Academic literature on the topic 'Hamiltonian Problem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hamiltonian Problem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hamiltonian Problem"
Sattath, Or, Siddhardh C. Morampudi, Chris R. Laumann, and Roderich Moessner. "When a local Hamiltonian must be frustration-free." Proceedings of the National Academy of Sciences 113, no. 23 (May 19, 2016): 6433–37. http://dx.doi.org/10.1073/pnas.1519833113.
Full textANDRIANOV, A. A., M. V. IOFFE, F. CANNATA, and J. P. DEDONDER. "SUSY QUANTUM MECHANICS WITH COMPLEX SUPERPOTENTIALS AND REAL ENERGY SPECTRA." International Journal of Modern Physics A 14, no. 17 (July 10, 1999): 2675–88. http://dx.doi.org/10.1142/s0217751x99001342.
Full textBravyi, S., D. P. DiVincenzo, R. Oliveira, and B. M. Terhal. "The complexity of stoquastic local Hamiltonian problems." Quantum Information and Computation 8, no. 5 (May 2008): 361–85. http://dx.doi.org/10.26421/qic8.5-1.
Full textZhao, Qi, and Xiao Yuan. "Exploiting anticommutation in Hamiltonian simulation." Quantum 5 (August 31, 2021): 534. http://dx.doi.org/10.22331/q-2021-08-31-534.
Full textKlassen, Joel, and Barbara M. Terhal. "Two-local qubit Hamiltonians: when are they stoquastic?" Quantum 3 (May 6, 2019): 139. http://dx.doi.org/10.22331/q-2019-05-06-139.
Full textWOCJAN, PAWEL, and THOMAS BETH. "THE 2-LOCAL HAMILTONIAN PROBLEM ENCOMPASSES NP." International Journal of Quantum Information 01, no. 03 (September 2003): 349–57. http://dx.doi.org/10.1142/s021974990300022x.
Full textGamboa, J., and F. Méndez. "Deformed quantum mechanics and the Landau problem." Modern Physics Letters A 36, no. 18 (June 14, 2021): 2150126. http://dx.doi.org/10.1142/s0217732321501261.
Full textNEIDHARDT, HAGEN, and VALENTIN ZAGREBNOV. "TOWARDS THE RIGHT HAMILTONIAN FOR SINGULAR PERTURBATIONS VIA REGULARIZATION AND EXTENSION THEORY." Reviews in Mathematical Physics 08, no. 05 (July 1996): 715–40. http://dx.doi.org/10.1142/s0129055x96000251.
Full textLALONDE, FRANÇOIS, and ANDREI TELEMAN. "THE g-AREAS AND THE COMMUTATOR LENGTH." International Journal of Mathematics 24, no. 07 (June 2013): 1350057. http://dx.doi.org/10.1142/s0129167x13500572.
Full textGodinho, Leonor, and M. E. Sousa-Dias. "The Fundamental Group ofS1-manifolds." Canadian Journal of Mathematics 62, no. 5 (October 1, 2010): 1082–98. http://dx.doi.org/10.4153/cjm-2010-053-3.
Full textDissertations / Theses on the topic "Hamiltonian Problem"
Schütte, Albrecht. "Hamiltonian flow equations and the electron phonon problem." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964423294.
Full textBredariol, Grilo Alex. "Quantum proofs, the local Hamiltonian problem and applications." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC051/document.
Full textIn QMA, the quantum generalization of the complexity class NP, a quantum state is provided as a proof of a mathematical statement, and this quantum proof can be verified by a quantum algorithm. This complexity class has a very natural complete problem, the Local Hamiltonian problem. Inspired by Condensed Matters Physics, this problem concerns the groundstate energy of quantum systems. In this thesis, we study some problems related to QMA and to the Local Hamiltonian problem. First, we study the difference of power when classical or quantum proofs are provided to quantum verification algorithms. We propose an intermediate setting where the proof is a “simpler” quantum state, and we manage to prove that these simpler states are enough to solve all problems in QMA. From this result, we are able to present a new QMA-complete problem and we also study the one-sided error version of our new complexity class. Secondly, we propose the first relativistic verifiable delegation scheme for quantum computation. In this setting, a classical client delegates her quantumcomputation to two entangled servers who are allowed to communicate, but respecting the assumption that information cannot be propagated faster than speed of light. This protocol is achieved through a one-round two-prover game for the Local Hamiltonian problem where provers only need polynomial time quantum computation and access to copies of the groundstate of the Hamiltonian. Finally, we study the quantumPCP conjecture, which asks if all problems in QMA accept aproof systemwhere only a fewqubits of the proof are checked. Our result consists in proposing an extension of QPCP proof systems where the verifier is also provided an auxiliary classical proof. Based on this proof system, we propose a weaker version of QPCP conjecture. We then show that this new conjecture can be formulated as a Local Hamiltonian problem and also as a problem involving the maximum acceptance probability of multi-prover games. This is the first equivalence of a multi-prover game and some QPCP statement
Benner, Peter, and Cedric Effenberger. "A rational SHIRA method for the Hamiltonian eigenvalue problem." Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200900026.
Full textGu, Xiang. "Hamiltonian structures and Riemann-Hilbert problems of integrable systems." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7677.
Full textBenner, P., and H. Faßbender. "A restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800797.
Full textGupta, Vishal. "Decoupling of Hamiltonian system with applications to linear quadratic problem." Arlington, TX : University of Texas at Arlington, 2007. http://hdl.handle.net/10106/905.
Full textBowles, Mark Nicholas. "A stability result for the lunar three body problem." Thesis, University of Warwick, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367149.
Full textJones, Billy Darwin. "Light-front Hamiltonian approach to the bound-state problem in quantum electrodynamics /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487946103569513.
Full textNASCIMENTO, Francisco José dos Santos. "Estabilidade Linear no Problema de Robe." Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1309.
Full textMade available in DSpace on 2017-04-19T13:09:32Z (GMT). No. of bitstreams: 1 Francisco José dos Santos Nascimento.pdf: 743351 bytes, checksum: 997f8a5009a3bbc979a7206041daf583 (MD5) Previous issue date: 2017-02-17
CAPES
In this work, we discuss the article The Existence and Stability of Equilibrium Points in the Robe Restricted Three-Body Probem due to Hallan and Rana. For this we present some basic definitions and results abut Hamiltonian systems such as equilibrium stability of linear Hamiltonian systems. We set out the restricted problem of the three bodies and show some classic results of the problem. Finally we present the Robe’s problem and discuss the main results using Hamiltonian systems theory.
Nesse trabalho, dissertamos sobre o artigo \The Existence and Stability of Equilibrium Points in the Robe Restricted Three-Body Probem" devido a Hallan e Rana. Para isso apresentamos definições e resultados básicos sobre sistemas Hamiltonianos tais como estabilidade de equilíbrios de sistemas Hamiltonianos lineares. Enunciamos o problema restrito dos três corpos e mostramos alguns resultados clássicos do problema. Por fim apresentamos o problema de Robe e discutimos os principais resultados usando a teoria de sistemas Hamiltonianos.
Barrow-Green, June. "Poincaré and the three body problem." n.p, 1993. http://ethos.bl.uk/.
Full textBooks on the topic "Hamiltonian Problem"
Borkar, Vivek S., Vladimir Ejov, Jerzy A. Filar, and Giang T. Nguyen. Hamiltonian Cycle Problem and Markov Chains. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3232-6.
Full textSuris, Yuri B. The Problem of Integrable Discretization: Hamiltonian Approach. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8016-9.
Full textSuris, Yuri B. The Problem of Integrable Discretization: Hamiltonian Approach. Basel: Birkhäuser Basel, 2003.
Find full textNeumann systems for the algebraic AKNS problem. Providence, RI: American Mathematical Society, 1992.
Find full textBryuno, Aleksandr D. The restricted 3-body problem: Plane periodic orbits. New York: W.de Gruyter, 1994.
Find full textThe restricted 3-body problem: Plane periodic orbits. New York: W. de Gruyter, 1994.
Find full textMeyer, Kenneth R., and Daniel C. Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53691-0.
Full textMeyer, Kenneth R., and Glen R. Hall. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4073-8.
Full textMeyer, Kenneth, Glen Hall, and Dan Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-09724-4.
Full textMeyer, Kenneth R. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York, 1992.
Find full textBook chapters on the topic "Hamiltonian Problem"
Suris, Yuri B. "Hamiltonian Mechanics." In The Problem of Integrable Discretization: Hamiltonian Approach, 3–50. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8016-9_1.
Full textCelletti, Alessandra. "Librational Invariant Surfaces in the Spin-Orbit Problem." In Hamiltonian Mechanics, 229–35. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-0964-0_21.
Full textMeyer, Kenneth R., and Daniel C. Offin. "Hamiltonian Systems." In Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 29–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53691-0_2.
Full textMeyer, Kenneth, Glen Hall, and Dan Offin. "Hamiltonian Systems." In Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 1–25. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-09724-4_1.
Full textMagri, Franco. "The Hamiltonian route to Sato Grassmannian." In The Bispectral Problem, 203–9. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/crmp/014/14.
Full textMeyer, Kenneth R., and Glen R. Hall. "Linear Hamiltonian Systems." In Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 33–71. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4073-8_2.
Full textMeyer, Kenneth, Glen Hall, and Dan Offin. "Linear Hamiltonian Systems." In Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 45–68. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-09724-4_3.
Full textMielke, Alexander. "Saint-Venant's problem." In Hamiltonian and Lagrangian Flows on Center Manifolds, 121–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0097555.
Full textFaddeev, Ludwig D., and Leon A. Takhtajan. "The Riemann Problem." In Hamiltonian Methods in the Theory of Solitons, 81–185. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-69969-9_3.
Full textMeyer, Kenneth R., and Quidong Wang. "The Global Phase Structure of the Three Dimensional Isosceles Three Body Problem with Zero Energy." In Hamiltonian Dynamical Systems, 265–82. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4613-8448-9_18.
Full textConference papers on the topic "Hamiltonian Problem"
Sleegers, Joeri, Sarah Thomson, and Daan van Den Berg. "Universally Hard Hamiltonian Cycle Problem Instances." In 14th International Conference on Evolutionary Computation Theory and Applications. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0011531900003332.
Full textChailloux, Andre, and Or Sattath. "The Complexity of the Separable Hamiltonian Problem." In 2012 IEEE Conference on Computational Complexity (CCC). IEEE, 2012. http://dx.doi.org/10.1109/ccc.2012.42.
Full textDelic, N. V., S. Pelemis, and J. P. Setrajcic. "About eigen-problem of single photon Hamiltonian." In 2008 26th International Conference on Microelectronics (MIEL 2008). IEEE, 2008. http://dx.doi.org/10.1109/icmel.2008.4559240.
Full textOlmos, Ivan, Jesus A. Gonzalez, and Mauricio Osorio. "Reductions between the Subgraph Isomorphism Problem and Hamiltonian and SAT Problems." In 17th International Conference on Electronics, Communications and Computers (CONIELECOMP'07). IEEE, 2007. http://dx.doi.org/10.1109/conielecomp.2007.30.
Full textHan, S. L., and O. A. Bauchau. "On the Almansi-Michell Problem for Flexible Multibody Dynamics." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47154.
Full textMaretic, Hermina Petric, and Ante Grbic. "A heuristics approach to Hamiltonian completion problem (HCP)." In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2015. http://dx.doi.org/10.1109/mipro.2015.7160528.
Full textBenner, Peter, Volker Mehrmann, and Hongguo Xu. "A new method for the Hamiltonian eigenvalue problem." In 1997 European Control Conference (ECC). IEEE, 1997. http://dx.doi.org/10.23919/ecc.1997.7082590.
Full textSleegers, Joeri, and Daan van den Berg. "Looking for the Hardest Hamiltonian Cycle Problem Instances." In 12th International Conference on Evolutionary Computation Theory and Applications. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0010066900400048.
Full textChonghui Sun, Zhi Wang, Xiao Gong, Qiang Li, Chongqing Wu, Xiaojia Song, and Yansi Le. "Solving the Hamiltonian path problem using optical fiber network." In 2016 15th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2016. http://dx.doi.org/10.1109/icocn.2016.7875757.
Full textIshii, K., A. Fujiwara, and H. Tagawa. "Asynchronous P systems for SAT and Hamiltonian cycle problem." In 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC 2010). IEEE, 2010. http://dx.doi.org/10.1109/nabic.2010.5716305.
Full textReports on the topic "Hamiltonian Problem"
Tessarotto, M., Lin Jin Zheng, and J. L. Johnson. Hamiltonian approach to the magnetostatic equilibrium problem. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/10115867.
Full textKyuldjiev, Assen, Vladimir Gerdjikov, and Giuseppe Marmo. On Superintegrability of The Manev Problem and its Real Hamiltonian Form. GIQ, 2012. http://dx.doi.org/10.7546/giq-6-2005-262-275.
Full textKyuldjiev, Assen, Vladimir Gerdjikov, and Giuseppe Marmo. On the Symmetries of the Manev Problem and Its Real Hamiltonian Form. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-221-233.
Full textMiller, D. L., J. F. Pekny, and G. L. Thompson. AN Exact Algorithm for Finding Undirected Hamiltonian Cycles Based on a Two-Matching Problem Relaxation. Fort Belvoir, VA: Defense Technical Information Center, March 1991. http://dx.doi.org/10.21236/ada237241.
Full textKandrup, H. E., and P. J. Morrison. Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10120708.
Full textKandrup, H. E., and P. J. Morrison. Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6789042.
Full textLibura, Marek. Sensitivity Analysis for Shortest Hamiltonian Path and Traveling Salesman Problems. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada197167.
Full text