Academic literature on the topic 'Hardware-Software Codesign Accelerators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hardware-Software Codesign Accelerators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hardware-Software Codesign Accelerators"
Xiao, Chunhua, Lei Zhang, Yuhua Xie, Weichen Liu, and Duo Liu. "Hardware/Software Adaptive Cryptographic Acceleration for Big Data Processing." Security and Communication Networks 2018 (August 27, 2018): 1–24. http://dx.doi.org/10.1155/2018/7631342.
Full textKritikakou, Angeliki, Francky Catthoor, George S. Athanasiou, Vasilios Kelefouras, and Costas Goutis. "Near-Optimal Microprocessor and Accelerators Codesign with Latency and Throughput Constraints." ACM Transactions on Architecture and Code Optimization 10, no. 2 (May 2013): 1–25. http://dx.doi.org/10.1145/2459316.2459317.
Full textHernández, Mario, Juan M. Cebrián, José M. Cecilia, and José M. García. "Offloading strategies for Stencil kernels on the KNC Xeon Phi architecture: Accuracy versus performance." International Journal of High Performance Computing Applications 34, no. 2 (November 7, 2017): 199–207. http://dx.doi.org/10.1177/1094342017738352.
Full textMorales-Sandoval, Miguel, Luis Armando Rodriguez Flores, Rene Cumplido, Jose Juan Garcia-Hernandez, Claudia Feregrino, and Ignacio Algredo. "A Compact FPGA-Based Accelerator for Curve-Based Cryptography in Wireless Sensor Networks." Journal of Sensors 2021 (January 6, 2021): 1–13. http://dx.doi.org/10.1155/2021/8860413.
Full textAhmed, O., S. Areibi, K. Chattha, and B. Kelly. "PCIU: Hardware Implementations of an Efficient Packet Classification Algorithm with an Incremental Update Capability." International Journal of Reconfigurable Computing 2011 (2011): 1–21. http://dx.doi.org/10.1155/2011/648483.
Full textPedram, Ardavan, Andreas Gerstlauer, and Robert A. van de Geijn. "Algorithm, Architecture, and Floating-Point Unit Codesign of a Matrix Factorization Accelerator." IEEE Transactions on Computers 63, no. 8 (August 1, 2014): 1854–67. http://dx.doi.org/10.1109/tc.2014.2315627.
Full textAcer, Seher, Ariful Azad, Erik G. Boman, Aydın Buluç, Karen D. Devine, SM Ferdous, Nitin Gawande, et al. "EXAGRAPH: Graph and combinatorial methods for enabling exascale applications." International Journal of High Performance Computing Applications 35, no. 6 (September 30, 2021): 553–71. http://dx.doi.org/10.1177/10943420211029299.
Full textKumar, Rakesh, Alejandro Martínez, and Antonio González. "Efficient Power Gating of SIMD Accelerators Through Dynamic Selective Devectorization in an HW/SW Codesigned Environment." ACM Transactions on Architecture and Code Optimization 11, no. 3 (October 27, 2014): 1–23. http://dx.doi.org/10.1145/2629681.
Full textKarl, Patrick, Jonas Schupp, Tim Fritzmann, and Georg Sigl. "Post-Quantum Signatures on RISC-V with Hardware Acceleration." ACM Transactions on Embedded Computing Systems, January 6, 2023. http://dx.doi.org/10.1145/3579092.
Full textBahadori, Milad, Kimmo Järvinen, Tilen Marc, and Miha Stopar. "Speed Reading in the Dark: Accelerating Functional Encryption for Quadratic Functions with Reprogrammable Hardware." IACR Transactions on Cryptographic Hardware and Embedded Systems, July 9, 2021, 1–27. http://dx.doi.org/10.46586/tches.v2021.i3.1-27.
Full textDissertations / Theses on the topic "Hardware-Software Codesign Accelerators"
Sredojević, Ranko Radovin. "Template-based hardware-software codesign for high-performance embedded numerical accelerators." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84895.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 129-132).
Sophisticated algorithms for control, state estimation and equalization have tremendous potential to improve performance and create new capabilities in embedded and mobile systems. Traditional implementation approaches are not well suited for porting these algorithmic solutions into practical implementations within embedded system constraints. Most of the technical challenges arise from design approach that manipulates only one level in the design stack, thus being forced to conform to constraints imposed by other levels without question. In tightly constrained environments, like embedded and mobile systems, such approaches have a hard time efficiently delivering and delivering efficiency. In this work we offer a solution that cuts through all the design stack layers. We build flexible structures at the hardware, software and algorithm level, and approach the solution through design space exploration. To do this efficiently we use a template-based hardware-software development flow. The main incentive for template use is, as in software development, to relax the generality vs. efficiency/performance type tradeoffs that appear in solutions striving to achieve run-time flexibility. As a form of static polymorphism, templates typically incur very little performance overhead once the design is instantiated, thus offering the possibility to defer many design decisions until later stages when more is known about the overall system design. However, simply including templates into design flow is not sufficient to result in benefits greater than some level of code reuse. In our work we propose using templates as flexible interfaces between various levels in the design stack. As such, template parameters become the common language that designers at different levels of design hierarchy can use to succinctly express their assumptions and ideas. Thus, it is of great benefit if template parameters map directly and intuitively into models at every level. To showcase the approach we implement a numerical accelerator for embedded Model Predictive Control (MPC) algorithm. While most of this work and design flow are quite general, their full power is realized in search for good solutions to a specific problem. This is best understood in direct comparison with recent works on embedded and high-speed MPC implementations. The controllers we generate outperform published works by a handsome margin in both speed and power consumption, while taking very little time to generate.
by Ranko Radovin Sredojević.
Ph.D.
Fons, Lluís Mariano. "Hardware accelerators for embedded fingerprint-based personal recognition systems." Doctoral thesis, Universitat Rovira i Virgili, 2012. http://hdl.handle.net/10803/83493.
Full textEl desenvolupament de sistemes automàtics de reconeixement personal basats en tècniques biomètriques esdevé una realitat en l’era tecnològica actual. No només aquelles operacions que exigeixen un elevat nivell de seguretat sinó també moltes aplicacions quotidianes demanen l’existència de plataformes computacionals encarregades de reconèixer la identitat d’un individu a partir de l’anàlisi de les seves característiques fisiològiques i/o comportamentals. L’estat de l’art de la tècnica identifica dues limitacions importants en la implementació d’aquest tipus d’aplicacions: per una banda, és necessària la millora de la fiabilitat d’aquests sistemes en termes de precisió en el procés de reconeixement personal, seguretat i execució en temps real; i per altra banda, és necessari reduir notablement el cost dels sistemes electrònics encarregats del processat biomètric. Aquest treball té per objectiu la cerca de l’arquitectura adequada a nivell de sistema que permeti fer front a les limitacions de les aplicacions de reconeixement personal actuals. Es demostra que la proposta de sistemes empotrats basats en tècniques de codisseny hardware-software i dispositius lògics programables (i reconfigurables en temps d’execució) sobre FPGAs o SOPCs resulta ser una alternativa eficient en front d’aquells sistemes multiprocessadors existents basats en HPCs, GPUs o plataformes PC per al desenvolupament d’aquests tipus d’aplicacions que requereixen un alt nivell de prestacions a baix cost.
El desarrollo de sistemas automáticos de reconocimiento personal basados en técnicas biométricas se ha convertido en una realidad en la era tecnológica actual. No tan solo aquellas operaciones que requieren un alto nivel de seguridad sino también muchas otras aplicaciones cotidianas exigen la existencia de plataformas computacionales encargadas de verificar la identidad de un individuo a partir del análisis de sus características fisiológicas y/o comportamentales. El estado del arte de la técnica identifica dos limitaciones importantes en la implementación de este tipo de aplicaciones: por un lado, es necesario mejorar la fiabilidad que presentan estos sistemas en términos de precisión en el proceso de reconocimiento personal, seguridad y ejecución en tiempo real; y por otro lado, es necesario reducir notablemente el coste de los sistemas electrónicos encargados de dicho procesado biométrico. Este trabajo tiene por objetivo la búsqueda de aquella arquitectura adecuada a nivel de sistema que permita hacer frente a las limitaciones de los sistemas de reconocimiento personal actuales. Se demuestra que la propuesta basada en sistemas embebidos implementados mediante técnicas de codiseño hardware-software y dispositivos lógicos programables (y reconfigurables en tiempo de ejecución) sobre FPGAs o SOPCs resulta ser una alternativa eficiente frente a aquellos sistemas multiprocesador actuales basados en HPCs, GPUs o plataformas PC en el ámbito del desarrollo de aplicaciones que demandan un alto nivel de prestaciones a bajo coste
Ramesh, Chinthala. "Hardware-Software Co-Design Accelerators for Sparse BLAS." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4276.
Full textBook chapters on the topic "Hardware-Software Codesign Accelerators"
Ben Othman, Slim, Ahmed Karim Ben Salem, and Slim Ben Saoud. "Performance Analysis of FPGA Architectures based Embedded Control Applications." In Reconfigurable Embedded Control Systems, 274–310. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-086-0.ch011.
Full textConference papers on the topic "Hardware-Software Codesign Accelerators"
Temam, O. "Hardware neural network accelerators." In 2013 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). IEEE, 2013. http://dx.doi.org/10.1109/codes-isss.2013.6659008.
Full textGlint, Tom, Kailash Prasad, Jinay Dagli, Krishil Gandhi, Aryan Gupta, Vrajesh Patel, Neel Shah, and Joycee Mekie. "Hardware-Software Codesign of DNN Accelerators Using Approximate Posit Multipliers." In ASPDAC '23: 28th Asia and South Pacific Design Automation Conference. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3566097.3567866.
Full textPasricha, Sudeep. "EDAML 2022 Invited Speaker 10: Hardware/Software Codesign for Optical Deep Learning Accelerators." In 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2022. http://dx.doi.org/10.1109/ipdpsw55747.2022.00203.
Full textVogel, Pirmin, Andrea Marongiu, and Luca Benini. "Lightweight virtual memory support for many-core accelerators in heterogeneous embedded SoCs." In 2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). IEEE, 2015. http://dx.doi.org/10.1109/codesisss.2015.7331367.
Full textWang, Xuan, Chao Wang, and Xuehai Zhou. "Work-in-Progress: WinoNN: Optimising FPGA-based Neural Network Accelerators using Fast Winograd Algorithm." In 2018 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). IEEE, 2018. http://dx.doi.org/10.1109/codesisss.2018.8525909.
Full textGong, Lei, Chao Wang, Xi Li, and Xuehai Zhou. "WiderFrame: An Automatic Customization Framework for Building CNN Accelerators on FPGAs: Work-in-Progress." In 2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). IEEE, 2020. http://dx.doi.org/10.1109/codesisss51650.2020.9244024.
Full textColucci, Alessio, Alberto Marchisio, Beatrice Bussolino, Voitech Mrazek, Maurizio Martina, Guido Masera, and Muhammad Shafique. "A Fast Design Space Exploration Framework for the Deep Learning Accelerators: Work-in-Progress." In 2020 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). IEEE, 2020. http://dx.doi.org/10.1109/codesisss51650.2020.9244038.
Full textConti, Francesco, Andrea Marongiu, and Luca Benini. "Synthesis-friendly techniques for tightly-coupled integration of hardware accelerators into shared-memory multi-core clusters." In 2013 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). IEEE, 2013. http://dx.doi.org/10.1109/codes-isss.2013.6658992.
Full textQin, Yunji, Lei Gong, Zhendong Zheng, and Chao Wang. "Work-in-Progress: BloCirNN: An Efficient Software/hardware Codesign Approach for Neural Network Accelerators with Block-Circulant Matrix." In 2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). IEEE, 2022. http://dx.doi.org/10.1109/codes-isss55005.2022.00010.
Full textYi, Changjae, Donghyun Kang, and Soonhoi Ha. "Hardware-Software Codesign of a CNN Accelerator." In 2022 25th Euromicro Conference on Digital System Design (DSD). IEEE, 2022. http://dx.doi.org/10.1109/dsd57027.2022.00054.
Full text