Academic literature on the topic 'Hamiltonians'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hamiltonians.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hamiltonians"
Hiroshima, Fumio. "Weak Coupling Limit with a Removal of an Ultraviolet Cutoff for a Hamiltonian of Particles Interacting with a Massive Scalar Field." Infinite Dimensional Analysis, Quantum Probability and Related Topics 01, no. 03 (July 1998): 407–23. http://dx.doi.org/10.1142/s0219025798000211.
Full textPannell, William H. "The intersection between dual potential and sl(2) algebraic spectral problems." International Journal of Modern Physics A 35, no. 32 (November 20, 2020): 2050208. http://dx.doi.org/10.1142/s0217751x20502085.
Full textHastings, Matthew. "Trivial low energy states for commuting Hamiltonians, and the quantum PCP conjecture." Quantum Information and Computation 13, no. 5&6 (May 2013): 393–429. http://dx.doi.org/10.26421/qic13.5-6-3.
Full textLiu, Yu, Jin Liu, and Da-jun Zhang. "On New Hamiltonian Structures of Two Integrable Couplings." Symmetry 14, no. 11 (October 27, 2022): 2259. http://dx.doi.org/10.3390/sym14112259.
Full textOrlov, Yu N., V. Zh Sakbaev, and O. G. Smolyanov. "Randomizes hamiltonian mechanics." Доклады Академии наук 486, no. 6 (June 28, 2019): 653–58. http://dx.doi.org/10.31857/s0869-56524866653-658.
Full textWu, Xin, Ying Wang, Wei Sun, Fu-Yao Liu, and Wen-Biao Han. "Explicit Symplectic Methods in Black Hole Spacetimes." Astrophysical Journal 940, no. 2 (December 1, 2022): 166. http://dx.doi.org/10.3847/1538-4357/ac9c5d.
Full textLiu, Yingkai, and Emil Prodan. "A computer code for topological quantum spin systems over triangulated surfaces." International Journal of Modern Physics C 31, no. 07 (June 26, 2020): 2050091. http://dx.doi.org/10.1142/s0129183120500916.
Full textKonig, R. "Simplifying quantum double Hamiltonians using perturbative gadgets." Quantum Information and Computation 10, no. 3&4 (March 2010): 292–334. http://dx.doi.org/10.26421/qic10.3-4-9.
Full textChilds, A. M., and R. Kothari. "Limitations on the simulation of non-sparse Hamiltonians." Quantum Information and Computation 10, no. 7&8 (July 2010): 669–84. http://dx.doi.org/10.26421/qic10.7-8-7.
Full textSYLJUÅSEN, OLAV F. "RANDOM WALKS NEAR ROKHSAR–KIVELSON POINTS." International Journal of Modern Physics B 19, no. 12 (May 10, 2005): 1973–93. http://dx.doi.org/10.1142/s021797920502964x.
Full textDissertations / Theses on the topic "Hamiltonians"
ABENDA, SIMONETTA. "Analysis of Singularity Structures for Quasi-Integrable Hamiltonian Systems." Doctoral thesis, SISSA, 1994. http://hdl.handle.net/20.500.11767/4499.
Full textNagaj, Daniel. "Local Hamiltonians in quantum computation." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45162.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 169-176).
In this thesis, I investigate aspects of local Hamiltonians in quantum computing. First, I focus on the Adiabatic Quantum Computing model, based on evolution with a time- dependent Hamiltonian. I show that to succeed using AQC, the Hamiltonian involved must have local structure, which leads to a result about eigenvalue gaps from information theory. I also improve results about simulating quantum circuits with AQC. Second, I look at classically simulating time evolution with local Hamiltonians and finding their ground state properties. I give a numerical method for finding the ground state of translationally invariant Hamiltonians on an infinite tree. This method is based on imaginary time evolution within the Matrix Product State ansatz, and uses a new method for bringing the state back to the ansatz after each imaginary time step. I then use it to investigate the phase transition in the transverse field Ising model on the Bethe lattice. Third, I focus on locally constrained quantum problems Local Hamiltonian and Quantum Satisfiability and prove several new results about their complexity. Finally, I define a Hamiltonian Quantum Cellular Automaton, a continuous-time model of computation which doesn't require control during the computation process, only preparation of product initial states. I construct two of these, showing that time evolution with a simple, local, translationally invariant and time-independent Hamiltonian can be used to simulate quantum circuits.
by Daniel Nagaj.
Ph.D.
Assis, Paulo. "Non-Hermitian Hamiltonians in field theory." Thesis, City University London, 2009. http://openaccess.city.ac.uk/2118/.
Full textRamaswami, Geetha Pillaiyarkulam. "Numerical solution of special separable Hamiltonians." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627541.
