Academic literature on the topic 'Hamiltonien non convexe'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hamiltonien non convexe.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hamiltonien non convexe"
Ishii, Hitoshi. "The vanishing discount problem for monotone systems of Hamilton-Jacobi equations: a counterexample to the full convergence." Mathematics in Engineering 5, no. 4 (2023): 1–10. http://dx.doi.org/10.3934/mine.2023072.
Full textTimoumi, Mohsen. "Solutions périodiques de systèmes hamiltoniens convexes non coercitifs." Bulletin de la Classe des sciences 75, no. 1 (1989): 463–81. http://dx.doi.org/10.3406/barb.1989.57866.
Full textCirant, Marco, and Alessio Porretta. "Long time behavior and turnpike solutions in mildly non-monotone mean field games." ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 86. http://dx.doi.org/10.1051/cocv/2021077.
Full textCONTRERAS, GONZALO, and RENATO ITURRIAGA. "Convex Hamiltonians without conjugate points." Ergodic Theory and Dynamical Systems 19, no. 4 (August 1999): 901–52. http://dx.doi.org/10.1017/s014338579913387x.
Full textHayat, Sakander, Muhammad Yasir Hayat Malik, Ali Ahmad, Suliman Khan, Faisal Yousafzai, and Roslan Hasni. "On Hamilton-Connectivity and Detour Index of Certain Families of Convex Polytopes." Mathematical Problems in Engineering 2021 (July 17, 2021): 1–18. http://dx.doi.org/10.1155/2021/5553216.
Full textPittman, S. M., E. Tannenbaum, and E. J. Heller. "Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian." Journal of Chemical Physics 145, no. 5 (August 7, 2016): 054303. http://dx.doi.org/10.1063/1.4960134.
Full textMonthus, Cécile. "Revisiting boundary-driven non-equilibrium Markov dynamics in arbitrary potentials via supersymmetric quantum mechanics and via explicit large deviations at various levels." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 6 (June 1, 2023): 063206. http://dx.doi.org/10.1088/1742-5468/acdcea.
Full textHayat, Sakander, Asad Khan, Suliman Khan, and Jia-Bao Liu. "Hamilton Connectivity of Convex Polytopes with Applications to Their Detour Index." Complexity 2021 (January 23, 2021): 1–23. http://dx.doi.org/10.1155/2021/6684784.
Full textZhou, Min, and Binggui Zhong. "Regions of applicability of Aubry-Mather Theory for non-convex Hamiltonian." Chinese Annals of Mathematics, Series B 32, no. 4 (July 2011): 605–14. http://dx.doi.org/10.1007/s11401-011-0654-3.
Full textEntov, Michael, and Leonid Polterovich. "Contact topology and non-equilibrium thermodynamics." Nonlinearity 36, no. 6 (May 17, 2023): 3349–75. http://dx.doi.org/10.1088/1361-6544/acd1ce.
Full textDissertations / Theses on the topic "Hamiltonien non convexe"
Aslani, Shahriar. "Bumpy metric theorem in the sense of Mañé for non-convex Hamiltonian vector fields." Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLE038.
Full textA property (p) of smooth Hamiltonian vector fields is called Mañé-generic whenever the set of smooth potentials u such that H + u satisfies the property (p) is a generic subset. Given a non-convex smooth Hamiltonian H : T∗M → ℝ which is defined on the cotangent bundle of a smooth manifold M, our goal in this thesis is to know that to what extend non-degeneracy of all periodic orbits in a given energy level of H is a Mañé generic property. Where by a periodic non-degenerate orbit we mean a periodic orbit that its associated linearized Poincaré map does not take roots of unity as an eigenvalue. To that end, we will achieve a perturbation theorem for linearized Poincaré maps similar to Rifford and Ruggiero’s theorem in the convex setting, and a Fermi-like normal form on orbits of a non-convex Hamiltonian vector field. These are two applicable tools in the study of non-convex Hamiltonian vector fields. At the other hand, we will show that in both convex and non-convex cases we certainly need a different machinery to prove the bumpy metric theorem for symmetric orbits. A symmetric orbit is an orbit that its projection on the base manifolds includes either self-intersection points or points with zero velocity. This fact was overlooked in previous studies. A detailed study of local normal forms on orbit segments of a Hamiltonian vector field is given. That includes a normal form for convex Hamiltonians, a normal form for positively homogeneous Hamiltonians that implies Li-Nienberg normal form for Finsler metrics, and as we mentioned a normal form for non-convex Hamiltonians. In this way, we remove the confusion that exists in the literature between Li-Nirenberg normal form and a similar desired normal form for convex Hamiltonian vector fields
Ranty, François. "Systèmes hamiltoniens convexes présentant une intégrale première non triviale." Paris 9, 1987. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1987PA090018.
Full textRanty, François. "Systèmes hamiltoniens convexes présentant une intégrale première non triviale." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37609184p.
Full textRoos, Valentine. "Solutions variationnelles et solutions de viscosité de l'équation de Hamilton-Jacobi." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED023/document.
Full textWe study the first order Hamilton-Jacobi equation associated with a Lipschitz initial condition. The purpose of this thesis is to compare two notions of weak solutions for this equation, namely the viscosity solution and the variational solution, that are known to coincide in convex Hamiltonian dynamics. In order to work in a relevant framework for both notions, we first need to build a variational solution without compactness assumption on the manifold or the Hamiltonian. To do so, we follow the historical construction, detailing properties of the generating family obtained via the broken geodesics method. Local estimates allow to prove that the viscosity solution can be obtained from the variational solution via an iterative process. We then check that this construction gives effectively the viscosity solution for a convex Hamiltonian, and characterize the integrable Hamiltonians for which this property persists by carefully studying elementary examples in dimension 1 and 2
Imbert, Cyril. "Analyse non lisse : fonction d'appui de la jacobienne généralisée de Clarke : quelques applications aux équations de Hamilton-Jacobi du premier ordre (formules de Hopf-Lax, hamiltoniens diff. Convexes, enveloppes de solutions sci)." Phd thesis, Toulouse 3, 2000. http://www.theses.fr/2000TOU30036.
Full textImbert, Cyril. "Analyse non lisse : - Fonction d'appui de la Jacobienne généralisée de Clarke et de son enveloppe plénière - Quelques applications aux équations de Hamilton-Jacobi du premier ordre (fonctions de Hopf-Lax, Hamiltoniens diff. convexes, solutions sci)." Phd thesis, Université Paul Sabatier - Toulouse III, 2000. http://tel.archives-ouvertes.fr/tel-00001203.
Full textBooks on the topic "Hamiltonien non convexe"
Mann, Peter. Partial Differentiation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0032.
Full textBook chapters on the topic "Hamiltonien non convexe"
Salmon, Rick. "Hamiltonian Fluid Dynamics." In Lectures on Geophysical Fluid Dynamics. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195108088.003.0010.
Full textConference papers on the topic "Hamiltonien non convexe"
Spada, Fabio, Pietro Ghignoni, Afonso Botelho, Gabriele De Zaiacomo, and Paulo Rosa. "Successive convexification-based fuel-optimal high-altitude guidance of the RETALT reusable launcher." In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-161.
Full text