Academic literature on the topic 'Hardware Emulator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hardware Emulator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hardware Emulator"
Chaves, Ricardo, Carlos Senna, Miguel Luís, Susana Sargento, André Moreira, Diogo Recharte, and Ricardo Matos. "EmuCD: An Emulator for Content Dissemination Protocols in Vehicular Networks." Future Internet 12, no. 12 (December 21, 2020): 234. http://dx.doi.org/10.3390/fi12120234.
Full textKirei, Botond Sandor, Calin-Adrian Farcas, Cosmin Chira, Ionut-Alin Ilie, and Marius Neag. "Hardware Emulation of Step-Down Converter Power Stages for Digital Control Design." Electronics 12, no. 6 (March 10, 2023): 1328. http://dx.doi.org/10.3390/electronics12061328.
Full textGanapathy, Apoorva, and Taposh Kumar Neogy. "Artificial Intelligence Price Emulator: A Study on Cryptocurrency." Global Disclosure of Economics and Business 6, no. 2 (December 31, 2017): 115–22. http://dx.doi.org/10.18034/gdeb.v6i2.558.
Full textOzawa, Felipe, Marco Rocha, Guilherme Lucas, Wallace Souza, and Andre Andreoli. "Application of Torque Transducer and Rotary Encoder in a Hardware-in-the-Loop Wind Turbine Emulation." Proceedings 42, no. 1 (November 14, 2019): 55. http://dx.doi.org/10.3390/ecsa-6-06633.
Full textYe, Zhijing, Fei Hu, Lin Zhang, Zhe Chu, and Zheng O'Neill. "A Low-Cost Experimental Testbed for Energy-Saving HVAC Control Based on Human Behavior Monitoring." International Journal of Cyber-Physical Systems 2, no. 1 (January 2020): 33–55. http://dx.doi.org/10.4018/ijcps.2020010103.
Full textDíaz, Edel, Raúl Mateos, Emilio J. Bueno, and Rubén Nieto. "Enabling Parallelized-QEMU for Hardware/Software Co-Simulation Virtual Platforms." Electronics 10, no. 6 (March 23, 2021): 759. http://dx.doi.org/10.3390/electronics10060759.
Full textModares, Jalil, Nicholas Mastronarde, and Karthik Dantu. "Simulating unmanned aerial vehicle swarms with the UB-ANC Emulator." International Journal of Micro Air Vehicles 11 (January 2019): 175682931983766. http://dx.doi.org/10.1177/1756829319837668.
Full textMa, Chao-Tsung, Zhen-Yu Tsai, Hung-Hsien Ku, and Chin-Lung Hsieh. "Design and Implementation of a Flexible Photovoltaic Emulator Using a GaN-Based Synchronous Buck Converter." Micromachines 12, no. 12 (December 20, 2021): 1587. http://dx.doi.org/10.3390/mi12121587.
Full textZhu, Qiuming, Wei Huang, Kai Mao, Weizhi Zhong, Boyu Hua, Xiaomin Chen, and Zikun Zhao. "A Flexible FPGA-Based Channel Emulator for Non-Stationary MIMO Fading Channels." Applied Sciences 10, no. 12 (June 17, 2020): 4161. http://dx.doi.org/10.3390/app10124161.
Full textVerani, Alessandro, Roberto Di Rienzo, Niccolò Nicodemo, Federico Baronti, Roberto Roncella, and Roberto Saletti. "Modular Battery Emulator for Development and Functional Testing of Battery Management Systems: Hardware Design and Characterization." Electronics 12, no. 5 (March 4, 2023): 1232. http://dx.doi.org/10.3390/electronics12051232.
Full textDissertations / Theses on the topic "Hardware Emulator"
Persson, Robert. "PPS5000 Thruster Emulator Architecture Development & Hardware Design." Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72827.
Full textStanley, Berdenia Walker. "Hierarchical multiway partitioning strategy with hardware emulator architecture intelligence." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/13360.
Full textWitkowsky, Jason. "A hardware emulator testbed for a software-defined radio." Thesis, Peninsula Technikon, 2003. http://hdl.handle.net/20.500.11838/1170.
Full textContemporary software-defined radio (SDR) is continuously changing and challenging the way traditional RF systems operate. Having more of a radio system’s operation in software enables further flexibility through the use of software manipulation. Due to practical limitations, however, it is not always feasible to have the entire radio system’s operations performed using software. Practical limitations, therefore, require that a SDR employs some form of RF front-end in order to interface the antenna signals and the signals prior to the data converters. As technology grows in support of SDR development, this hardware interface is becoming increasingly smaller. The problem with the rapid rate at which SDR developments are occurring is that RF hardware needs to change accordingly. Therefore, the RF hardware front-end can be seen as a non-standardised piece of equipment. To the designer, this means having to prototype in hardware in order to experiment with various types of SDR hardware front-ends. One of a SDR’s main attractions is the inherent property of software testability. Taking this fact into account, this thesis investigates the design and operation of a basic softwaredriven RF front-end emulator for a SDR. Basic prototype software models are identified and developed in order to test their performance within the emulator. The focus of the thesis, however, is geared toward the development of a software architecture that enables a high degree of interchangeability amongst the underlying modelled components. In the case of a SDR, the advantage of prototyping in software is in predicting the behaviour of a system prior to having to perform any physical developments. This property of software testability in the emulator can only fully be appreciated if a bench-mark system is used to evaluate the overall performance of the emulator. Therefore, a physical hardware setup is performed in order to test the basic aspects of the emulators operation. This evaluation is not meant as an exhaustive analysis of the emulator, but aims to highlight the overall performance of the emulated system against a typical physical system setup.
Daniil, Nickolaos. "Battery emulator operating in a power hardware-in-the-loop simulation : the concept of hybrid battery emulator." Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723517.
Full textO'Rourke, Colm Joseph. "Design of a hardware solar emulator for an experimental microgrid." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99852.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 67-68).
Microgrids are regions where local generation and loads are clustered together. Students from the LEES group at MIT are currently developing an experimental microgrid. This will enable various studies in the area of microgrid dynamics. The setup consists of a variety of modules that emulate both conventional and renewable sources. In this thesis, we focus on the design of one of these modules: the solar PV emulator. The complete design of a solar PV emulator will be described. Firstly, AC and DC models of a solar cell are introduced. These models specify design constraints for the power electronic circuitry. They also indicate a desired performance for the feedback control system. The controller design is discussed and the effect of load type on the closed-loop dynamics are considered. This is especially interesting for the grid-connected case. The design methodology culminates in the construction of an experimental prototype of the hardware solar PV emulator. The modular design approach is outlined as are its benefits to the overall construction of the microgrid. A Generic Controller board that can be used for all future power electronic modules in the microgrid is also designed and fabricated. The results of simulations and experiments are discussed and it is shown that it is possible for a buck converter to emulate the steady state dynamics associated with solar PV panels.
by Colm Joseph O'Rourke.
S.M.
Petucco, Andrea. "Hardware in the loop, all-electronic wind turbine emulator for grid compliance testing." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3422321.
Full textDuring the last years the distribution of renewable energy sources is continuously increasing and their influence on the distribution grid is becoming every year more relevant. As the increasing integration of renewable resources is radically changing the grid scenario, grid code technical requirements as are needed to ensure the grid correct behavior. To be standard compliant wind turbines need to be submitted to certification tests which usually must be performed on the field. One of the most difficult tests to be performed on the field is the low voltage ride through (LVRT) certitication due to the following resons: • The standards specify it must be performed ad different power levels. For this reasons it is necessary to wait for the right atmospheric conditions. • It requires a voltage sag generator which is usually expensive and bulky. • The voltage sag generator needs to be cabled between the grid and the wind turbine. • The voltage sag generator causes disturbances and perturbation on the power grid, for this reasons agreements with the distributor operator are needed. For all these reasons a laboratory test bench to perform the LVRT certification tests on wind turbines would be a more controlled and inexpensive alternative to the classic testing methodology. The research presented in this thesis is focused on the design and the realization of a test bench to perform certification tests on energy converters for wind turbines in laboratory. More specifically, the possibility of performing LVRT certification tests directly in laboratory over controlled conditions would allow faster testing procedures and less certification overall costs. The solution presented in this thesis is based on a power hardware in the loop implementing a digitally-controlled, power electronics-based emulation of a wind turbine. This emulator is used to drive the electronic wind energy converter (WEC) under test. A grid emulator is used to apply voltage sags to the wind turbine converter and perform LVRT certification tests. In this solution AC power supplies are used to emulate both the wind turbine and the grid emulator. For this reason the test bench power rating is limited to the AC supplies one. Two working versions of the test bench has been realized and successfully tested. The work here presented has evolved through the following phases: • Study of the grid code requirements and the state of the art. • Modeling of the parts of a wind turbine and complete system simulations.
Adnan, Muhammad Wasif. "Implementation of an FPGA based Emulator for High Speed Power Electronic Systems." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175752.
Full textBeckert, René. "Untersuchungen zur Kostenoptimierung für Hardware-Emulatoren durch Anwendung von Methoden der partiellen Laufzeitrekonfiguration." Dresden TUDpress, 2008. http://d-nb.info/991847423/04.
Full textShadab, Rakin Muhammad. "Statistical Analysis of a Channel Emulator for Noisy Gradient Descent Low Density Parity Check Decoder." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7582.
Full textOliveira, José Rodrigo de. "Emulador de turbina eólica : uma ferramenta para o estudo experimental e computacional /." Bauru, 2019. http://hdl.handle.net/11449/191354.
Full textResumo: As fontes renováveis de energia apresentam-se como solução para problemas relacionados ao aumento da demanda por energia elétrica e crescimento dos níveis de emissão de gás carbônico, uma vez que são não poluentes, limpas e abundantes. Aproveitamentos eólicos se mostram como uma das mais promissoras fontes de energia renovável, e por essa razão as pesquisas envolvendo este tipo de aproveitamento têm despertado grande interesse na comunidade científica. Este trabalho apresenta o desenvolvimento de um emulador de turbina eólica (ETE), uma ferramenta de apoio às investigações experimentais capaz de reproduzir o comportamento mecânico dinâmico de uma turbina eólica através de uma malha de controle digital em configuração de hardware-in-the-loop atuando sobre um acionamento eletrônico de uma máquina de indução Operando como fonte de força motriz, o ETE torna mais fácil a avaliação dinâmica de geradores e seus sistemas de controle associados voltados às aplicações envolvendo energia eólica. A pesquisa apresenta uma revisão bibliográfica sobre o estado da arte, a modelagem e a implementação experimental de um emulador de turbina eólica utilizando um motor de indução trifásico (MIT) acionado por um inversor de frequência. Para isso, é implementado um controle em malha fechada de conjugado e velocidade. Este controle faz com que o acionamento eletromecânico representado pelo MIT e inversor de frequência apresente em seu eixo o comportamento de uma turbina eólica conforme os parâmetros... (Resumo completo, clicar acesso eletrônico abaixo)
Mestre
Books on the topic "Hardware Emulator"
Zeljko, Zilic, and SpringerLink (Online service), eds. Generating Hardware Assertion Checkers: For Hardware Verification, Emulation, Post-Fabrication Debugging and On-Line Monitoring. Dordrecht: Springer Science + Business Media B.V, 2008.
Find full textBeckert, René. Untersuchungen zur Kostenoptimierung für Hardware-Emulatoren durch Anwendung von Methoden der partiellen Laufzeitrekonfiguration. Dresden: TUDpress, 2008.
Find full textBeckert, René. Untersuchungen zur Kostenoptimierung für Hardware-Emulatoren durch Anwendung von Methoden der partiellen Laufzeitrekonfiguration. Dresden: TUDpress, 2008.
Find full textWells, George James. Hardware emulation and real-time simulation strategies for the concurrent development of microsatellite hardware and software. Toronto: Department of Aerospace Engineering, University of Toronto, 2001.
Find full textCommission, United States International Trade. In the matter of certain hardware logic emulation systems and components thereof. Washington, DC: U.S. International Trade Commission, 1998.
Find full textCommission, United States International Trade. In the matter of certain hardware logic emulation systems and components thereof. Washington, DC: U.S. International Trade Commission, 1996.
Find full textCalvert, W. T. A hardware emulation system for a spectrometer fitted with anintegrated multichannel detector. Manchester: UMIST, 1993.
Find full textZilic, Zeljko, and Marc Boulé. Generating Hardware Assertion Checkers: For Hardware Verification, Emulation, Post-Fabrication Debugging and On-Line Monitoring. Springer, 2010.
Find full textDavis, Mark Bradley. Hardware Acceleration for Software Emulation of PCI Express Compliant Devices: United States Patent 9996484. Independently Published, 2020.
Find full textIn the matter of certain hardware logic emulation systems and components thereof: Modification of temporary exclusion order. Washington, DC: U.S. International Trade Commission, 1997.
Find full textBook chapters on the topic "Hardware Emulator"
Skubiszewski, Marcin. "A Hardware Emulator for Binary Neural Networks." In International Neural Network Conference, 555–58. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0643-3_2.
Full textMarchal, Pierre, Pascal Nussbaum, Christian Piguet, and Moshe Sipper. "Speeding-up digital ecologies evolution using a hardware emulator: Preliminary results." In Evolvable Systems: From Biology to Hardware, 107–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63173-9_41.
