To see the other types of publications on this topic, follow the link: Hamiltonian Problem.

Books on the topic 'Hamiltonian Problem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Hamiltonian Problem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Borkar, Vivek S., Vladimir Ejov, Jerzy A. Filar, and Giang T. Nguyen. Hamiltonian Cycle Problem and Markov Chains. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3232-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Suris, Yuri B. The Problem of Integrable Discretization: Hamiltonian Approach. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8016-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Suris, Yuri B. The Problem of Integrable Discretization: Hamiltonian Approach. Basel: Birkhäuser Basel, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neumann systems for the algebraic AKNS problem. Providence, RI: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bryuno, Aleksandr D. The restricted 3-body problem: Plane periodic orbits. New York: W.de Gruyter, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

The restricted 3-body problem: Plane periodic orbits. New York: W. de Gruyter, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meyer, Kenneth R., and Daniel C. Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53691-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meyer, Kenneth R., and Glen R. Hall. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4073-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meyer, Kenneth, Glen Hall, and Dan Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-09724-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meyer, Kenneth R. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Meyer, Kenneth R. Introduction to Hamiltonian dynamical systems and the N-body problem. 2nd ed. New York: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Meyer, Kenneth R. Introduction to Hamiltonian dynamical systems and the n-body problem. New York: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Meyer, Kenneth R. Periodic solutions of the N-body problem. Berlin: Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ivanovich, Babenko Konstantin, ed. Ogranichennai︠a︡ zadacha trekh tel: Ploskie periodicheskie orbity. Moskva: Nauka", 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Poincaré and the three body problem. Providence, RI: American Mathematical Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Local and semi-local bifurcations in Hamiltonian dynamical systems: Results and examples. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Meyer, Kenneth R. Introduction to Hamiltonian dynamical systems and the N-body problem: With 67 illustrations. New York: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Riahi, Hasna. Study of the critical points at infinity arising from the failure of the Palais-Smale condition for n-body type problems. Providence, R.I: American Mathematical Society, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

A, Denisov S., and Ferronskiĭ S. V, eds. Jacobi dynamics: Many-body problem in integral characteristics. Dordrecht: D. Reidel Pub. Co., 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Scholma, J. K. A Lie algebraic study of some integrable systems associated with root systems. Amsterdam, the Netherlands: Centrum voor Wiskunde en Informatica, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

la, Llave Rafael de, and Seara Tere M. 1961-, eds. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Heuristics and rigorous verification on a model. Providence, R.I: American Mathematical Society, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sanz-Serna, J. M., and M. P. Calvo. Numerical Hamiltonian Problems. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

P, Calvo M., ed. Numerical Hamiltonian problems. London: Chapman & Hall, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Goncharov, V. P. Problemy gidrodinamiki v gamilʹtonovom opisanii. Moskva: Izd-vo Moskovskogo universiteta, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gignoux, Claude, and Bernard Silvestre-Brac. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2393-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bernard, Silvestre-Brac, and SpringerLink (Online service), eds. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht: Springer Netherlands, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Classical mechanics: Systems of particles and Hamiltonian dynamics. New York: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Greiner, Walter. Classical mechanics: Systems of particles and Hamiltonian dynamics. New York: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Classical mechanics: Systems of particles and Hamiltonian dynamics. 2nd ed. Heidelberg [Germany]: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ning, Xuanxi. The blocking flow theory and its application to Hamiltonian graph problems. Aachen: Shaker Verlag, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lagrangian and Hamiltonian mechanics: Solutions to the exercises. Singapore: World Scientific, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mielke, Alexander. Hamiltonian and Lagrangian flows on center manifolds: With applications to elliptic variational problems. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

1944-, Ekeland I., Szulkin Andrzej, and NATO Advanced Study Institute, eds. Minimax results of L[j]usternik-Schnirelman type and applications: Part 2 of the proceedings of the NATO ASI "variational methods in nonlinear problems". Montréal, Québec, Canada: Presses de l'Université de Montréal, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kappeler, Thomas. KdV & KAM. Berlin: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jürgen, Pöschel, ed. KdV & KAM. Berlin: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bifurcation of extremals in optimal control. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dzhamay, Anton, Christopher W. Curtis, Willy A. Hereman, and B. Prinari. Nonlinear wave equations: Analytic and computational techniques : AMS Special Session, Nonlinear Waves and Integrable Systems : April 13-14, 2013, University of Colorado, Boulder, CO. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Suris, Yuri B. Problem of Integrable Discretization: Hamiltonian Approach. Springer Basel AG, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Nguyen, Giang T., Vivek S. Borkar, Jerzy A. Filar, and Vladimir Ejov. Hamiltonian Cycle Problem and Markov Chains. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nguyen, Giang T., Vivek S. Borkar, Jerzy A. Filar, and Vladimir Ejov. Hamiltonian Cycle Problem and Markov Chains. Springer New York, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hamiltonian Cycle Problem And Markov Chains. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

A, Lacomba E., Llibre Jaume, and International Symposium on Hamiltonian Systems and Celestial Mechanics (1991 : Guanajuato, Mexico), eds. Hamiltonian systems and celestial mechanics. Singapore: River Edge, NJ, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Raines, Allen Crawford. Hamiltonian-symplectic methods for solving the quadratic regulator problem. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhu, Xi-Ping, and Kai Seng Chou. Curve Shortening Problem. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chou, Kai-Seng, and Xi-Ping Zhu. Curve Shortening Problem. Taylor & Francis Group, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

The Curve Shortening Problem. Chapman & Hall/CRC, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cauchy Problem for Noneffectively Hyperbolic Operators. Mathematical Society of Japan, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhu, Xi-Ping, and Kai Seng Chou. Curve Shortening Problem. Taylor & Francis Group, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Meyer, Kenneth, and Dan Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer International Publishing AG, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hall, Glen, Kenneth Meyer, and Dan Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography