baarenmodel using Bayesian approach with noninformativeprior.Pakistan Journal of Statistics and Operation Research 8(2) (2012) 259{270. II. AmooreJ. E., VenstromD Correlations between stereochemical assessments and organoleptic analysis of odorous compounds. Olfaction and Taste (2016) 3{17. III. BarnesJ., KlingerR. Embedding projection for targeted cross-lingual sentiment: model comparisons and a real-world study. Journal of Artificial Intelligence Research 66 (2019) 691{742. doi.org/10.1613/jair.1.11561 IV. Castro-SchiloL., FerrerE.Comparison of nomothetic versus idiographic-oriented methods for making predictions about distal outcomes from time series data. Multivariate Behavioral Research 48(2) (2013) 175{207. V. De BonaG.et al. Classifying inconsistency measures using graphs. Journal of Artificial Intelligence Research 66 (2019) 937{987. VI. FideliR. La comparazione. Milano: Angeli, 1998. VII. GordonT. F., PrakkenH., WaltonD. The Carneades model of argument and burden of proof. Artificial Intelligence 10(15) (2007) 875{896. VIII. GrenzS.J. The social god and the relational self: A Triad theology of the imago Dei. Westminster: John Knox Press, 2001. IX. HermansH.J. M.On the integration of nomothetic and idiographic research methods in the study of personal meaning.Journal of Personality 56(4) (1988) 785{812. X. JamiesonK. G., NowakR. Active ranking using pairwise comparisons.Advances in Neural Information Processing Systems (2011) 2240{2248. XI. JongsmaC.Poythress’s triad logic: a review essay. Pro Rege 42(4) (2014) 6{15. XII. KärkkäinenV.M. Trinity and Religious Pluralism: The Doctrine of the Trinity in Christian Theology of Religions. London: Routledge, 2017. XIII. KudzhS. A., TsvetkovV.Ya. Triadic systems. Russian Technology Magazine 7(6) (2019) 74{882. XIV. NelsonK.E.Some observations from the perspective of the rare event cognitive comparison theory of language acquisition.Children’s Language 6 (1987) 289{331. XV. NiskanenA., WallnerJ., JärvisaloM.Synthesizing argumentation frameworks from examples. Journal of Artificial Intelligence Research 66 (2019) 503{554. XVI. PührerJ.Realizability of three-valued semantics for abstract dialectical frameworks.Artificial Intelligence 278 (2020) 103{198. XVII. SwansonG.Frameworks for comparative research: structural anthropology and the theory of action. In: Vallier, Ivan (Ed.). Comparative methods in sociology: essays on trends and applications.Berkeley: University of California Press, 1971 141{202. XVIII. TsvetkovV.Ya.Worldview model as the result of education.World Applied Sciences Journal 31(2) (2014) 211{215. XIX. TsvetkovV. Ya. Logical analysis and variable scales. Slavic Forum 4(22) (2018) 103{109. XX. Wang S. et al. Transit traffic analysis zone delineating method based on Thiessen polygon. Sustainability 6(4) (2014) 1821{1832. View | Download DEVELOPING TECHNOLOGY OF CREATING WEAR-RESISTANT CERAMIC COATING FOR ICE CYLINDER." JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES spl10, no. 1 (June 28, 2020). http://dx.doi.org/10.26782/jmcms.spl.10/2020.06.00048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography