To see the other types of publications on this topic, follow the link: Hamiltonian problems.

Books on the topic 'Hamiltonian problems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Hamiltonian problems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Sanz-Serna, J. M., and M. P. Calvo. Numerical Hamiltonian Problems. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

P, Calvo M., ed. Numerical Hamiltonian problems. London: Chapman & Hall, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gignoux, Claude, and Bernard Silvestre-Brac. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2393-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bernard, Silvestre-Brac, and SpringerLink (Online service), eds. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht: Springer Netherlands, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Classical mechanics: Systems of particles and Hamiltonian dynamics. New York: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Greiner, Walter. Classical mechanics: Systems of particles and Hamiltonian dynamics. New York: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Classical mechanics: Systems of particles and Hamiltonian dynamics. 2nd ed. Heidelberg [Germany]: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ning, Xuanxi. The blocking flow theory and its application to Hamiltonian graph problems. Aachen: Shaker Verlag, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lagrangian and Hamiltonian mechanics: Solutions to the exercises. Singapore: World Scientific, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mielke, Alexander. Hamiltonian and Lagrangian flows on center manifolds: With applications to elliptic variational problems. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Riahi, Hasna. Study of the critical points at infinity arising from the failure of the Palais-Smale condition for n-body type problems. Providence, R.I: American Mathematical Society, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

1944-, Ekeland I., Szulkin Andrzej, and NATO Advanced Study Institute, eds. Minimax results of L[j]usternik-Schnirelman type and applications: Part 2 of the proceedings of the NATO ASI "variational methods in nonlinear problems". Montréal, Québec, Canada: Presses de l'Université de Montréal, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Borkar, Vivek S., Vladimir Ejov, Jerzy A. Filar, and Giang T. Nguyen. Hamiltonian Cycle Problem and Markov Chains. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3232-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Goncharov, V. P. Problemy gidrodinamiki v gamilʹtonovom opisanii. Moskva: Izd-vo Moskovskogo universiteta, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Suris, Yuri B. The Problem of Integrable Discretization: Hamiltonian Approach. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8016-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Suris, Yuri B. The Problem of Integrable Discretization: Hamiltonian Approach. Basel: Birkhäuser Basel, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Neumann systems for the algebraic AKNS problem. Providence, RI: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bryuno, Aleksandr D. The restricted 3-body problem: Plane periodic orbits. New York: W.de Gruyter, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

The restricted 3-body problem: Plane periodic orbits. New York: W. de Gruyter, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Meyer, Kenneth R., and Daniel C. Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53691-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Meyer, Kenneth R., and Glen R. Hall. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4073-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Meyer, Kenneth, Glen Hall, and Dan Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-09724-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Meyer, Kenneth R. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Meyer, Kenneth R. Introduction to Hamiltonian dynamical systems and the N-body problem. 2nd ed. New York: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Meyer, Kenneth R. Introduction to Hamiltonian dynamical systems and the n-body problem. New York: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Meyer, Kenneth R. Periodic solutions of the N-body problem. Berlin: Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ivanovich, Babenko Konstantin, ed. Ogranichennai︠a︡ zadacha trekh tel: Ploskie periodicheskie orbity. Moskva: Nauka", 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Poincaré and the three body problem. Providence, RI: American Mathematical Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Local and semi-local bifurcations in Hamiltonian dynamical systems: Results and examples. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Meyer, Kenneth R. Introduction to Hamiltonian dynamical systems and the N-body problem: With 67 illustrations. New York: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kappeler, Thomas. KdV & KAM. Berlin: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jürgen, Pöschel, ed. KdV & KAM. Berlin: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Scholma, J. K. A Lie algebraic study of some integrable systems associated with root systems. Amsterdam, the Netherlands: Centrum voor Wiskunde en Informatica, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

la, Llave Rafael de, and Seara Tere M. 1961-, eds. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Heuristics and rigorous verification on a model. Providence, R.I: American Mathematical Society, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

A, Denisov S., and Ferronskiĭ S. V, eds. Jacobi dynamics: Many-body problem in integral characteristics. Dordrecht: D. Reidel Pub. Co., 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dzhamay, Anton, Christopher W. Curtis, Willy A. Hereman, and B. Prinari. Nonlinear wave equations: Analytic and computational techniques : AMS Special Session, Nonlinear Waves and Integrable Systems : April 13-14, 2013, University of Colorado, Boulder, CO. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bifurcation of extremals in optimal control. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sanz-Serna, J. M., and M. P. Calvo. Numerical Hamiltonian Problems. Dover Publications, Incorporated, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Numerical Hamiltonian Problems. Dover Publications, Incorporated, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gignoux, Claude, and Bernard Silvestre-Brac. Solved Problems in Lagrangian and Hamiltonian Mechanics. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Coopersmith, Jennifer. Hamiltonian Mechanics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198743040.003.0007.

Full text
Abstract:
Hamilton’s genius was to understand what were the true variables of mechanics (the “p − q,” conjugate coordinates, or canonical variables), and this led to Hamilton’s Mechanics which could obtain qualitative answers to a wider ranger of problems than Lagrangian Mechanics. It is explained how Hamilton’s canonical equations arise, why the Hamiltonian is the “central conception of all modern theory” (quote of Schrödinger’s), what the “p − q” variables are, and what phase space is. It is also explained how the famous conservation theorems arise (for energy, linear momentum, and angular momentum), and the connection with symmetry. The Hamilton-Jacobi Equation is derived using infinitesimal canonical transformations (ICTs), and predicts wavefronts of “common action” spreading out in (configuration) space. An analogy can be made with geometrical optics and Huygen’s Principle for the spreading out of light waves. It is shown how Hamilton’s Mechanics can lead into quantum mechanics.
APA, Harvard, Vancouver, ISO, and other styles
42

Greiner, Walter. Classical Mechanics: Systems of Particles and Hamiltonian Dynamics (Classical Theoretical Physics). Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mielke, Alexander. Hamiltonian and Lagrangian Flows on Center Manifolds: With Applications to Elliptic Variational Problems. Springer London, Limited, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kdv Kam. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Suris, Yuri B. Problem of Integrable Discretization: Hamiltonian Approach. Springer Basel AG, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nguyen, Giang T., Vivek S. Borkar, Jerzy A. Filar, and Vladimir Ejov. Hamiltonian Cycle Problem and Markov Chains. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Nguyen, Giang T., Vivek S. Borkar, Jerzy A. Filar, and Vladimir Ejov. Hamiltonian Cycle Problem and Markov Chains. Springer New York, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hamiltonian Cycle Problem And Markov Chains. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhu, Xi-Ping, and Kai Seng Chou. Curve Shortening Problem. Taylor & Francis Group, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

A, Lacomba E., Llibre Jaume, and International Symposium on Hamiltonian Systems and Celestial Mechanics (1991 : Guanajuato, Mexico), eds. Hamiltonian systems and celestial mechanics. Singapore: River Edge, NJ, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography