Academic literature on the topic 'Hamiltonian equivalence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hamiltonian equivalence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hamiltonian equivalence"
Qian, Jing, Yun Zeng, Li Xiang Zhang, and Tian Mao Xu. "Analysis on Equivalence between Transfer Function and Equivalent Circuit Simulation in General Hamiltonian Modeling." Applied Mechanics and Materials 204-208 (October 2012): 4896–99. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4896.
Full textNikitin, A. G., and V. V. Tretynyk. "Parasupersymmetries and Non-Lie Constants of Motion for Two-Particle Equations." International Journal of Modern Physics A 12, no. 24 (September 30, 1997): 4369–86. http://dx.doi.org/10.1142/s0217751x97002371.
Full textDERIGLAZOV, A. A., W. OLIVEIRA, and G. OLIVEIRA-NETO. "EQUIVALENCE BETWEEN DIFFERENT CLASSICAL TREATMENTS OF THE O(N) NONLINEAR SIGMA MODEL AND THEIR FUNCTIONAL SCHRÖDINGER EQUATIONS." International Journal of Modern Physics A 18, no. 05 (February 20, 2003): 755–66. http://dx.doi.org/10.1142/s0217751x03013867.
Full textBalajany, Hamideh, and Mohammad Mehrafarin. "Geometric phase of cosmological scalar and tensor perturbations in f(R) gravity." Modern Physics Letters A 33, no. 14 (May 10, 2018): 1850077. http://dx.doi.org/10.1142/s0217732318500773.
Full textM, Nandakumar, and K. S. Subrahamanian Moosath. "Rough Liouville Equivalence of Integrable Hamiltonian Systems." Advances in Dynamical Systems and Applications 15, no. 2 (December 22, 2020): 153–69. http://dx.doi.org/10.37622/adsa/15.2.2020.153-169.
Full textNirov, Kh S., and A. V. Razumov. "Equivalence between Lagrangian and Hamiltonian BRST formalisms." Journal of Mathematical Physics 34, no. 9 (September 1993): 3933–53. http://dx.doi.org/10.1063/1.530410.
Full textMartynchuk, N. N. "Semi-local Liouville equivalence of complex Hamiltonian systems defined by rational Hamiltonian." Topology and its Applications 191 (August 2015): 119–30. http://dx.doi.org/10.1016/j.topol.2015.05.090.
Full textAMICO, LUIGI. "ALGEBRAIC EQUIVALENCE BETWEEN CERTAIN MODELS FOR SUPERFLUID–INSULATOR TRANSITION." Modern Physics Letters B 14, no. 21 (September 10, 2000): 759–66. http://dx.doi.org/10.1142/s0217984900000963.
Full textCheng, Daizhan, Alessandro Astolfi, and Romeo Ortega. "On feedback equivalence to port controlled Hamiltonian systems." Systems & Control Letters 54, no. 9 (September 2005): 911–17. http://dx.doi.org/10.1016/j.sysconle.2005.02.005.
Full textSalat, A. "Hamiltonian Approach to Magnetic Fields with Toroidal Surfaces." Zeitschrift für Naturforschung A 40, no. 10 (October 1, 1985): 959–67. http://dx.doi.org/10.1515/zna-1985-1001.
Full textDissertations / Theses on the topic "Hamiltonian equivalence"
Bergougnoux, Benjamin. "Matrix decompositions and algorithmic applications to (hyper)graphs." Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC025/document.
Full textIn the last decades, considerable efforts have been spent to characterize what makes NP-hard problems tractable. A successful approach in this line of research is the theory of parameterized complexity introduced by Downey and Fellows in the nineties.In this framework, the complexity of a problem is not measured only in terms of the input size, but also in terms of a parameter on the input.One of the most well-studied parameters is tree-width, a graph parameter which measures how close a graph is to the topological structure of a tree.It appears that tree-width has numerous structural properties and algorithmic applications.However, only sparse graph classes can have bounded tree-width.But, many NP-hard problems are tractable on dense graph classes.Most of the time, this tractability can be explained by the ability of these graphs to be recursively decomposable along vertex bipartitions $(A,B)$ where the adjacency between $A$ and $B$ is simple to describe.A lot of graph parameters -- called width measures -- have been defined to characterize this ability, the most remarkable ones are certainly clique-width, rank-width, and mim-width.In this thesis, we study the algorithmic properties of these width measures.We provide a framework that generalizes and simplifies the tools developed for tree-width and for problems with a constraint of acyclicity or connectivity such as Connected Vertex Cover, Connected Dominating Set, Feedback Vertex Set, etc.For all these problems, we obtain $2^{O(k)}\cdot n^{O(1)}$, $2^{O(k \log(k))}\cdot n^{O(1)}$, $2^{O(k^2)}\cdot n^{O(1)}$ and $n^{O(k)}$ time algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and mim-width.We also prove that there exists an algorithm solving Hamiltonian Cycle in time $n^{O(k)}$, when a clique-width decomposition of width $k$ is given.Finally, we prove that we can count in polynomial time the minimal transversals of $\beta$-acyclic hypergraphs and the minimal dominating sets of strongly chordal graphs.All these results offer promising perspectives towards a generalization of width measures and their algorithmic applications
Seewald, Nadiane Cristina Cassol [UNESP]. "Método do hamiltoniano termodinamicamente equivalente para sistemas de muitos corpos." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/102540.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O objetivo da Tese é investigar a aplicabilidade e propor extensões do método do hamiltoniano termodinamicamente equivalente (MHTE) para sistemas de muitos corpos descritos por uma teoria de campos. Historicamente, o MHTE tem sua origem na teoria quântica de muitos corpos para descrever o fenômeno da supercondutividade. O método consiste na observação de que o hamiltoniano de um sistema pode ser diagonalizado exatamente através de uma transformação unitária quando um número finito de momentos transferidos que contribuem para a interação é levado em conta no limite termodinâmico. Essa transformação unitária depende explicitamente de funções de gap que podem ser determinadas através do método variacional de Gibbs. Na presente Tese, extensões do método são feitas visando aplicações em sistemas de muitos corpos em diferentes situações, tais como: transições de fase estáaticas, evolução temporal de parâmetros de ordem descrita por equações dinâmicas estocásticas do tipo Ginzburg-Landau-Langevin (GLL), teorias quânticas de campos escalares relativísticos e teorias de muitos corpos para sistemas fermiônicos não relativísticos. Mostra-se, em particular, que o MHTE é um esquema de aproximação sistemático e controlável que permite incorporar acoplamentos de componentes de Fourier de parâmetros de ordem além do modo zero, da mesma forma que em teorias quânticas relativísticas ou não relativísticas ele incorpora correlações não perturbativas entre as partículas além daquelas levadas em conta pelas tradicionais aproximações de campo médio. Métodos são desenvolvidos para obtermos soluções numéricas explícitas com o objetivo de avaliar a aplicabilidade do MHTE em alguns casos específicos. Particular atenção é dedicada ao controle de divergências de Rayleigh-Jeans nas simulações numéricas de equações de GLL
The general objective of the Thesis is to apply the Method of the Thermodynamically Equivalent Hamiltonian (MTEH) to many-body systems described by a field theory. Historically, the MTEH has its origins in the quantum theory of manybody systems to describe the phenomenon of superconductivity. The method is based on the observation that the Hamiltonian of the system can be diagonalized exactly with a unitary transformation when a finite number of transfer momenta of the interaction are taken into account in the thermodynamic limit. This unitary transformation depends explicitly on gap functions that can be determined with the use of the Gibbs variational principle. In the present Thesis, extensions of the method are made envisaging applications in many-body systems in different situations, like: static phase transitions, time evolution of order parameters described by dynamic stochastic Ginzburg-Landau-Langevin equations, relativistic quantum scalar field theories, and many-body theories for nonrelativistic fermionic systems. It is shown that the MTEH is a systematic and controllable approximation scheme that in the theory of phase transitions allows to incorporate Fourier modes of the order parameter beyond the zero mode, in the same way that in the relativistic and nonrelativistic theories it incorporates particle nonperturbative correlations beyond those taken into account by the traditional mean field approximation. Methods are developed to obtain explicit numerical solutions with the aim to assess the applicability of the MTEH in specific situations. Particular attention is devoted to the control of Rayleigh-Jeans ultraviolet divergences in the numerical simulations of Ginzburg-Landau-Langevin equations
Seewald, Nadiane Cristina Cassol. "Método do hamiltoniano termodinamicamente equivalente para sistemas de muitos corpos /." São Paulo, 2012. http://hdl.handle.net/11449/102540.
Full textBanca: Marcus Benghi Pinto
Banca: Ney Lemke
Banca: Sandra dos Santos Padula
Banca: Yogiro Hama
Resumo: O objetivo da Tese é investigar a aplicabilidade e propor extensões do método do hamiltoniano termodinamicamente equivalente (MHTE) para sistemas de muitos corpos descritos por uma teoria de campos. Historicamente, o MHTE tem sua origem na teoria quântica de muitos corpos para descrever o fenômeno da supercondutividade. O método consiste na observação de que o hamiltoniano de um sistema pode ser diagonalizado exatamente através de uma transformação unitária quando um número finito de momentos transferidos que contribuem para a interação é levado em conta no limite termodinâmico. Essa transformação unitária depende explicitamente de funções de gap que podem ser determinadas através do método variacional de Gibbs. Na presente Tese, extensões do método são feitas visando aplicações em sistemas de muitos corpos em diferentes situações, tais como: transições de fase estáaticas, evolução temporal de parâmetros de ordem descrita por equações dinâmicas estocásticas do tipo Ginzburg-Landau-Langevin (GLL), teorias quânticas de campos escalares relativísticos e teorias de muitos corpos para sistemas fermiônicos não relativísticos. Mostra-se, em particular, que o MHTE é um esquema de aproximação sistemático e controlável que permite incorporar acoplamentos de componentes de Fourier de parâmetros de ordem além do modo zero, da mesma forma que em teorias quânticas relativísticas ou não relativísticas ele incorpora correlações não perturbativas entre as partículas além daquelas levadas em conta pelas tradicionais aproximações de campo médio. Métodos são desenvolvidos para obtermos soluções numéricas explícitas com o objetivo de avaliar a aplicabilidade do MHTE em alguns casos específicos. Particular atenção é dedicada ao controle de divergências de Rayleigh-Jeans nas simulações numéricas de equações de GLL
Abstract: The general objective of the Thesis is to apply the Method of the Thermodynamically Equivalent Hamiltonian (MTEH) to many-body systems described by a field theory. Historically, the MTEH has its origins in the quantum theory of manybody systems to describe the phenomenon of superconductivity. The method is based on the observation that the Hamiltonian of the system can be diagonalized exactly with a unitary transformation when a finite number of transfer momenta of the interaction are taken into account in the thermodynamic limit. This unitary transformation depends explicitly on gap functions that can be determined with the use of the Gibbs variational principle. In the present Thesis, extensions of the method are made envisaging applications in many-body systems in different situations, like: static phase transitions, time evolution of order parameters described by dynamic stochastic Ginzburg-Landau-Langevin equations, relativistic quantum scalar field theories, and many-body theories for nonrelativistic fermionic systems. It is shown that the MTEH is a systematic and controllable approximation scheme that in the theory of phase transitions allows to incorporate Fourier modes of the order parameter beyond the zero mode, in the same way that in the relativistic and nonrelativistic theories it incorporates particle nonperturbative correlations beyond those taken into account by the traditional mean field approximation. Methods are developed to obtain explicit numerical solutions with the aim to assess the applicability of the MTEH in specific situations. Particular attention is devoted to the control of Rayleigh-Jeans ultraviolet divergences in the numerical simulations of Ginzburg-Landau-Langevin equations
Doutor
Veglia, Luca. "Multisymplectic formalism for theories of super-fields and non-equivalent symplectic structures on the covariant phase space." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC303/document.
Full textThe Calculus of Variations and its geometric interpretation always played a key role in Mathematical Physics, either through the Lagrangian formalism, or through the Hamiltonian equations.The multisymplectic formalism allows a finite dimensional geometric description of classical field theories seen from an Hamiltonian point of view. Multisymplectic geometry plays the same role played by symplectic geometry in the description of classical Hamiltonian mechanics. Moreover the multisymplectic approach provides a tool for building a symplectic structure on the space of solutions of the field theory and for investigating it.In this thesis I use the multisymplectic formalism to build first order field theories and I hope to give two main original contributions:– I show that, in some situations, the symplectic structure on the covariant phase space may indeed depend from the choice of splitting of spacetime in space and time;– I extend the multisymplectic formalism to superfield theories.As a "byproduct", I present another contribution:– I define fractional forms on supermanifolds with their relative Cartan Calculus. These fractional forms are useful to build the multisymplectic formalism for superfield theories.The main ingredients of the formalism I use are: the finite dimensional multimomenta phase space P and its extension to super field theories, which I give; the Lagrangian superform; the super-Hamiltonian, the multisymplectic superform.In my thesis I also prove a Comparison Theorem which allows to clarify the relations existing between the so called components theories and the so called superfield theories. I explain how the supermultisymplectic formalism can be used to define super Poisson brackets for super fields. I give a "super" version of the first Noether theorem valid for the action of supergroups of symmetry and I propose a “super” extension of the multimomentum map.Finally I present some examples showing how all the theory can be implemented: I study the free superparticle and the 3-dimensional sigma-model
Cochran, Caroline. "THE EQUIVALENCE PROBLEM FOR ORTHOGONALLY SEPARABLE WEBS ON SPACES OF CONSTANT CURVATURE." 2011. http://hdl.handle.net/10222/14191.
Full textTORTORELLA, ALFONSO GIUSEPPE. "Deformations of coisotropic submanifolds in Jacobi manifolds." Doctoral thesis, 2017. http://hdl.handle.net/2158/1077777.
Full textBooks on the topic "Hamiltonian equivalence"
Mercati, Flavio. Hamiltonian Formulation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789475.003.0006.
Full textMercati, Flavio. York’s Solution to the Initial-Value Problem. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789475.003.0008.
Full textZeitlin, Vladimir. Rotating Shallow-Water model with Horizontal Density and/or Temperature Gradients. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0014.
Full textHoring, Norman J. Morgenstern. Q. M. Pictures; Heisenberg Equation; Linear Response; Superoperators and Non-Markovian Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0003.
Full textBook chapters on the topic "Hamiltonian equivalence"
"Maupertuis Principle and Geodesic Equivalence." In Integrable Hamiltonian Systems. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426.ch15.
Full text"Maupertuis Principle and Geodesic Equivalence." In Integrable Hamiltonian Systems, 663–702. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426-19.
Full text"Liouville Equivalence of Integrable Systems with Two Degrees of Freedom." In Integrable Hamiltonian Systems. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426.ch4.
Full text"Rough Liouville Equivalence of Integrable Systems with Two Degrees of Freedom." In Integrable Hamiltonian Systems. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426.ch3.
Full text"Rough Liouville Equivalence of Integrable Systems with Two Degrees of Freedom." In Integrable Hamiltonian Systems, 145–74. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426-7.
Full textVadim, Kaloshin, and Zhang Ke. "Forcing equivalence between kissing cylinders." In Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom, 133–44. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202525.003.0012.
Full textIliopoulos, J., and T. N. Tomaras. "Elements of Classical Field Theory." In Elementary Particle Physics, 24–34. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844200.003.0003.
Full textVadim, Kaloshin, and Zhang Ke. "Perturbative weak KAM theory." In Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom, 66–76. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202525.003.0007.
Full textVadim, Kaloshin, and Zhang Ke. "Weak KAM Theory and Forcing Equivalence." In Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom, 55–65. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202525.003.0006.
Full textCina, Jeffrey A. "Short-pulse electronic absorption." In Getting Started on Time-Resolved Molecular Spectroscopy, 1–10. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780199590315.003.0001.
Full textConference papers on the topic "Hamiltonian equivalence"
Hudon, N., K. Hoffner, and M. Guay. "Equivalence to dissipative Hamiltonian realization." In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739446.
Full textStojanović, S. D., M. V. Pavkov-Hrvojević, and M. J. Škrinjar. "The Equivalence of Transfer Matrix Method and Boson Hamiltonian Approach Calculations in Ferromagnetic Superlattices." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733399.
Full textBae, D. S., and Y. S. Won. "A Hamiltonian Equation of Motion for Realtime Vehicle Simulation." In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0062.
Full textTian, Liguang, and H. J. Carmichael. "Broadband excitation of the Jaynes–Cummings molecule." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.ws3.
Full textPetrzela, Jiri. "Equivalent circuit realizations of fourth-order chaotic Hamiltonian system." In 2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE, 2016. http://dx.doi.org/10.1109/radioelek.2016.7477353.
Full textButcher, Eric A., and S. C. Sinha. "Canonical Perturbation of a Fast Time-Periodic Hamiltonian via Liapunov-Floquet Transformation." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4107.
Full textJannson, Tomasz, and Joel Ng. "Nonimaging optics and the Liouville theorem in the XUV region." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.thpo24.
Full textRobinett, Rush D., and David G. Wilson. "Decentralized Exergy/Entropy Thermodynamic Control for Collective Robotic Systems." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43691.
Full textGroner, Peter. "THE INTRIGUING Fbc(PbPc+PcPb) TERM IN THE INTERACTION HAMILTONIAN FOR TUNNELING BETWEEN EQUIVALENT GAUCHE CONFORMERS." In 2022 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2022. http://dx.doi.org/10.15278/isms.2022.tf01.
Full textOrth, K., G. Grad, and J. Friedrich. "Nuclear spin conversion relaxation processes in dimethyl-s-tetrazine doped n-octane measured by spectral hole burning techniques." In Spectral Hole-Burning and Luminescence Line Narrowing: Science and Applications. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/shbl.1992.wa5.
Full text