Academic literature on the topic 'Harmonic analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Harmonic analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Harmonic analysis"
Wu, Shan-He, Imran Abbas Baloch, and İmdat İşcan. "On Harmonically(p,h,m)-Preinvex Functions." Journal of Function Spaces 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/2148529.
Full textZhao, Keyu. "Grid-Connected PV System Harmonic Analysis." MATEC Web of Conferences 404 (2024): 02005. http://dx.doi.org/10.1051/matecconf/202440402005.
Full textZhang, Feng, Jue Long Li, Chong Feng Tian, Zong Jie Liu, Hai Feng Ye, and Xiu Chen Jiang. "Binary Scale Time Windows FFT for Harmonic Analysis." Applied Mechanics and Materials 448-453 (October 2013): 2003–10. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.2003.
Full textVijayalakshmi, V. J., C. S. Ravichandran, and A. Amudha. "Predetermination of Higher Order Harmonics by Dual Phase Analysis." Applied Mechanics and Materials 573 (June 2014): 13–18. http://dx.doi.org/10.4028/www.scientific.net/amm.573.13.
Full textBonilla, Axel Rivas, and Ha Thu Le. "Analysis and Mitigation of Harmonics for a Wastewater Treatment Plant Electrical System." WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS 23 (February 9, 2024): 1–13. http://dx.doi.org/10.37394/23201.2024.23.1.
Full textKaromah, Akhlaqul. "Induction Motor Harmonics Voltage Waveform Analysis based on Machine Constriction." Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems) 14, no. 2 (August 28, 2020): 63–67. http://dx.doi.org/10.21776/jeeccis.v14i2.639.
Full textBellan, Diego. "Three-Phase Distortion Analysis based on Space-Vector Locus Diagrams." WSEAS TRANSACTIONS ON POWER SYSTEMS 18 (December 31, 2023): 467–73. http://dx.doi.org/10.37394/232016.2023.18.46.
Full textJiang, Peiyu, Zhanlong Zhang, Zijian Dong, and Yu Yang. "Vibration Measurement and Numerical Modeling Analysis of Transformer Windings and Iron Cores Based on Voltage and Current Harmonics." Machines 10, no. 9 (September 8, 2022): 786. http://dx.doi.org/10.3390/machines10090786.
Full textWang, Xiangrong, and Guangtian Shi. "Analysis of harmonic influence of improved PFC circuit on SS4G electric locomotive." Journal of Physics: Conference Series 2260, no. 1 (April 1, 2022): 012032. http://dx.doi.org/10.1088/1742-6596/2260/1/012032.
Full textJi, Yanpeng, Bin Li, and Jingcheng Sun. "Harmonic Analysis on Torque Ripple of Brushless DC Motor Based on Advanced Commutation Control." Journal of Control Science and Engineering 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/3530127.
Full textDissertations / Theses on the topic "Harmonic analysis"
Wright, P. S. "The accurate analysis of smoothly fluctuating harmonics applied to the calibration of harmonic analysers." Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/843265/.
Full textScurry, James. "One and two weight theory in harmonic analysis." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47565.
Full textLak, Rashad Rashid Haji. "Harmonic analysis using methods of nonstandard analysis." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5754/.
Full textVan, der Merwe Marius. "Harmonic mixer analysis and design." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52872.
Full textSome digitised pages may appear illegible due to the condition of the original hard copy.
ENGLISH ABSTRACT: Harmonic mixers are capable of extended frequency operation by mixing with a harmonic of the LO (local oscillator) signal, eliminating the need for a high frequency, high power LO. Their output spectra also have certain characteristics that make them ideal for a variety of applications. The operation of the harmonic mixer is investigated, and the mixer is analyzed using an extension of the classic mixer theory. The synthesis of harmonic mixers is also investigated, and a design procedure is proposed for the design and realization of a variety of harmonic mixers. This design procedure is evaluated with the design and realization of two harmonic mixers, one in X-band and the other in S-band. Measurements suggest that the procedure is successful for the specific applications.
AFRIKAANSE OPSOMMING: Harmoniese mengers kan by hoer frekwensies gebruik word as gewone mengers deurdat hulle gebruik maak van ‘n harmoniek van die LO. ‘n Hoe-frekwensie, hoe-drywing LO word dus nie benodig nie. Die mengers se uittreespektra het ook ‘n aantal karakteristieke wat hulle goeie kandidate maak vir ‘n verskeidenheid van toepassings. Die werking van die harmoniese menger word ondersoek deur uit te brei op die klassieke menger-teorie. Die ontwerp van die harmoniese menger word vervolgens ondersoek, waama ‘n ontwerpsprosedure voorgestel word vir die ontwerp van ‘n verskeidenheid van harmoniese mengers. Hierdie prosedure word getoets met die ontwerp en realisering van twee harmoniese mengers, een in X-band en die ander in S-band. Vanuit die metings is dit duidelik dat die ontwerpsprosedure geslaagd is vir die spesifieke geval.
Li, Jialun. "Harmonic analysis of stationary measures." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0311/document.
Full textLet μ be a Borel probability measure on SL m+1 (R), whose support generates a Zariski dense subgroup. Let V be a finite dimensional irreducible linear representation of SL m+1 (R). A theorem of Furstenberg says that there exists a unique μ-stationary probability measure on PV and we are interested in the Fourier decay of the stationary measure. The main result of the thesis is that the Fourier transform of the stationary measure has a power decay. From this result, we obtain a spectral gap of the transfer operator, whose properties allow us to establish an exponential error term for the renewal theorem in the context of products of random matrices. A key technical ingredient for the proof is a Fourier decay of multiplicative convolutions of measures on R n , which is a generalisation of Bourgain’s theorem on dimension 1. We establish this result by using a sum-product estimate due to He-de Saxcé. In the last part, we generalize a result of Lax-Phillips and a result of Hamenstädt on the finiteness of small eigenvalues of the Laplace operator on geometrically finite hyperbolic manifolds
Thunberg, Erik. "On the Benefit of Harmonic Measurements in Power Systems." Doctoral thesis, Stockholm, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3219.
Full textSmith, Zachary J. "The Bochner Identity in Harmonic Analysis." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/SmithZJ2007.pdf.
Full textChung, Kin Hoong School of Mathematics UNSW. "Compact Group Actions and Harmonic Analysis." Awarded by:University of New South Wales. School of Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17639.
Full textDigby, G. "Harmonic analysis of A.C. traction schemes." Thesis, Swansea University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233938.
Full textXu, Zengfu. "Harmonic analysis on Chébli-Trimèche hypergroups." Thesis, Xu, Zengfu (1994) Harmonic analysis on Chébli-Trimèche hypergroups. PhD thesis, Murdoch University, 1994. https://researchrepository.murdoch.edu.au/id/eprint/51538/.
Full textBooks on the topic "Harmonic analysis"
Helson, Henry. Harmonic Analysis. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0.
Full textEymard, Pierre, and Jean-Paul Pier, eds. Harmonic Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086584.
Full textCheng, Min-Teh, Dong-Gao Deng, and Xing-Wei Zhou, eds. Harmonic Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0087751.
Full textAsh, J. Marshall, and Roger L. Jones, eds. Harmonic Analysis. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/conm/411.
Full textHelson, Henry. Harmonic Analysis. Gurgaon: Hindustan Book Agency, 2010. http://dx.doi.org/10.1007/978-93-86279-47-7.
Full textSimon, Barry. Harmonic analysis. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textHelson, Henry. Harmonic analysis. Pacific Grove, Calif: Wadsworth & Brooks/Cole Advanced Books & Software, 1991.
Find full textPetrovich, Khavin Viktor, and Nikolʹskiĭ N. K, eds. Commutative harmonic analysis IV: Harmonic analysis in IRn̳. Berlin: Springer-Verlag, 1992.
Find full textColella, David, ed. Commutative Harmonic Analysis. Providence, Rhode Island: American Mathematical Society, 1989. http://dx.doi.org/10.1090/conm/091.
Full textDelorme, Patrick, and Michèle Vergne, eds. Noncommutative Harmonic Analysis. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8204-0.
Full textBook chapters on the topic "Harmonic analysis"
Helson, Henry. "Fourier Series and Integrals." In Harmonic Analysis, 1–49. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_1.
Full textHelson, Henry. "The Fourier Integral." In Harmonic Analysis, 51–73. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_2.