Full textYe, Zhijing, Zheng O’Neill, Lin Zhang, Fei Hu, and Zhe Chu. "Hardware-Based Emulator for Building Energy Cyber-Physical Control with Occupancy Sensing." In Advances in Intelligent Systems and Computing, 493–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43020-7_65.
Full textCapriglione, Domenico, Gianni Cerro, Luigi Ferrigno, and Gianfranco Miele. "The Effect of Hardware/Software Features on the Performance of an Open–Source Network Emulator." In Lecture Notes in Computer Science, 233–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30523-9_19.
Full textKühner, Jens. "Hardware Emulation." In Expert .NET Micro Framework, 367–412. Berkeley, CA: Apress, 2009. http://dx.doi.org/10.1007/978-1-4302-2388-7_12.
Full textHelaihel, Rachid, and Kunle Olukotun. "Emulation and Prototyping Of Digital Systems." In Hardware/Software Co-Design, 339–66. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0187-2_14.
Full textRosenstiel, Wolfgang. "Prototyping and Emulation." In Hardware/Software Co-Design: Principles and Practice, 75–112. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-2649-7_3.
Full textMartínez, Fredy H., and Jesús Alberto Delgado. "Hardware Emulation of Bacterial Quorum Sensing." In Lecture Notes in Computer Science, 329–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14922-1_41.
Full textMierau, Caspar Clemens. "›There is no Hardware‹. Reanimation durch Emulation." In Re-Animationen, 311–28. Köln: Böhlau Verlag, 2012. http://dx.doi.org/10.7788/boehlau.9783412215538.311.
Full textScherer, Klaus, and Oliver Rettig. "Rapid Prototyping mikroelektronischer Hardware-Software-Systeme durch Emulation." In Rechnergestützter Entwurf und Architektur mikroelektronischer Systeme, 285–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84304-4_24.
Full textConference papers on the topic "Hardware Emulator"
Boutillon, Emmanuel, Yangyang Tang, Cedric Marchand, and Pierre Bomel. "Hardware Discrete Channel Emulator." In Simulation (HPCS). IEEE, 2010. http://dx.doi.org/10.1109/hpcs.2010.5547099.
Full textRosa, Vagner S., Vitor I. Gervini, Sebastiao C. P. Gomes, and Sergio Bampi. "A hardware DC motor emulator." In 2010 First IEEE Latin American Symposium on Circuits and Systems (LASCAS). IEEE, 2010. http://dx.doi.org/10.1109/lascas.2010.7410216.
Full textZhang, Rong, and Andrew G. Alleyne. "Dynamic Emulation Using a Resistive Control Input." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39323.
Full textPeter, Cleber S., Lucas Penning, Alexandra Zimpeck, Felipe Marques, Jorge Barbosa, and Adenauer Yamin. "SOTARU: Abordagem Baseada em Blockchain de Consórcio para Atualização Remota de Firmware no Cenário da IoT." In Seminário Integrado de Software e Hardware. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/semish.2022.223110.
Full textUlaganathan, M., and D. Devaraj. "Hardware and Software Co-emulation Technique based Solar Photovoltaic Sources Emulator." In 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS). IEEE, 2019. http://dx.doi.org/10.1109/incos45849.2019.8951330.
Full textMuntean, Nicolae, Lucian Tutelea, Diana Petrila, and Ovidiu Pelan. "Hardware in the loop wind turbine emulator." In 2011 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) and Electromotion Joint Conference. IEEE, 2011. http://dx.doi.org/10.1109/acemp.2011.6490568.
Full textZhang, Jingyao, Yi Tang, Sachin Hirve, Srikrishna Iyer, Patrick Schaumont, and Yaling Yang. "A software-hardware emulator for sensor networks." In 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON). IEEE, 2011. http://dx.doi.org/10.1109/sahcn.2011.5984928.
Full textRuuskanen, Vesa, Joonas Koponen, Antti Kosonen, Markku Niemela, Jero Ahola, and Risto Tiainen. "Hardware-in-loop emulator for water electrolysers." In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016. http://dx.doi.org/10.1109/iecon.2016.7794072.
Full textLiu, Keren, Erik Börjeson, Christian Häger, and Per Larsson-Edefors. "FPGA-based Optical Kerr Effect Emulator." In Signal Processing in Photonic Communications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sppcom.2022.spth1i.2.
Full textPatel, Harsh Vinod, S. S. Rathod, and Payal Hitesh Shah. "An FPGA based Hardware Emulator for Neuromorphic Chip." In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE, 2020. http://dx.doi.org/10.1109/icesc48915.2020.9155822.
Full text