Full textMoore, David Jeffrey. "Non-adiabatic Berry phases for periodic Hamiltonians." Thesis, University of Canterbury. Physics, 1991. http://hdl.handle.net/10092/8072.
Full textYildirim, Yolcu Selma. "Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31649.
Full textCommittee Chair: Harrell, Evans; Committee Member: Chow, Shui-Nee; Committee Member: Geronimo, Jeffrey; Committee Member: Kennedy, Brian; Committee Member: Loss, Michael. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Bartlett, Bruce. "Flow equations for hamiltonians from continuous unitary transformations." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53428.
Full textENGLISH ABSTRACT: This thesis presents an overview of the flow equations recently introduced by Wegner. The little known mathematical framework is established in the initial chapter and used as a background for the entire presentation. The application of flow equations to the Foldy-Wouthuysen transformation and to the elimination of the electron-phonon coupling in a solid is reviewed. Recent flow equations approaches to the Lipkin model are examined thoroughly, paying special attention to their utility near the phase change boundary. We present more robust schemes by requiring that expectation values be flow dependent; either through a variational or self-consistent calculation. The similarity renormalization group equations recently developed by Glazek and Wilson are also reviewed. Their relationship to Wegner's flow equations is investigated through the aid of an instructive model.
AFRIKAANSE OPSOMMING: Hierdie tesis bied 'n oorsig van die vloeivergelykings soos dit onlangs deur Wegner voorgestel is. Die betreklik onbekende wiskundige raamwerk word in die eerste hoofstuk geskets en deurgans as agtergrond gebruik. 'n Oorsig word gegee van die aanwending van die vloeivergelyking vir die Foldy-Wouthuysen transformasie en die eliminering van die elektron-fonon wisselwerking in 'n vastestof. Onlangse benaderings tot die Lipkin model, deur middel van vloeivergelykings, word ook deeglik ondersoek. Besondere aandag word gegee aan hul aanwending naby fasegrense. 'n Meer stewige skema word voorgestel deur te vereis dat verwagtingswaardes vloei-afhanklik is; óf deur gevarieerde óf self-konsistente berekenings. 'n Inleiding tot die gelyksoortigheids renormerings groep vergelykings, soos onlangs ontwikkel deur Glazek en Wilson, word ook aangebied. Hulle verwantskap met die Wegner vloeivergelykings word bespreek aan die hand van 'n instruktiewe voorbeeld.
Duffus, Stephen N. A. "Open quantum systems, effective Hamiltonians and device characterisation." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/33672.
Full textHyder, Asif M. "Green's operator for Hamiltonians with Coulomb plus polynomial potentials." California State University, Long Beach, 2013.
Find full textEngeler, Marco Bruno Raphael. "New model Hamiltonians for improved orbital basis set convergence." Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/54563/.
Full textBooks on the topic "Hamiltonians"
Greiter, Martin. Mapping of Parent Hamiltonians. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24384-4.
Full textMargaret, Houghton, ed. The Hamiltonians: [100 fascinating lives]. Toronto: J. Lorimer, 2003.
Find full textBenguria, Rafael, Eduardo Friedman, and Marius Mantoiu, eds. Spectral Analysis of Quantum Hamiltonians. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0414-1.
Full textHafner, Jürgen. From Hamiltonians to Phase Diagrams. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83058-7.
Full textWachsmuth, Jakob. Effective Hamiltonians for constrained quantum systems. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textMinlos, R., ed. Many-Particle Hamiltonians: Spectra and Scattering. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/advsov/005.
Full textBagarello, Fabio, Roberto Passante, and Camillo Trapani, eds. Non-Hermitian Hamiltonians in Quantum Physics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31356-6.
Full textEduardo, Friedman, Mantoiu Marius, and SpringerLink (Online service), eds. Spectral Analysis of Quantum Hamiltonians: Spectral Days 2010. Basel: Springer Basel, 2012.
Find full textNeagu, Mircea, and Alexandru Oană. Dual Jet Geometrization for Time-Dependent Hamiltonians and Applications. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08885-8.
Full textMichel, Herman, ed. Global and accurate vibration Hamiltonians from high resolution molecular spectroscopy. New York: Wiley, 1999.
Find full textBook chapters on the topic "Hamiltonians"
Agrachev, Andrei A., and Yuri L. Sachkov. "Hamiltonian Systems with Convex Hamiltonians." In Control Theory from the Geometric Viewpoint, 207–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06404-7_14.
Full textBaaquie, Belal Ehsan. "Hamiltonians." In Mathematical Methods and Quantum Mathematics for Economics and Finance, 321–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6611-0_14.
Full textShell, Karl. "Hamiltonians." In The New Palgrave Dictionary of Economics, 1–4. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1057/978-1-349-95121-5_1166-1.
Full textShell, Karl. "Hamiltonians." In The New Palgrave Dictionary of Economics, 1–4. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_1166-2.
Full textShell, Karl. "Hamiltonians." In The New Palgrave Dictionary of Economics, 5605–9. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_1166.
Full textExner, Pavel. "Pseudo-Hamiltonians." In Open Quantum Systems and Feynman Integrals, 146–212. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5207-2_4.
Full textRaduta, Apolodor Aristotel. "Boson Hamiltonians." In Nuclear Structure with Coherent States, 363–406. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14642-3_13.
Full textGuelachvili, G. "Effective hamiltonians." In Linear Triatomic Molecules, 2–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/10837166_2.
Full textKimmich, Rainer. "Spin Hamiltonians." In NMR, 418–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60582-6_46.
Full textMüller, Peter, and Peter Stollmann. "Percolation Hamiltonians." In Random Walks, Boundaries and Spectra, 235–58. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0346-0244-0_13.
Full textConference papers on the topic "Hamiltonians"
Butcher, Eric A., and S. C. Sinha. "On the Analysis of Time-Periodic Nonlinear Hamiltonian Dynamical Systems." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0277.
Full textSaue, Trond. "Relativistic Hamiltonians for chemistry." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771717.
Full textPrivman, Vladimir, Dima V. Mozyrsky, and Steven P. Hotaling. "Hamiltonians for quantum computing." In AeroSense '97, edited by Steven P. Hotaling and Andrew R. Pirich. SPIE, 1997. http://dx.doi.org/10.1117/12.277664.
Full textLévai, G. "On solvable Bohr Hamiltonians." In NUCLEAR PHYSICS, LARGE AND SMALL: International Conference on Microscopic Studies of Collective Phenomena. AIP, 2004. http://dx.doi.org/10.1063/1.1805947.
Full textBENDER, CARL M. "COMPLEX HAMILTONIANS HAVING REAL SPECTRA." In Proceedings of the Second International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777850_0002.
Full textAlexanian, G. "On the renormalization of Hamiltonians." In Montreal-Rochester-Syracuse-Toronto (MRST) conference on high energy physics. AIP, 2000. http://dx.doi.org/10.1063/1.1328913.
Full textSheinfux, Hanan Herzig, Stella Schindler, Yaakov Lumer, and Mordechai Segev. "Recasting Hamiltonians with gauged-driving." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.fth1d.5.
Full textHilbert, Astrid. "Degenerate Diffusions with regular Hamiltonians." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874570.
Full textCostello, J. B., S. D. O’Hara, Q. Wu, L. N. Pfeiffer, K. W. West, and M. S. Sherwin. "Experimental Hamiltonian Reconstruction via Polarimetry of High-order Sidebands in a Semiconductor." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu5b.3.
Full textYoshida, Sota, Michio Kohno, Takashi Abe, Takaharu Otsuka, Naofumi Tsunoda, and Noritaka Shimizu. "Shell-Model Hamiltonians from Chiral Forces." In Proceedings of the Ito International Research Center Symposium "Perspectives of the Physics of Nuclear Structure". Journal of the Physical Society of Japan, 2018. http://dx.doi.org/10.7566/jpscp.23.013014.
Full textReports on the topic "Hamiltonians"
Symon, K. R. Derivation of Hamiltonians for accelerators. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/555549.
Full text. Trifonov, Dimitar A. Diagonalization of Hamiltonians, Uncertainty Matrices and Robertson Inequality. GIQ, 2012. http://dx.doi.org/10.7546/giq-2-2001-294-312.
Full textBoozer, A. H. Transformation of Hamiltonians to near action-angle form. Office of Scientific and Technical Information (OSTI), April 1985. http://dx.doi.org/10.2172/5760929.
Full textNebgen, Benjamin, Justin Smith, Sergei Tretiak, and Nicholas Lubbers. Closeout Report: Machine Learned Effective Hamiltonians for Molecular Properties. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1768446.
Full textIsichenko, M. B., W. Horton, D. E. Kim, E. G. Heo, and D. I. Choi. Stochastic diffusion and Kolmogorov entropy in regular and random Hamiltonians. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/7205669.
Full textIsichenko, M. B., W. Horton, D. E. Kim, E. G. Heo, and D. I. Choi. Stochastic diffusion and Kolmogorov entropy in regular and random Hamiltonians. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/10156433.
Full textSomma, Rolando Diego. Hamiltonian Simulation. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1618318.
Full textBoozer, A. H. Magnetic field line Hamiltonian. Office of Scientific and Technical Information (OSTI), February 1985. http://dx.doi.org/10.2172/5915503.
Full textRitchie, B. Electron-Vector Potential Interaction Hamiltonian. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/15003914.
Full textMalitsky, N., G. Bourianoff, and Yu Severgin. Some remarks about pseudo-Hamiltonian. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10194905.
Full text