Full textHelson, Henry. "Hardy Spaces." In Harmonic Analysis, 75–105. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_3.
Full textHelson, Henry. "Conjugate Functions." In Harmonic Analysis, 107–42. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_4.
Full textHelson, Henry. "Translation." In Harmonic Analysis, 143–63. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_5.
Full textHelson, Henry. "Distribution." In Harmonic Analysis, 165–76. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_6.
Full textPier, Jean-Paul. "Some views on the evolution of harmonic analysis." In Harmonic Analysis, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086585.
Full textMackey, George W. "Induced representations and the applications of harmonic analysis." In Harmonic Analysis, 16–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086586.
Full textAkkouchi, Mohamed. "Une caracterisation du noyau de Poisson d'un arbre eomogene." In Harmonic Analysis, 52–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086587.
Full textAnker, Jean-Philippe. "Le noyau de la chaleur sur les espaces symetriques U(p,q)/U(p)×U(q)." In Harmonic Analysis, 60–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086588.
Full textConference papers on the topic "Harmonic analysis"
Clue, Vladimir. "Harmonic analysis." In 2004 IEEE Electro/Information Technology Conference - (EIT). IEEE, 2004. http://dx.doi.org/10.1109/eit.2004.4569366.
Full textZhu, Xuanwei, Buping Jin, and Huibin Qin. "Harmonic generator." In 2012 International Conference on Image Analysis and Signal Processing (IASP). IEEE, 2012. http://dx.doi.org/10.1109/iasp.2012.6425078.
Full textYu, Jingwen, Boying Wen, and Hui Xue. "Transitory Harmonic Analysis Using Harmonic Distribution Map." In 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918945.
Full textWan, Yifan. "Harmonic analysis in tide analysis." In Second International Conference on Statistics, Applied Mathematics, and Computing Science (CSAMCS 2022), edited by Shi Jin and Wanyang Dai. SPIE, 2023. http://dx.doi.org/10.1117/12.2672678.
Full textShimada, Yoshihito. "White noise distribution theory and its application." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-21.
Full textSzafraniec, Franciszek Hugon. "Operators of the q-oscillator." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-22.
Full textBanica, Teodor, Julien Bichon, and Benoît Collins. "Quantum permutation groups: a survey." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-1.
Full textFendle, Gero, Karlheinz Gröchenig, and Michael Leinert. "On spectrality of the algebra of convolution dominated operators." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-10.
Full textHiai, Fumio, and Dénes Petz. "A new approach to mutual information." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-11.
Full textHinz, Melanie, and Wojciech Młotkowski. "Free cumulants of some probability measures." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-12.
Full textReports on the topic "Harmonic analysis"
Niederer, J. BNL MAD: Harmonic Analysis Commands. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/1151361.
Full textFerreira, Milton. Harmonic Analysis on the Einstein Gyrogroup. Jgsp, 2014. http://dx.doi.org/10.7546/jgsp-35-2014-21-60.
Full textTolbert, L. M. Completion report harmonic analysis of electrical distribution systems. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/285500.
Full textCasey, Stephen D. Number Theoretic Methods in Harmonic Analysis: Theory and Application. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada413800.
Full textBernatska, Julia, and Petro Holod. • Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. GIQ, 2012. http://dx.doi.org/10.7546/giq-14-2013-61-73.
Full textBernatska and Petro Holod, Julia Bernatska and Petro Holod. Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. Journal of Geometry and Symmetry in Physics, 2013. http://dx.doi.org/10.7546/jgsp-29-2013-39-51.
Full textCasey, Stephen D. Signal Reconstruction and Analysis Via New Techniques in Harmonic and Complex Analysis. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada440756.
Full textMickens, Ronald, and Kale Oyedeji. Dominant Balance Analysis of the Fractional Power Damped Harmonic Oscillator. Atlanta University Center Robert W. Woodruff Library, 2019. http://dx.doi.org/10.22595/cau.ir:2020_mickens_oyedeji_harmonic_oscillator.
Full textStoughton, R. S., and J. E. Deibler. Harmonic analysis of a representative Generation One Tank Waste Retrieval Manipulator. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10148566.
Full textNiederer, J. BNL MAD: Harmonic Analysis Based Orbit Correction Commands AGS Booster Applications. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/1151363.
Full text