Academic literature on the topic 'Hamiltonien non convexe'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hamiltonien non convexe.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hamiltonien non convexe"

1

Ishii, Hitoshi. "The vanishing discount problem for monotone systems of Hamilton-Jacobi equations: a counterexample to the full convergence." Mathematics in Engineering 5, no. 4 (2023): 1–10. http://dx.doi.org/10.3934/mine.2023072.

Full text
Abstract:
<abstract><p>In recent years there has been intense interest in the vanishing discount problem for Hamilton-Jacobi equations. In the case of the scalar equation, B. Ziliotto has recently given an example of the Hamilton-Jacobi equation having non-convex Hamiltonian in the gradient variable, for which the full convergence of the solutions does not hold as the discount factor tends to zero. We give here an explicit example of nonlinear monotone systems of Hamilton-Jacobi equations having convex Hamiltonians in the gradient variable, for which the full convergence of the solutions fails as the discount factor goes to zero.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
2

Timoumi, Mohsen. "Solutions périodiques de systèmes hamiltoniens convexes non coercitifs." Bulletin de la Classe des sciences 75, no. 1 (1989): 463–81. http://dx.doi.org/10.3406/barb.1989.57866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cirant, Marco, and Alessio Porretta. "Long time behavior and turnpike solutions in mildly non-monotone mean field games." ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 86. http://dx.doi.org/10.1051/cocv/2021077.

Full text
Abstract:
We consider mean field game systems in time-horizon (0, T), where the individual cost functional depends locally on the density distribution of the agents, and the Hamiltonian is locally uniformly convex. We show that, even if the coupling cost functions are mildly non-monotone, then the system is still well posed due to the effect of individual noise. The rate of anti-monotonicity (i.e. the aggregation rate of the cost functions) which can be afforded depends on the intensity of the diffusion and on global bounds of solutions. We give applications to either the case of globally Lipschitz Hamiltonians or the case of quadratic Hamiltonians and couplings having mild growth. Under similar conditions, we investigate the long time behavior of solutions and we give a complete description of the ergodic and long term properties of the system. In particular we prove: (i) the turnpike property of solutions in the finite (long) horizon (0, T), (ii) the convergence of the system from (0, T) towards (0, ∞), (iii) the vanishing discount limit of the infinite horizon problem and the long time convergence towards the ergodic stationary solution. This way we extend previous results which were known only for the case of monotone and smoothing couplings; our approach is self-contained and does not need the use of the linearized system or of the master equation.
APA, Harvard, Vancouver, ISO, and other styles
4

CONTRERAS, GONZALO, and RENATO ITURRIAGA. "Convex Hamiltonians without conjugate points." Ergodic Theory and Dynamical Systems 19, no. 4 (1999): 901–52. http://dx.doi.org/10.1017/s014338579913387x.

Full text
Abstract:
We construct the Green bundles for an energy level without conjugate points of a convex Hamiltonian. In this case we give a formula for the metric entropy of the Liouville measure and prove that the exponential map is a local diffeomorphism. We prove that the Hamiltonian flow is Anosov if and only if the Green bundles are transversal. Using the Clebsch transformation of the index form we prove that if the unique minimizing measure of a generic Lagrangian is supported on a periodic orbit, then it is a hyperbolic periodic orbit.We also show some examples of differences with the behaviour of a geodesic flow without conjugate points, namely: (non-contact) flows and periodic orbits without invariant transversal bundles, segments without conjugate points but with crossing solutions and non-surjective exponential maps.
APA, Harvard, Vancouver, ISO, and other styles
5

Hayat, Sakander, Muhammad Yasir Hayat Malik, Ali Ahmad, Suliman Khan, Faisal Yousafzai, and Roslan Hasni. "On Hamilton-Connectivity and Detour Index of Certain Families of Convex Polytopes." Mathematical Problems in Engineering 2021 (July 17, 2021): 1–18. http://dx.doi.org/10.1155/2021/5553216.

Full text
Abstract:
A convex polytope is the convex hull of a finite set of points in the Euclidean space ℝ n . By preserving the adjacency-incidence relation between vertices of a polytope, its structural graph is constructed. A graph is called Hamilton-connected if there exists at least one Hamiltonian path between any of its two vertices. The detour index is defined to be the sum of the lengths of longest distances, i.e., detours between vertices in a graph. Hamiltonian and Hamilton-connected graphs have diverse applications in computer science and electrical engineering, whereas the detour index has important applications in chemistry. Checking whether a graph is Hamilton-connected and computing the detour index of an arbitrary graph are both NP-complete problems. In this paper, we study these problems simultaneously for certain families of convex polytopes. We construct two infinite families of Hamilton-connected convex polytopes. Hamilton-connectivity is shown by constructing Hamiltonian paths between any pair of vertices. We then use the Hamilton-connectivity to compute the detour index of these families. A family of non-Hamilton-connected convex polytopes has also been constructed to show that not all convex polytope families are Hamilton-connected.
APA, Harvard, Vancouver, ISO, and other styles
6

Pittman, S. M., E. Tannenbaum, and E. J. Heller. "Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian." Journal of Chemical Physics 145, no. 5 (2016): 054303. http://dx.doi.org/10.1063/1.4960134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Monthus, Cécile. "Revisiting boundary-driven non-equilibrium Markov dynamics in arbitrary potentials via supersymmetric quantum mechanics and via explicit large deviations at various levels." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 6 (2023): 063206. http://dx.doi.org/10.1088/1742-5468/acdcea.

Full text
Abstract:
Abstract For boundary-driven non-equilibrium Markov models of non-interacting particles in one dimension, either in continuous space with the Fokker–Planck dynamics involving an arbitrary force F(x) and an arbitrary diffusion coefficient D(x), or in discrete space with the Markov jump dynamics involving arbitrary nearest-neighbor transition rates w ( x ± 1 , x ) , the Markov generator can be transformed via an appropriate similarity transformation into a quantum supersymmetric Hamiltonian with many remarkable properties. We first describe how the mapping from the boundary-driven non-equilibrium dynamics towards some dual equilibrium dynamics (see Tailleur et al 2008 J. Phys. A: Math. Theor. 41 505001) can be reinterpreted via the two corresponding quantum Hamiltonians that are supersymmetric partners of each other, with the same energy spectra. We describe the consequences for the spectral decomposition of the boundary-driven dynamics, and we give explicit expressions for the Kemeny times needed to converge towards the non-equilibrium steady states. We then focus on the large deviations at various levels for empirical time-averaged observables over a large time-window T. We start with the always explicit Level 2.5 concerning the joint distribution of the empirical density and of the empirical flows before considering the contractions towards lower levels. In particular, the rate function for the empirical current alone can be explicitly computed via the contraction from the Level 2.5 using the properties of the associated quantum supersymmetric Hamiltonians.
APA, Harvard, Vancouver, ISO, and other styles
8

Hayat, Sakander, Asad Khan, Suliman Khan, and Jia-Bao Liu. "Hamilton Connectivity of Convex Polytopes with Applications to Their Detour Index." Complexity 2021 (January 23, 2021): 1–23. http://dx.doi.org/10.1155/2021/6684784.

Full text
Abstract:
A connected graph is called Hamilton-connected if there exists a Hamiltonian path between any pair of its vertices. Determining whether a graph is Hamilton-connected is an NP-complete problem. Hamiltonian and Hamilton-connected graphs have diverse applications in computer science and electrical engineering. The detour index of a graph is defined to be the sum of lengths of detours between all the unordered pairs of vertices. The detour index has diverse applications in chemistry. Computing the detour index for a graph is also an NP-complete problem. In this paper, we study the Hamilton-connectivity of convex polytopes. We construct three infinite families of convex polytopes and show that they are Hamilton-connected. An infinite family of non-Hamilton-connected convex polytopes is also constructed, which, in turn, shows that not all convex polytopes are Hamilton-connected. By using Hamilton connectivity of these families of graphs, we compute exact analytical formulas of their detour index.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Min, and Binggui Zhong. "Regions of applicability of Aubry-Mather Theory for non-convex Hamiltonian." Chinese Annals of Mathematics, Series B 32, no. 4 (2011): 605–14. http://dx.doi.org/10.1007/s11401-011-0654-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Entov, Michael, and Leonid Polterovich. "Contact topology and non-equilibrium thermodynamics." Nonlinearity 36, no. 6 (2023): 3349–75. http://dx.doi.org/10.1088/1361-6544/acd1ce.

Full text
Abstract:
Abstract We describe a method, based on contact topology, of showing the existence of semi-infinite trajectories of contact Hamiltonian flows which start on one Legendrian submanifold and asymptotically converge to another Legendrian submanifold. We discuss a mathematical model of non-equilibrium thermodynamics where such trajectories play a role of relaxation processes, and illustrate our results in the case of the Glauber dynamics for the mean field Ising model.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography