Dissertations / Theses on the topic '(halogenated) volatile organic compounds'

To see the other types of publications on this topic, follow the link: (halogenated) volatile organic compounds.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic '(halogenated) volatile organic compounds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Raimund, Stefan. "Sources and fluxes of volatile halogenated organic compounds in highly productive marine areas." Brest, 2010. http://www.theses.fr/2010BRES2022.

Full text
Abstract:
Les Composés Halogénés Organiques Volatils (VHOC) sont des composès qui influencent largement la chimie atmosphérique et qui ont des sources naturelles et anthropiques. La production biogénique, les sources marines et les flux à l’interface air-mer de ces composés sont encore peu connues et ont fait l’objet de cette étude. Un système analytique et de nouveaux systèmes de prélèvement ont été développés. Lors d’un travail au laboratoire, il a été démontré que la communication plante-plante orchestre la formation des VHOC : une algue pré-traitée réagit moins intensément après réception d’un signal oligoguluronate. Ceci pourrait être bénéfique pour l’algue en termes d’efficacité de coûts. Les distributions et les flux air-mer de VHOC ont été étudiés dans deux systèmes marins très productifs : une région d’upwelling dominée par les dïatomées et une région côtière en régime mégatidal enrichie en nutriments et riche en macroalgues. Les principaux résultats ont montré que (1) les zones d’upwelling ne sont pas caractérisées par de fortes teneurs en VHOC, (2) dans les zones influencées par la marée, la marée a des effets significatifs sur la formation des composés iodés et bromés mais n’influence pas la formation des composés chlorés (à l’exception du chloroforme qui montre une légère dépendance dans l’upwelhng ibérique) (3) les composés bromés ont des sources côtières importantes et localisées (4) les composés iodés ont des sources qui ne sont pas strictement liées aux macroalgues (5) que les principales sources de composés chlorés auraient une origine anthropique et (6) la formation des halocarbonés et leurs flux vers l’atmosphère montrent des variations saisonnières marquées
Volatile halogenated organic compounds (VHOCs) constitute a large group of environmental gases that can influence atmospheric chemistry, and have natural and anthropogenlc sources, Marine sources and fluxes, and biogenic production are poorly investigated. During this thesis we designed an analytical system and sampling devices for measurements of halocarbons which showed high performance, both at sea and during laboratory analyses. In a laboratory experiment it could be demonstrated that plant-plant communication orchestrates the formation of VHOCs: “forewarned” algae react less intensely after perception of an oligoguluronates signal. This might be beneficial for the algae in terms of cost efficiency. Two highly productive marine areas were studied for VHOC distribution and air-sea fluxes: a diatom dominated upwelling region and a nutrient enriched coastal region with an important macroalgae cover and a mega-tidal regime. The main findings are (1) upwelling regions are not characterized by high internal VHOC formallon, (2) in tidal-lnfiuenced marine areas tides have significant effects on the formation of iodo- and bromocarbons but no influence on the formation of chlorocarbons (with the exception of chloroform, which showed minor dependence on tides in the Iberian upwelling), (3) bromocarbons have strong and highly localized coastal sources (4) iodocarbons have sources that are not strictly related to macroalgae, (5) main sources of chlorocarbons might have an anthropogenic origin and (6) formation of halocarbons and their fluxes to the atmosphere show a marked seasonality
APA, Harvard, Vancouver, ISO, and other styles
2

Wevill, David John. "Atmospheric and marine measurements of volatile halogenated organic compounds in coastal and open ocean environments." Thesis, University of York, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Palmer, Carl James. "A study of the distribution and origin of volatile halogenated organic compounds in troposphere and oceans." Thesis, University of York, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, Madelyn M. "Cometabolic Degradation of Halogenated Aliphatic Hydrocarbons by Aerobic Microorganisms Naturally Associated with Wetland Plant Roots." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1341854406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lecharlier, Aurore. "Caractérisation des composés trace dans le biogaz et biométhane : développement d'une méthode d'échantillonnage, de préconcentration in situ et d'analyse." Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3008.

Full text
Abstract:
Afin d’accroître les connaissances sur les composés traces présents dans les biogaz et biométhane et de garantir l’intégration durable de ces gaz dans le mix énergétique européen, une chaîne analytique complète a été développée dont un élément central est un dispositif d’échantillonnage de terrain permettant la préconcentration directe in situ des composés traces en prélevant ces gaz à leur pression actuelle (≤ 200 bara). Les composés traces ciblés dans ce travail incluent : alcanes (linéaires, cycliques, polycycliques), aromatiques, terpènes, alcènes, espèces organiques halogénées, espèces organiques oxygénées (alcools, aldéhydes, esters, éthers, cétones), siloxanes, composés soufrés organiques et inorganiques.L’état de l’art des techniques de prélèvement de gaz et de préconcentration pour la détermination de composés traces dans des matrices gazeuses a premièrement été réalisé. Sur base de cette étude, il fut choisi d’effectuer la préconcentration sur des tubes d’adsorbants multi-lits (TAM) assemblés manuellement. Le système de préconcentration fut élaboré et optimisé au laboratoire en sélectionnant des adsorbants commerciaux; les procédures d’assemblage et de conditionnement des nouveaux TAM furent établies; l’efficacité de quatre configurations de TAM à adsorber et libérer des composés traces ciblés fut testée en utilisant des mélanges de gaz synthétiques certifiés contenant des composés à l’état de traces (1 ppmmol) dans une matrice N2 ou CH4. Les analytes préconcentrés sur les TAM sont récupérés par désorption thermique (DT) des tubes au moyen d’un nouveau prototype de DT pour être analysés par chromatographie en phase gazeuse (CG) couplée à la spectrométrie de masse (SM).Deuxièmement, la méthode analytique et le prototype de DT ont été validés. Il fut démontré que le pouvoir résolutif du prototype de DT était plus élevé que celui obtenu par d’autres techniques de préconcentration ou d’autres méthodes d’injection en CG, telles que la microextraction en phase solide ou l’injection directe de gaz. Par ailleurs, les paramètres de CG-SM furent optimisés pour détecter le large spectre de composés traces potentiellement présents dans le biogaz et biométhane.Troisièmement, un prototype haute-pression innovant fut évalué, permettant le prélèvement de gaz pressurisés (≤ 200 bara) à travers les TAM pour la préconcentration directe et sous haute-pression des composés traces présents dans ces gaz. Ce prototype fut validé au laboratoire au moyen de mélanges de gaz synthétiques pressurisés avant d’être utilisé sur le terrain pour prélever du biométhane à 40 bara au niveau d’un poste d’injection dans le réseau de gaz naturel.Ensuite, la chaîne d’échantillonnage fut assemblée pour mener 6 campagnes de prélèvement durant lesquelles 6 flux différents de biogaz et biométhane furent prélevés sur une installation de stockage de déchets non dangereux et deux sites de méthanisation valorisant divers intrants. Les composés traces de ces gaz furent qualitativement déterminés via la méthode de DT-CG-SM élaborée. En un unique prélèvement et utilisant des volumes de gaz réduits (0.5 – 2 LN), un large spectre de composés traces issus de diverses familles chimiques (alcools, aldéhydes, alcènes, aromatiques, alcanes, esters, éthers, halogénés, cétones, soufrés, siloxanes et terpènes) furent identifiés. Des variations de composition en composés traces furent observées dans les différents gaz et les corrélations potentielles entre intrants, procédés de traitement des gaz et composés traces identifiés, furent discutées. La génération du mono-terpène p-cymène et d’autres terpènes dans les méthaniseurs digérant surtout des résidus alimentaires, a notamment été mise en évidence. La procédure de préconcentration haute-pression in situ développée dans ce travail peut certainement contribuer à faciliter les opérations de prélèvements de gaz sur le terrain pour déterminer les composés traces dans des matrices gazeuses telles que le biogaz et le biométhane
In pursuance of enhancing knowledge on biogas and biomethane’s trace compounds to help guarantee their sustainable integration in today’s European energy mix, a field sampling set-up enabling direct in situ preconcentration of non-metallic trace compounds in such gas samples at their pipe working pressure (up to 200 bara) was developed. Non-metallic trace compounds targeted in this work included alkanes (linear, cyclic, polycyclic), aromatics, terpenes, alkenes, halogenated organic species, oxygenated organic species (alcohols, aldehydes, esters, furans and ethers, ketones), siloxanes, organic and inorganic Sulphur-compounds. Firstly, state-of-the-art gas sampling and preconcentration techniques for the determination of trace compounds in gaseous matrices were reviewed. Based on this review, preconcentration was chosen to be performed on self-assembled multibed adsorbent tubes (MAT). The preconcentration system was elaborated and optimized in the laboratory: convenient commercial adsorbents were selected; procedures for the assembly and conditioning of new MAT were established; four MAT configurations were tested on their efficiency in adsorbing and releasing targeted trace compounds using certified synthetic gas mixtures containing targeted species at trace concentrations (1 ppmmol) in CH4 or N2 matrices. Analytes preconcentrated on MAT were recovered for analysis by thermal desorption (TD) of the tubes using a new TD prototype followed by gas chromatography (GC) hyphenated with mass spectrometry (MS) (TD-GC-MS). Secondly, the analytical method, and in particular the new TD prototype, was validated. The chromatographic resolution power of the new TD prototype was proved to be higher than that obtained from other well established preconcentration or GC-injection methods such as solid phase microextraction or direct headspace gas injection. Besides, GC-MS parameters were optimized to detect the broad range of trace compounds potentially found in biogas and biomethane.Thirdly, the use of a novel high-pressure tube sampling (HPTS) prototype was evaluated for the circulation of pressurized gases (up to 200 bara) through MAT for the direct high-pressure preconcentration of trace compounds from such gases. The HPTS was first validated in the laboratory using pressurized certified synthetic gas mixtures, and then used on field to sample compressed biomethane at a natural gas grid injection station at 40 bara.Subsequently, the field sampling chain was set-up and 6 field sampling campaigns were conducted where 6 different streams of landfill gas, biogas and biomethane were collected at a landfill plant and two anaerobic digestion plants treating diverse feedstocks. Trace compounds were qualitatively determined in all gas samples via the developed TD-GC-MS method. In a single sampling run and using limited gas volumes ranging 0.5 – 2 LN, a wide range of trace compounds in a variety of chemical families (alcohols, aldehydes, alkenes, aromatics, alkanes (linear, cyclic and polycyclic), esters, furans and ethers, halogenated species, ketones, Sulphur-compounds, siloxanes and terpenes) were identified. Variations in trace compounds composition were observed in the different gases sampled and potential correlations between feedstocks nature, implemented gas treatment processes and trace compounds determined were discussed. In particular, the substantial generation of the mono-terpene p-cymene and of other terpenes was evidenced for anaerobic digestion plants treating principally food-wastes. It is believed the shortened and high-pressure-proof field preconcentration procedure developed in this work can contribute facilitating field sampling operations for the determination of trace compounds in complex gas matrices such as biogas and biomethane
APA, Harvard, Vancouver, ISO, and other styles
6

Greenacre, Caroline M. "Tropospheric chemistry of halogenated organic compounds." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kinnison, David J. A. "Tropospheric chemistry of halogenated organic compounds." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Allpress, James David. "Microbial transformation of halogenated organic compounds." Thesis, Manchester Metropolitan University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ojala, S. (Satu). "Catalytic oxidation of volatile organic compounds and malodorous organic compounds." Doctoral thesis, University of Oulu, 2005. http://urn.fi/urn:isbn:9514278704.

Full text
Abstract:
Abstract This thesis describes efforts made on the development of an existing catalytic incinerator. The development work, called process characterization, consists of four general parts. These are the development of measurement methodology, the studying of construction materials, the selection of suitable catalysts and the testing of the effects of process operation conditions. The two application areas for catalytic incineration considered in this thesis are solvent emission abatement (VOC, volatile organic compounds) and chip bin emission abatement (SVOC, sulphur-containing volatile organic compounds). As a baseline, the process characterization is started with the development of measurement methodology. In general, the methodology will decrease costs and simplify the carrying out of the actual measurements and thereby make the measurement time more effective. In the methodology it is proposed that continuous total concentration measurement should be used in connection with qualitative sampling to obtain reliable measurement data. The selection of suitable construction materials for the application is very important. As shown in this thesis, the end conversions in solvent emission abatement may even be improved through the selection of the proper construction materials. In chip bin emission abatement, the problem arises from corrosive oxidation products that set limits on the construction materials used as well as on oxidation conditions. Catalyst selection is based on the following catalytic properties: activity, selectivity and durability. These catalytic properties are studied either at the laboratory or on an industrial scale. The catalytic materials tested are Pt, Pd, Pt-Pd, Cu-Mn oxides, MnO2-MgO, CuxMg(1-x)Cr2O4 and CuxCr2O4. The most important selection criteria in solvent emission abatement are proposed to be activity and selectivity. In the case of chip bin-SVOC-abatement, these are selectivity and durability. Based on these criteria, catalysts containing Cu-Mn oxides and Pt were demonstrated to be the best catalysts in VOC oxidation, and catalyst containing MnO2-MgO was shown to be best catalyst in SVOC oxidation. A study on the effect of process operation parameters (temperature, concentration and gas hourly space velocity (GHSV)) and moisture was carried out with the aid of factorial design. In VOC (n-butyl acetate) oxidation, the most influential process parameter was GHSV, which decreased the end conversion when it was increased. In SVOC (DMDS) oxidation, the effect of temperature was most significant. The end conversions increased as the temperature increased. Moisture slightly decreased the formation of by-products in n-butyl acetate oxidation. In DMDS oxidation, moisture slightly increased the end conversions at a lower temperature level (300°C). At the end of the thesis, these process parameters are also discussed from the standpoint of the catalysts' activity, selectivity and durability. Finally, proposals for process improvements are suggested.
APA, Harvard, Vancouver, ISO, and other styles
10

Ntainjua, Ndifor Edwin. "Catalytic oxidation of volatile organic compounds." Thesis, Cardiff University, 2007. http://orca.cf.ac.uk/54585/.

Full text
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are an important class of volatile organic compounds (VOCs) which pose enormous health and environmental threats. This thesis investigates different catalyst formulations for the complete oxidation of naphthalene (Np). a model PAH. Low loadings of vanadium added during the impregnation step of catalyst preparation were found to enhance the naphthalene oxidation activity of Pd-alumina and Pt- alumina catalysts while higher loadings were detrimental to the catalysts' performance. The promotional effect has been attributed to the presence of a low concentration of a particular type of vanadium species which fosters the redox behaviour of the binary system (Pd/V or Pt/V) coupled with the change in the active metal (Pd or Pt) particle size (Pd or Pt dispersion). The presence of high concentrations of crystalline V2O5 species has been suggested to account for the lower activity observed for Pd/V and Pt/V catalysts with vanadium loadings in the range of 6 - 12% and 1 - 12 % respectively. It is postulated that the mechanism of naphthalene oxidation over Pd/V differs from the mechanism of oxidation over Pt/V catalysts. The nature of support material was established to be crucial for the activity of Pt- supported catalysts for naphthalene oxidation. The Pt dispersion, metal-support interaction (MSI) and oxidation state of Pt varied as a function of the nature of support and hence resulted in differences in the Np oxidation efficiency of five Pt- supported catalysts with equal Pt loading but different supports. Low Pt dispersion (high Pt particle size), weak MSI and metallic state of Pt favoured Np oxidation. Si02 proved to be the best amongst five Pt supports investigated for Np oxidation. A variation in the preparation method and preparation conditions of ceria affected the surface area, crystallite size, oxygen defect concentration, morphology and surface reducibility of the ceria catalyst and hence the Np oxidation activity. High surface area, small crystallite size, and high oxygen defect concentration of Ce02 favoured the activity of the catalyst for Np oxidation. The best preparation methods in this study were found to be homogeneous precipitation with urea (UR) and precipitation with the carbonate (CR). Optimum preparation conditions for ceria (UR) were established and a highly active nano-crystalline ceria catalyst for Np oxidation was derived. The addition of low and high loadings of Pt during the precipitation of this ceria (UR) catalyst resulted in less active naphthalene oxidation catalysts. The drop in activity of ceria with Pt doping has been attributed to a strong metal support interaction between Pt and ceria which limits the ease at which lattice oxygen is consumed in the Mars-Van krevelen redox cycle.
APA, Harvard, Vancouver, ISO, and other styles
11

Carss, Steven Andrew. "High-resolution NMR studies of solid halogenated organic compounds." Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5208/.

Full text
Abstract:
This thesis is a study of solid halogenated organic compounds by Nuclear Magnetic Resonance Spectroscopy (NMR) in an attempt to extract previously inaccessible information. The first part of the thesis is concerned with three fluorinated steroids, studied by observing (^1)H, (^13)C and (^19)F nuclei. A number of experimental techniques are employed to verify solution-state and solid-state spectral assignments, and spectral anomalies are discussed. Both proton-coupled and proton-decoupled (^19)F solid-state spectra, recorded using specially designed spectrometer hardware, are presented. The huge gain in resolution afforded by the implementation of proton decoupling allows static and MAS spectra to yield previously inaccessible information pertaining to various NMR parameters of the fluorine nuclei. Advantages of (^1)H→(^19)F cross-polarisation experiments over single-pulse experiments are explained and rotational resonance, dipolar dephasing, T(_1), measurement and spin-exchange experiments are presented from which information regarding phenomena such as spin diffusion and polymorphism is gleaned. The second part of the thesis focusses on the topic of residual dipolar coupling, the transfer of quadrupolar effects to spin-1/2 nuclei via dipolar coupling and/or anisotropy m indhect coupling. Unexpected, field-dependent, multiplicities for signals in spectra of spin-1/2 nuclei are observed, which can be used to evaluate certain fundamental NMR parameters including the quadrupolar coupling constant and, m favourable cases, anisotropy in indirect coupling. The phenomenon is comprehensively studied for the (^13)C, (^35,37)Cl and (^13)C, (^79,81)Br spin-pairs in a range of solid halogenated compounds. Coupling to more than one halogen nucleus and long- range (non-bonded) coupling are considered. First-order perturbation, inverse first- order and "exact" theories, that allow the multiplet line positions to be predicted, are introduced and their results are subsequently compared to the experimentally observed the positions. Rapid molecular motion is shown to negate the effects of residual dipolar coupling and the phenomenon is analysed with the aid of NQR measurements.
APA, Harvard, Vancouver, ISO, and other styles
12

Mohran, Hossnia Saber. "Analytical and thermodynamic studies on some halogenated benzenoid compounds." Thesis, Royal Holloway, University of London, 1986. http://repository.royalholloway.ac.uk/items/6eed7444-a22e-47ac-bcc7-850e50d14fbb/1/.

Full text
Abstract:
The bromination of 2-fluorophenol, 3-fluorophenol, 4-fluorophenol, 2-fluoroaniline, 3-fluoroaniline and 4-fluoroaniline was carried out inaqueous medium using an acidified mixture of potassium bromate andpotassium bromide as a source of bromine. The chlorination of thesecompounds was carried out using sulphuryl chloride as a chlorinatingagent in chloroform or diethyl ether. Anhydrous aluminium chloridewas used as a catalyst in the chlorination of the fluoroanilines. All the reaction products obtained were analyzed by fluorine-19 nuclear magnetic resonance spectroscopy (F n.m.r. spectroscopy), gas liquid chromatography (GLC) and high-performance liquid chromatography (HPLC).The identification and the structure of these products were established by comparison with the authentic compounds. For the thermodynamic studies:-(a) The enthalpies of solution (at saturation) of 2,4,6-tribromophenol (Br3C6H2OH), 4-bromoani1ine (BrC6H4NH2), 2,6-dibromoaniline (Br2C6H3NH2) and 2,4,6-tribromoaniline (Br3C6H2NH2) in toluene and n-propanol were determined from solubility measurements. ASO1H (Br3C6H2OH) in Toluene = 33.90 kJ mol -1Aso/ (Br3C6H2OH) in n-Propanol = 24.01 kJ mol-1AS0/ (BrC6H4NH2) in Toluene = 65.94 kJ mol -1Aso1H° (BrC6H4NH2) in n-Propanol = 61.95 kJ mol -1A SO1 H0 (Br2C6H3NH2) in Toluene = 46.65 kJ mol -1 sol ' 2 6 3 2'2AgQ-jH"0 (Br2C6H3NH2) in n-Propanol = 44.93 kj mol -1Aso1H° (Br3C6H2NH2) in Toluene = 28.09 kj mol -1Aso1H° (Br3C6H2NH2) in n-Propanol = 20.22 kJ mol -1Entropies of solution, enthalpies of transfer, free energies of transfer and the entropies of transfer between the two solvents were also calculated. (b) Enthalpies of reaction of the bromination of 2-chloroaniline, 4-bromo-2-chloroaniline and 4-chloroaniline in aqueous medium (perchloric acid/sodium bromide) with aqueous bromine (sodium bromide/sodium bromate) were found using reaction calorimetry. arH0θ (2-chloroaniline. + bromine. aq) = -207.84 - 0.63 kj mol-1r aqArH° (4-bromo-2-chloroaniline,c + bromine,aq ) = -91.29 - 0.96 kJ mol -1 ArH° (4-chloroaniline,c + bromine, aq) = -189.61 - 0.90 kJ mol-1.(c) A titration calorimetric technique was used to determine the enthalpies of bromination of 2-nitroaniline and 4-nitroanle in aqueous medium (perchloric acid/sodium bromide) with aqueous bromine (sodium bromide/sodium bromate).
APA, Harvard, Vancouver, ISO, and other styles
13

Hunter, James Freeman. "Oxidation of atmospheric organic carbon : interconnecting volatile organic compounds, intermediate-volatility organic compounds, and organic aerosol." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97794.

Full text
Abstract:
Thesis: Ph. D. in Environmental Chemistry, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 101-110).
.Organic molecules have many important roles in the atmosphere, acting as climate and biogeochemical forcers, and in some cases as toxic pollutants. The lifecycle of atmospheric organic carbon is extremely complex, with reaction in multiple phases (gas, particle, aqueous) and at multiple timescales. The details of the lifecycle chemistry (especially the amount and properties of particles) have important implications for air quality, climate, and human and ecosystem health, and need to be understood better. Much of the chemical complexity and uncertainty lies in the reactions and properties of low-volatility oxidized intermediates that result from the oxidation of volatile organic precursors, and which have received comparatively little study thus far. This thesis describes three projects that link together the entire chain of oxidation (volatile to intermediate to condensed) in an effort to improve our understanding of carbon lifecycle and aerosol production. Laboratory studies of atmospherically relevant aerosol precursors show that the slow oxidation of intermediates is critical to explaining the yield and properties of aerosol under highly oxidized ("aged") conditions, and that the production of organic particles is significantly increased when intermediates are fully oxidized. This aging process is a strong function of molecular structure, and depends on aerosol concentration through the phenomenon of condensational trapping. Further laboratory studies of a series of (poly)cyclic 10 carbon alkanes show that structural effects are largely explained through fragmentation reactions, and that more generally, carbon-carbon bond scission is a ubiquitous and important reaction channel for oxidized intermediates. Finally, direct measurement of oxidized intermediate compounds in field studies shows that these compounds are abundant and important in the ambient atmosphere, with concentrations and properties in between those of volatile and particulate organic compounds. Together with other co-located measurements and complementary techniques, this enables estimates of emission, oxidation, and deposition to be constructed. The results from this thesis can be used to inform more sophisticated models of atmospheric organic carbon cycling, and to improve prediction of organic particulate matter concentrations.
by James Freeman Hunter.
Ph. D. in Environmental Chemistry
APA, Harvard, Vancouver, ISO, and other styles
14

Granström, Karin. "Emissions of volatile organic compounds from wood." Doctoral thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap, fysik och matematik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-2327.

Full text
Abstract:
The central aim of this thesis is to support the efforts to counteract certain environmental problems caused by emissions of volatile organic compounds. The purpose of this work was (1) to develop a method to establish the amount of emitted substances from dryers, (2) to determine the effect of drying medium temperature and end moisture content of the processed material on emissions of monoterpenes and other hydrocarbons, (3) to examine the emissions of monoterpenes during production of pellets, and (4) to examine the natural emissions from forests with an eye to implications for modelling. The measurement method (1) resolves the difficulties caused by diffuse emissions, and also solves the problems associated with high moisture content of the drying medium. The basic idea is to use water vapour to determine the exhaust flow, while a dry ice trap is used both to preconcentrate emitted volatile organic compounds and to determine the moisture content of the drying medium. The method as used in this paper has an uncertainty of 13% using a 95% confidence interval. Emissions from a spouted bed (2) in continuous operation drying Norway spruce sawdust at temperatures of 140°C, 170°C or 200°C was analysed with FID and GC-MS. When the sawdust end moisture content was reduced below 10%wb, emissions of terpenes and volatile organic compounds per oven dry weight increased rapidly. Increased temperature of the drying medium increased the amounts of emitted monoterpenes when sawdust moisture content was below the fibre saturation point. Examination of sawdust and wood pellets from different pellets producers (3) revealed that most of the terpene emissions happened during the drying step, with rotary dryers causing higher emissions than steam dryers. Almost all of the volatile terpenes remaining in wood after drying were released during pelleting. When sawdust with higher moisture content was used in the pellets press, the terpene emissions were increased. Terpenes emitted naturally from vegetation can have an adverse environmental impact. Factors affecting terpene emissions from tree species in Sweden were reviewed (4). Models for prediction of terpene fluxes should include not only temperature but also light intensity, seasonal variation, and a base level of herbivory and insect predation. Prediction of high concentrations of ambient terpenes demand sufficient resolution to capture emission peaks e.g. those caused by bud break.
APA, Harvard, Vancouver, ISO, and other styles
15

Grira, Asma. "Atmospheric degradation of oxygenated Volatile Organic Compounds." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S017.

Full text
Abstract:
Les composés organiques volatils oxygénés (COVO), principalement émis par des sources biogènes, jouent un rôle majeur dans la chimie de l'atmosphère, le changement climatique, l'environnement et la santé. Il a été récemment démontré que ces émissions augmentent en cas de stress biotique et/ou abiotique. Les COVO biogéniques peuvent subir une variété de réactions, tant chimiques que photolytiques, et ils sont impliqués dans la formation d'Aérosols Organiques Secondaires (AOS). Ces composés ont été détectés dans diverses régions, mais il y a très peu d’informations sur leurs processus de dégradation sous conditions troposphériques. La compréhension des mécanismes d'oxydation de ces espèces est d'un intérêt fondamental et fournit des données cruciales pour les modèles atmosphériques qui sont utilisés par les responsables politiques pour formuler et décider des stratégies d'amélioration de la qualité de l'air. Cette thèse vise à améliorer les connaissances actuelles sur le comportement de ces COVO, pour une meilleure compréhension de leur impact sur la chimie atmosphérique. Dans ce travail, nous avons présenté une étude détaillée de la dégradation atmosphérique des aldéhydes insaturés en C5-C7 et des alcools insaturés en C5-C8 par ozone, l’atome Cl et le radical OH. Les principaux objectifs étaient de mieux comprendre le mécanisme de réaction et de mettre en évidence leur potentiel à former des AOS. Pour atteindre ces objectifs, nous nous sommes concentrés sur quatres volets : (i) détermination du spectre IR et UV des aldéhydes insaturés en C5-C7, (ii) détermination de la constante de vitesse pour les systèmes COVO + Oxydant étudiés à température ambiante, (iii) identification et quantification des produits en phase gazeuse, (iv) détermination des rendements en AOS. Les études sur les produits ont été menées avec et sans ajout d'un piégeur des radicaux OH. Les expériences ont été réalisées dans huit réacteurs différents, statiques (chambres) ou dynamiques (flux), et diverses techniques analytiques ont été utilisées pour étudier les produits de réaction (FTIR, GC-FID/MS, SPME-GC/MS, HPLC, PTR-ToF-MS, SIFT-MS, PLP-LIF) et la formation de SOA (SMPS, FMPS)
Oxygenated Volatile Organic Compounds (OVOCs), mainly released from biogenic sources, play a major role in atmospheric chemistry, climate change, environment, and health. These emissions have been recently shown to increase in the case of biotic and/or abiotic stresses. Biogenic OVOCs may undergo a wide variety of reactions, both chemical and photolytic, and they contribute in the formation of Secondary Organic Aerosols (SOAs). These compounds have been detected in various areas, but little is known about their degradation processes under tropospheric conditions. Understanding the oxidation mechanisms of these species is of fundamental interest and yields crucial data for atmospheric models used by policymakers in formulating and deciding strategies for improving air quality. This dissertation aims to improve the current knowledge of those OVOCs behaviors to better understand their impact on atmospheric chemistry. This work reports a detailed study of the atmospheric degradation of C5-C7 unsaturated aldehydes and C5-C8 unsaturated alcohols by ozone, Cl atom, and OH radical. The main objectives were to better understand the reaction mechanism and to feature the SOA formation potential. To achieve these objectives, we focused on four topics: (i) determination of IR and UV spectrum of C5-C7 unsaturated aldehydes, (ii) determination of the rate constant for the studied OVOCs + Oxidant at room temperature, (iii) identification and quantification of the gas-phase products, (iv) determination of the SOA yields. The product studies were investigated both with and without adding an OH radical scavenger. Experiments were performed in eight different static (chambers) or dynamic (flow) reactors, and various analytical techniques were used to investigate the reaction products (FTIR, GC-FID/MS, SPME-GC/MS, HPLC, PTR-ToF-MS, SIFT-MS, PLP-LIF) and SOA formation (SMPS, FMPS)
APA, Harvard, Vancouver, ISO, and other styles
16

Ndamyabera, Christophe Adrien. "Porous metal-organic frameworks for sorption of volatile organic compounds." Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33877.

Full text
Abstract:
Metal-organic frameworks (MOFs) present potential for various applications such as gas sorption, gas storage, sensing, drug delivery, and catalysis. This attracts researchers to design and synthesize MOFs that can respond to a specific application. In this thesis, mixed ligands 34pba and 44pba ligands (34pba = 3-(4-pyridyl)benzoate, and 44pba = 4-(4-pyridyl)benzoate) and Co2+ metal salts were used to synthesize porous MOFs {[Co(34pba)(44pba)]·DMF}n (1) and {[Co(34pba)(44pba)]·(C3H6O)}n (2), with DMF = N,N'-dimethylformamide and C3H6O = acetone through solvothermal reaction. These two relate to each other through hinge-like expansion or contraction of the guest-accessible void. The use of Zn2+ as a metal ion led to an isostructural MOFs [Zn(34pba)(44pba)]·DMF}n (3) of 1. Using 34pba as a single ligand and Cu2+ as the metal ion led to the formation of a 2D [(Cu(34pba)2]·DMF) (4) while a little variation of solvent mixture resulted in a 3D {[CuCl2(34pba)2]∙solvent}n (7) structures. The functionalized ligands 44paba and 34paba (34paba = 3-(pyridyn-4-ylmethyl)aminobenzoate, 44paba = 4-(pyridyn-4- ylmethyl)aminobenzoate) were used with Cu2+ centre to prepare [Cu(44paba)·(H2O)·(DMF)]n (5) and {[Cu3(34paba)5(H2O)2]·(DMF)2}n (6), both of which are 1D structures. The activated MOFs 1d and 3d from (1 and 2) were used for the adsorption of volatile organic compounds (VOCs) and gases. In all tested guest molecules, there was higher sorption capacity in 1d which could be attributed to some gate opening process occurring which does not occur in 3d. Some effects responding to the sorption such as the change of colour in 1d were characterized. This colour change may be associated with the d-d, metal to ligand charge transfer, or π to π* transitions in coordination complex. Crystal structures and their stability, sorption properties and selectivity were characterized by single crystal X-ray diffraction, thermogravimetric analysis, differential scanning, hot stage microscopy, powder X-ray diffraction, infrared spectroscopy, and proton viii nuclear magnetic resonance (1H NMR) analysis. This thesis also reports the effect of methanol on discrete complexes of cis-dichloro-bis(ethylenediamine)cobalt(III) chloride (Coen) that led to the formation of a new crystal structure upon the removal of the water of hydration. The lattice energies calculated prove that Coen is more stable to allow a quick reversible sorption.
APA, Harvard, Vancouver, ISO, and other styles
17

Ye, Penglin. "Semi-Volatile Organic Compounds: Behavior and Secondary Organic Aerosol Formation." Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/1046.

Full text
Abstract:
This thesis mainly described the development of studying the behavior and secondary organic aerosol formation from semi-volatile organic compounds (SVOCs). SVOCs comprises a significant fraction of the organic mass in particulate matter (PM), which has shown important impacts on human health and also influences on Earth’s climate. SVOCs are thought to play essential roles in the formation of SOA, chemical aging and mixing processes. Smog chambers have been extensively used to study SOA formation, chemical reaction and physical properties. The interaction between SVOC vapor with Teflon chamber wall and suspended particles is a key factor influencing organic aerosol formations and behaviors in chamber experiments. We observed that pinanediol (PD) showed a large chamber wall deposition and reached a steady concentration, only around 14% of mass left in the gas phase. But we did not observe the release of PD from the chamber walls during isothermal dilution of the chamber with fresh air at 22 oC, which indicated there was no PD released from the chamber walls during the SOA formation. This clearly shows the vapor loss of SVOC precursors need to be considered when studying their SOA formation. The average carbon oxidation states the SOA from PD were calculated as around -0.7, which were similar to the value observed in CLOUD. Our data are consistent with ~10% of the SOA with low volatility that could drive new particle formation. It is challenging to measure SVOC vapor concentrations and properties. A new approach is discussed in this thesis, studying SVOC vapors from measuring the particles. The SVOCs coated particles sustained the SVOCs in the gas phase at or near their saturation concentration. The mass loss of SVOCs from the suspended particles thus reflects SVOCs vapor wall loss. Our results show the vapor wall loss rate of SVOC is consistently proportional to the SVOC vapor concentrations. We observed PEG400 seeds can sorb semi-volatile α-pinene SOA vapors. This allows us to trap semi-volatile α-pinene SOA into PEG400 seeds and then analyze their compositions and properties through measuring particles. PEG400 is liquid, water-soluble, nearly non-volatile, good solvent for SOA and relative stable during the oxidation with OH radicals and ozone. It can also be easily separated from the SOA mass spectrum with the unique fragment C4H9O2+ at m/z=89. The results demonstrated that SOA prepared from α-pinene reacted with OH produced more semi-volatile SOA vapors comparing to α-pinene ozonolysis. More semi-volatile SOA vapors were observed in the gas phase with higher SOA loadings. With well-built particle measurement methods, we may get more knowledge on the SVOC vapors.
APA, Harvard, Vancouver, ISO, and other styles
18

Hoteit, Joumana Abdel Moneim. "Commuters exposure to volatile organic compounds in London." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Laothawornkitkul, Jullada. "Biogenic Volatile Organic Compounds : Roles and and Applications." Thesis, Lancaster University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shin, Eun-Jae. "Catalytic hydrogen treatment of volatile organic compounds (VOCs)." Thesis, University of Leeds, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Turner, Matthew A. "Boundaries in volatile organic compounds in human breath." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/20274.

Full text
Abstract:
Exhaled breath is a rich and complex matrix containing many hundreds of compounds. Every breath offers the potential of a non-invasive measurement of the biochemical processes occurring in the human body and it is this notion that has led to the application of breath analysis for the detection of disease. With the majority of research in the field being focused on the detection of biomarkers, little has been presented on how the seemingly homeostatic matrix of breath varies during the course of normal life events. The research in this thesis describes how a subject's emotional state, physical state, and daily activities can alter the composition of exhaled breath.
APA, Harvard, Vancouver, ISO, and other styles
22

Ghaste, Manoj Shahaji. "Comprehensive Mapping of Volatile Organic Compounds in Fruits." Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/367990.

Full text
Abstract:
Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory quality of fruits is widely determined by qualitative and quantitative composition of VOCs. The aroma of grape is a complex of hundreds of VOCs belonging to different chemical classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids and many more. VOCs play important role as they determine the flavor of grapes and wine made from it. The objective of this thesis is to study of VOCs through development of different mass spectrometry based analytical methodologies and its applications for the comprehensive investigation and construction of database of the VOCs in grapes. First part of the study was dedicated to generation of the comprehensive database of grape VOCs through the screening of multiple grape varieties (n=124) representing different species, color and origin. The experiment was carried out using headspace solid-phase microextraction (HS-SPME) and gas chromatography mass spectrometry (GC-MS) based approach and according to metabolomics protocols. A customized dataset of reference standards (>350) was generated and, an automated pipeline for data analysis was created in collaboration with data management group of the institute. The results showed annotation of “level 1†of 117 VOCs in grape. The established database in this experiment will represent the significant portion of the future Grape Metabolome database. The second part of the study was dedicated to study the differential behavior of volatile organic compounds and their glycosylated precursors qualitatively and semi quantitatively. Volatile secondary metabolites also exist in the form of nonvolatile and odorless glycosylated precursors in grape and studies have confirmed that concentration of these precursors can be much higher than its free counterparts. The elevated concentrations of volatiles in glycosylated forms can significantly affect the wine aroma because of possible chemical modifications throughout the process of fermentation and wine ageing. In addition, the investigation of the biosynthesis and accumulation of VOCs in the fruit tissues requires the consideration of both the free and bound forms. To study the phenomenon an experiment was carried using solid phase extraction (SPE) of the free and glycosylated precursors; with enzymatic hydrolysis aglycone part of the precursors was released followed by subsequent GC-MS analysis. Over 10 different selected grape varieties were analyzed. Sixty-six significant different aroma compounds in grapes (pre and post hydrolysis) were identified. Identification was done based on several parameters like retention time, retention index and MS spectral database. The multivariate statistical analysis by two-way hierarchical clustering with heat map visualization showed distribution of the compounds within different varieties before and after hydrolysis. In the third part of the study, we performed experiments dedicated to training and applications of atmospheric pressure gas chromatography mass spectrometry (APGC-MS). The experiment was carried out at the Department of Biological Sciences, University of North Texas, under the supervision of Prof. Vladimir Shulaev. We have established the metabolomics protocol for the analysis of fruit volatiles using APGC-MS with an optimized GC and MS conditions and created novel library of the fruit volatile compounds using APGC-MS system. Six different grape varieties were analyzed as a case study and experimental results showed APGC-MS as a valuable solution for metabolomics analysis. The data processing and statistical evaluation was done using XCMS and progenesis QI© software. Moreover, observations based on injections of pure reference standards showed high abundance of molecular ions with minimal fragmentation at low collision energy that is typically missing in traditional vacuum source GC-MS. Moreover, the use of elevated collision energy data resulted in a spectrum similar to the traditional EI data.
APA, Harvard, Vancouver, ISO, and other styles
23

Ghaste, Manoj Shahaji. "Comprehensive mapping of volatile organic compounds in fruits." Doctoral thesis, country:IT, 2015. http://hdl.handle.net/10449/26348.

Full text
Abstract:
Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory quality of fruits is widely determined by qualitative and quantitative composition of VOCs. The aroma of grape is a complex of hundreds of VOCs belonging to different chemical classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids and many more. VOCs play important role as they determine the flavor of grapes and wine made from it. The objective of this thesis is to study of VOCs through development of different mass spectrometry based analytical methodologies and its applications for the comprehensive investigation and construction of database of the VOCs in grapes. First part of the study was dedicated to generation of a database of grape VOCs through the screening of multiple grape varieties (n=124) representing different species, color and origin. The experiment was carried out using headspace solid-phase microextraction (HS-SPME) and gas chromatography mass spectrometry (GC-MS) based approach and according to metabolomics protocols. A customized dataset of reference standards (>350) was generated and, an automated pipeline for data analysis was created in collaboration with data management group of the institute. The results showed annotation of “level 1”of 117 VOCs in grape. The established database in this experiment will represent the significant portion of the future Grape Metabolome database. The second part of the study was dedicated to study the differential behavior of volatile organic compounds and their glycosylated precursors qualitatively and semi quantitatively. Volatile secondary metabolites also exist in the form of nonvolatile and odorless glycosylated precursors in grape and studies have confirmed that concentration of these precursors can be much higher than its free counterparts. The elevated concentrations of volatiles in glycosylated forms can significantly affect the wine aroma because of possible chemical modifications throughout the process of fermentation and wine ageing. In addition, the investigation of the biosynthesis and accumulation of VOCs in the fruit tissues requires the consideration of both the free and bound forms. To study the phenomenon an experiment was carried using solid phase extraction (SPE) of the free and glycosylated precursors; with enzymatic hydrolysis aglycone part of the precursors was released followed by subsequent GC-MS analysis. Over 10 different selected grape varieties were analyzed. Sixty-six significant different aroma compounds in grapes (pre and post hydrolysis) were identified. Identification was done based on several parameters like retention time, retention index and MS spectral database. The multivariate statistical analysis by two-way hierarchical clustering with heat map visualization showed distribution of the compounds within different varieties before and after hydrolysis. In the third part of the study, we performed experiments dedicated to training and applications of atmospheric pressure gas chromatography mass spectrometry (APGC-MS). The experiment was carried out at the Department of Biological Sciences, University of North Texas, under the supervision of Prof. Vladimir Shulaev. We have established the metabolomics protocol for the analysis of fruit volatiles using APGC-MS with an optimized GC and MS conditions and created novel library of the fruit volatile compounds using APGC-MS system. Six different grape varieties were analyzed as a case study and experimental results showed APGC-MS as a valuable solution for metabolomics analysis. The data processing and statistical evaluation was done using XCMS and Progenesis QI© software. Moreover, observations based on injections of pure reference standards showed high abundance of molecular ions with minimal fragmentation at low collision energy that is typically missing in traditional vacuum source GC-MS. Moreover, the use of elevated collision energy data resulted in a spectrum similar to the traditional EI data.
APA, Harvard, Vancouver, ISO, and other styles
24

Ghaste, Manoj Shahaji. "Comprehensive Mapping of Volatile Organic Compounds in Fruits." Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1548/1/Thesis_Manoj_Ghaste.pdf.

Full text
Abstract:
Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory quality of fruits is widely determined by qualitative and quantitative composition of VOCs. The aroma of grape is a complex of hundreds of VOCs belonging to different chemical classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids and many more. VOCs play important role as they determine the flavor of grapes and wine made from it. The objective of this thesis is to study of VOCs through development of different mass spectrometry based analytical methodologies and its applications for the comprehensive investigation and construction of database of the VOCs in grapes. First part of the study was dedicated to generation of the comprehensive database of grape VOCs through the screening of multiple grape varieties (n=124) representing different species, color and origin. The experiment was carried out using headspace solid-phase microextraction (HS-SPME) and gas chromatography mass spectrometry (GC-MS) based approach and according to metabolomics protocols. A customized dataset of reference standards (>350) was generated and, an automated pipeline for data analysis was created in collaboration with data management group of the institute. The results showed annotation of “level 1”of 117 VOCs in grape. The established database in this experiment will represent the significant portion of the future Grape Metabolome database. The second part of the study was dedicated to study the differential behavior of volatile organic compounds and their glycosylated precursors qualitatively and semi quantitatively. Volatile secondary metabolites also exist in the form of nonvolatile and odorless glycosylated precursors in grape and studies have confirmed that concentration of these precursors can be much higher than its free counterparts. The elevated concentrations of volatiles in glycosylated forms can significantly affect the wine aroma because of possible chemical modifications throughout the process of fermentation and wine ageing. In addition, the investigation of the biosynthesis and accumulation of VOCs in the fruit tissues requires the consideration of both the free and bound forms. To study the phenomenon an experiment was carried using solid phase extraction (SPE) of the free and glycosylated precursors; with enzymatic hydrolysis aglycone part of the precursors was released followed by subsequent GC-MS analysis. Over 10 different selected grape varieties were analyzed. Sixty-six significant different aroma compounds in grapes (pre and post hydrolysis) were identified. Identification was done based on several parameters like retention time, retention index and MS spectral database. The multivariate statistical analysis by two-way hierarchical clustering with heat map visualization showed distribution of the compounds within different varieties before and after hydrolysis. In the third part of the study, we performed experiments dedicated to training and applications of atmospheric pressure gas chromatography mass spectrometry (APGC-MS). The experiment was carried out at the Department of Biological Sciences, University of North Texas, under the supervision of Prof. Vladimir Shulaev. We have established the metabolomics protocol for the analysis of fruit volatiles using APGC-MS with an optimized GC and MS conditions and created novel library of the fruit volatile compounds using APGC-MS system. Six different grape varieties were analyzed as a case study and experimental results showed APGC-MS as a valuable solution for metabolomics analysis. The data processing and statistical evaluation was done using XCMS and progenesis QI© software. Moreover, observations based on injections of pure reference standards showed high abundance of molecular ions with minimal fragmentation at low collision energy that is typically missing in traditional vacuum source GC-MS. Moreover, the use of elevated collision energy data resulted in a spectrum similar to the traditional EI data.
APA, Harvard, Vancouver, ISO, and other styles
25

Bergamaschi, Matteo. "Volatile Organic Compounds in cheese production chain (VOCheese)." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3426759.

Full text
Abstract:
In recent years, consumers have become increasingly interested in the quality aspects of food. Food quality, in turn, is strongly related to the sensory characteristics such as the flavor. Several scientific studies have shown that the Volatile Organic Compounds (VOCs) released by the food are related to the flavor and can be considered as assistive markers in the production chain. Today, the analysis of VOCs requires fast, non-invasive, and solvent free devices. It has been shown that the VOCs can be extracted, identified, and measured with a Gas Chromatography-Mass Spectrometry (GC-MS) without any pre-concentration or pre-treatment of the food. The main objective of this PhD thesis was to investigate the presence of volatile compounds in dairy products. More precisely, this study aimed in i) qualifying and quantifying VOCs in dairy products, ii) examining their formation and iii) integrating knowledge on VOCs by tracking their release during the whole production process from the raw materials till the final dairy product. In addition, statistical analysis was applied to link VOCs with the genetic characterization of animals, dairy system and individual cow-factors (e.g. stage of lactation, order of parity and milk yield). The identification and quantification of VOCs were performed using fast and non-invasive analytical approaches (Solid Phase Micro Extraction/Gas Chromatography-Mass Spectrometry SPME/GC-MS and Proton Transfer Reaction-Time of Flight-Mass Spectrometry PTR-ToF-MS) that can monitor the evolution of VOCs. To achieve the overall goal, the research was partitioned in four interrelated subparts as described below. The aim of the first chapter was to study the VOCs presence in the headspace of cheese. To this purpose, 150 cheeses ripened for two months were used. The cheeses were obtained through an individual model cheese-making approach using milk from individual Brown Swiss cows. Animals reared in 30 herds belonging to different dairy systems, from traditional (typical of the mountainous area) to modern ones. The study identified 55 VOCs classified in the chemical families of free fatty acids, esters, alcohols, aldehydes, ketones, lactones, terpenes, and pyrazines. We found that dairy system and individual cow characteristics (lactation stage, order of parity and daily milk yield) influenced the volatile compounds. In order, to test the instrument reproducibility and the model cheese-making procedure; data of GC analysis, order of injection of the sample into instrument, and vat were included in the statistical model. In many cases, these analytical factors did not affect the amount of VOCs released by cheese. In the second chapter, the potential of a new spectrometric technique (PTR-ToF-MS) was investigated to study cheese quality traits on a large scale. The PTR-ToF-MS allows direct injection of the sample headspace without extraction or pre-concentration steps, has a shorter analysis time (only a few seconds per sample) and greater sensitivity that permit to monitor on-line the evolution of volatile compounds. The resulting spectral information can provide a very detailed description of samples, which is useful for characterizing food quality and typicality. In particular, we analyzed the volatile fingerprint of 1,075 model cheeses produced using individual milk of Brown Swiss cows reared in 72 herds of different dairy systems. The output of PTR (spectrum) was characterized by more than 600 spectrometric peaks (variables). After removing interfering ions and background noise a set of 240 peaks was selected. Further, based on the results of the first contribution and literature, 61 peaks were identified. These peaks represent the major part of the cheese flavor. To summarize the amount of information, a multivariate analysis (PCA) was applied associating principal components (PC) with the 240 spectrometric peaks. Following, we tried to characterize the PCs through the correlations between PCs and the spectrometric peaks. The effects of dairy system, herd within dairy system, individual cows characteristics (lactation stage, order of parity and milk yield), and vat used for the cheese-making on the PCs and on the 240 peaks were analyzed. Dairy system was correlated with PC and 57 spectrometric peaks, especially when the herds were using Total Mixer Ration (TMR) as feeding technique, including or not maize silage in the diets. Regarding the individual animal characteristics, the most significant effect was the stage of lactation (139 peaks), followed by milk yield and parity, with 31 and 21 peaks, respectively. Finally, the vat used for the cheese-making was not found to be significant, confirming the good reproducibility of the model cheese-making procedure used to study cheese quality aspects. In the third chapter, the effect of cows’ genetics to the VOCs of ripened cheeses was assessed. Principal components and the 240 spectrometric peaks (as described above in the second contribution) were used fitting an animal model in a Bayesian framework. On average, heritability (h2) of 7% for PCs was found, which is similar to h2 of somatic cell count and much lower than the h2 of milk fat content and daily milk yield. It is interesting to note that only a small proportion of peaks showed very low h2 (<7%). The major part of them showed values similar to those found for PCs, while forty peaks presented heritability similar to that of milk yield and other milk quality traits. The variability attributed to the herd was different for the various PC. Results suggest a potential of improvement for several cheese VOCs through genetic selection in dairy cow breeding programs. The aim of the fourth chapter was to study the effect of summer transhumance on the quality traits of dairy products. Due to the extended work, this contribution was further splitted into two parts. In the first part, the evolution of milk and cheese quality characteristics were studied, while in the second part the evolution of VOC content of dairy products was analyzed. For the first part, chemical characteristics and technological properties of 11 dairy products obtained during summer transhumance of cows to Alpine pastures (Malga) were analyzed. Dairy products obtained throughout this period are known to give origin to high-value, healthier products, and extra tasty,. Bulk milk from 148 dairy cows reared day and night on Alpine pasture (1,860 m a.s.l.) was used. We performed 7 experimental cheese-making according to traditional mountain techniques, one every two weeks, using milk produced during the summer transhumance (from June to September). For each cheese-making we collected: milk from the evening milking (day before the cheese-making), the same milk the following morning (after natural creaming), the cream separated, the whole milk from the morning milking, the milk in vat obtained mixing the creamed evening milk with the whole morning milk, the fresh curd, the whey, the ricotta obtained from whey, and the residual scotta. Moreover, the curd was used to produce typical “Malga” cheese that was ripened for 6 and 12 months. The chemical characteristics were measured with infrared technology. Results highlighted variation in milk yield, milk chemical composition, cheese yield and curd recoveries and/or loss of nutrients in the traditional cheese-making. In particular, a reduction of milk yield, fat, protein and lactose contents of milk during summer transhumance was observed. Nevertheless, the return to lowland farming systems of the cows at the end of grazing season, positively affected milk yield and milk chemical composition. The average of cheese yield was 14.2%, while recoveries of fat, protein, total solids and energy were 85.1%, 77.8%, 49.4% and 58.1%, respectively. These results were in accordance to those found in the literature. For the second part of this chapter, the VOCs content of sample headspace was measured through SPME/GC-MS. Forth nine VOCs belonging to the chemical families of alcohols, aldehydes, free fatty acids, ketones, esters, lactones, terpenes, phenolic, and sulphur compounds were detected. In addition, the evolution of VOCs and their chemical family across the cheese- and ricotta-making processing as well as during the cheese ripening period was tracked. The comparison between VOCs concentration of 4 types of milk (whole evening, creaming milk, whole morning, milk in vat) showed that the creaming process significantly affected about half of all the volatile organic compounds analyzed, followed by the effects of milking (evening milking vs. morning milking) and the mixing (creamed milk mixed with whole morning milk). In general, the cream, in contrast to curd and ricotta, showed higher content of free fatty acids, sulphurs and terpenes compounds. Moreover, in ricotta a higher VOC concentration was observed compared to the curd, probably due to the high temperature required during the ricotta process. The effect of the progressive nutrient depletion of milk was investigated by contrasts between VOC concentration of milk in the vat, whey, and scotta. Although milk contains a greater amount of nutrients, whey and scotta have shown a higher concentration of VOCs with the exceptions of esters, sulphurs, terpenes and phenolic compounds. Finally, the effect of ripening was tested by comparing the quantity of VOCs of curd and of aged cheeses (6 and 12 months). The release of volatile compounds increased with increasing ripening period in relation with the enzymatic and microbiological activity of cheese. In summary, the spectrometric techniques (SPME/GC-MS and PTR-ToF-MS) used in this work demonstrated to be very efficient to characterize the volatile organic compounds of dairy products. The dairy system, and cow related factors affected the volatile fingerprint of ripened cheeses. Particularly, concerning the individual animal source of variation, lactation stage was the most important effect followed by the cow’s parity and the milk yield. On the basis of phenotypes used in this work, the traits collected offered the potential for a genetic analysis to be carried out. The genetic analysis demonstrated the existence of an exploitable genetic variability of the volatile profile of cheese that might be useful for an (in)direct selection of dairy cows for cheese quality traits in breeding programs. Nevertheless, further research is needed in this area. In the era of genomics for e.g., it might be interesting to associate genomic regions to specific VOCs. This information might be useful for genomic breeding programs. The evolution of volatile compounds across the production chain depends on specific technological aspects, such as the process of natural creaming, the temperature of coagulation, and the ripening period. The monitoring of volatile fingerprint permits to obtain dairy products with specific organoleptic characteristics useful to differentiate them on the market and to improve the supply chain efficiency on the basis of quality aspects.
Negli ultimi anni, il consumatore è diventato sempre più sensibile agli aspetti qualitativi degli alimenti, i quali sono fortemente influenzati dalle caratteristiche sensoriali come l’aroma. Diversi lavori scientifici hanno dimostrato che i composti volatili (VOCs) rilasciati dall’alimento sono correlati con il suo aroma e possono essere considerati come traccianti delle filiere alimentari. Oggi, l’analisi dei VOCs richiede strumenti rapidi, sensibili, non invasivi e che abbiano bisogno dell’impiego di pochi solventi durante la preparazione del campione. E’ stato dimostrato che i VOCs possono essere estratti, misurati e identificati con la Gas Cromatografia di Massa (GC-MS) senza pre-concentrazioni o pre-trattamenti dell’alimento da analizzare. Gli obiettivi principali della tesi di dottorato erano di studiare la presenza di composti volatili nei prodotti lattiero-caseari. Più precisamente, questo studio aveva come obiettivi di i) qualificare e quantificare i VOCs nei prodotti lattiero-caseari, ii) esaminare la loro formazione e iii) integrare le conoscenze acquisite su questi composti attraverso tutta la filiera di produzione dalla materia prima fino al prodotto finito. Inoltre, analisi statistiche sono state utilizzate per collegare i VOCs con la caratterizzazione genetica degli animali, il sistema di allevamento e le caratteristiche individuali delle vacche (es. stadio di lattazione, ordine di parto e produzione giornaliera di latte). L’identificazione e la quantificazione dei VOCs sono state fatte utilizzando tecniche analitiche precise, veloci e non invasive (Solid Phase Micro Extraction/Gas Chromatography-Mass Spectrometry SPME/GC-MS and Proton Transfer Reaction-Time of Flight-Mass Spectrometry PTR-ToF-MS). Per rispondere agli obiettivi generali della tesi, l’attività di ricerca è stata divisa in cinque parti connesse tra di loro. L’obiettivo nel primo capitolo era di studiare i composti volatili presenti nello spazio di testa di campioni di formaggio. Per questo scopo, sono stati analizzati 150 formaggi stagionati per due mesi. I formaggi sono stati prodotti utilizzando una metodica di caseificazione individuale usando latte individuale di vacche di razza Bruna. Gli animali sono stati allevati in 30 aziende appartenenti a diversi sistemi di allevamento, da tradizionale (tipico della realtà montana) a moderno. In questo studio sono stati identificati 55 VOCs per ogni formaggio, classificati in diverse famiglie chimiche: acidi grassi, esteri, alcoli, aldeidi, chetoni, lattoni, terpeni e pirazine. Dai risultati emerge che il sistema di allevamento e le caratteristiche individuali delle vacche (stadio di lattazione, ordine di parto e produzione giornaliera di latte) influenzano i composti volatili. Inoltre, per testare la riproducibilità dello strumento e della metodica di caseificazione; la data di analisi cromatografica, l’ordine d’iniezione del campione nello strumento (GC), e la caldaia di caseificazione erano inclusi nel modello statistico. In molti casi, questi fattori analitici/strumentali non influenzano la quantità di VOCs rilasciata dai formaggi. Nel secondo capitolo, il potenziale di una nuova tecnica analitica (PTR-ToF-MS) è stato approfondito per studiare, su larga scala, le caratteristiche qualitative del formaggio. Il PTR-ToF-MS dal punto di vista analitico, permette un’iniezione diretta del campione senza estrazione o pre-concentrazione, ha un breve tempo di analisi (solo pochi secondi per campione) e grande sensibilità consentendo di monitorare in tempo reale l’evoluzione dei composti volatili. L’analisi produce uno spettro molto dettagliato che può essere utile per la caratterizzazione delle qualità e della tipicità dell’alimento. In particolare, è stata analizzata l’impronta aromatica di 1,075 formaggi prodotti utilizzando latte individuale di vacche di razza Bruna allevate in 72 aziende appartenenti a diversi sistemi di allevamento. L’impronta aromatica (spettro) era caratterizzata da più di 600 picchi (variabili) per ogni formaggio. Gli spettri sono stati analizzati e dopo la rimozione degli ioni interferenti e del rumore di fondo è stato selezionato un data set costituito da 240 picchi per ogni formaggio. In seguito, basandosi sui risultati del primo contributo e sulla letteratura sono stati identificati i picchi più importanti (61) in termini quantitativi e qualitativi. Per sintetizzare la quantità di informazioni ovvero estrarre delle componenti principali (PC) è stata fatta un’analisi multivariata (PCA) a partire dai 240 picchi spettrometrici. In seguito, le PCs sono state caratterizzate sulla base delle loro correlazioni con i 240 picchi spettrometrici. Sono stati analizzati gli effetti del sistema di allevamento, dell’azienda entro sistema di allevamento, le caratteristiche individuali delle vacche (stadio di lattazione, ordine di parto e produzione di latte), e caldaia di caseificazione sulle PCs e sui 240 picchi. Dai risultati emerge che il sistema di allevamento è correlato con le PC e 57 picchi, specialmente quando le aziende come tecnica di alimentazione utilizzano il carro miscelatore (TMR) con e senza insilati nella dieta. Considerando le caratteristiche individuali delle vacche, l’effetto più significativo è lo stadio di lattazione (139 picchi), seguito dalla produzione di latte e dall’ordine di parto, con 31 e 21 picchi, rispettivamente. Infine, la caldaia di caseificazione è un effetto spesso non significativo, confermando la buona riproducibilità della micro-caseificazione utilizzata anche per lo studio di aspetti qualitativi del formaggio. Nel terzo capitolo è stato studiato l’effetto della genetica dell’animale sui composti volatili dei formaggi. A tale scopo, sono state analizzate le componenti principali (estratte come discusso sopra nel secondo contributo) e i 240 picchi spettrometrici (PTR-ToF-MS) utilizzando un modello animale con un approccio Baesiano. Dai risultati emerge in media un’ereditabilità (h2) del 7 % per le componenti principali, la quale è simile all’h2 trovata per le cellule somatiche e leggermente più bassa di quella del contenuto di grasso nel latte e della produzione giornaliera di latte stimate in precedenza sugli stessi animali. E’ interessante osservare che solo una piccola quantità di picchi ha una bassa h2 (<7%). La maggior parte di essi presenta valori simili a quelli trovati per le PCs, mentre 40 picchi presentano ereditabilità simile a quella trovata per la produzione giornaliera di latte e ad altre caratteristiche qualitative del latte. La variabilità attribuita all'azienda è risultata diversa per le PCs. Questi risultati dimostrano che esiste un’interessante variabilità genetica di alcuni VOCs che potrebbe essere potenzialmente utilizzata nei programmi di miglioramento genetico. L’obiettivo nel quarto capitolo era di studiare l’effetto della transumanza sulle caratteristiche qualitative di prodotti lattiero-caseari. Vista la grande mole di dati, questo contributo è stato diviso in due parti tra loro connesse. Nella prima parte è stata studiata l’evoluzione della qualità del latte e del formaggio, mentre nella seconda parte è stata analizzata l’evoluzione dei composti volatili dei prodotti lattiero-caseari nel processo di caseificazione. Nella prima parte, sono state analizzate le proprietà fisiche, chimiche e tecnologiche di 11 prodotti lattiero-caseari raccolti durante la transumanza al pascolo Alpino (Malga) di vacche da latte. E’ risaputo che i prodotti ottenuti durante il periodo di alpeggio possono avere un valore aggiunto dovuto alle elevate proprietà nutrizionali, salutistiche e aromatiche. Per approfondire le conoscenze finora acquisite, è stata fatta questa prova in cui è stato utilizzato il latte di massa prodotto da 148 vacche allevate giorno e notte al pascolo (1,860 m s.l.m.). Durante l’esperimento, sono state fatte 7 caseificazioni seguendo tecniche tradizionali, una ogni 2 settimane, utilizzando il latte prodotto durante la transumanza (da giugno a settembre). Sono stati raccolti per ogni caseificazione: il latte della mungitura della sera (giorno prima della caseificazione), lo stesso latte il mattino successivo (dopo il processo di scrematura naturale), la panna di affioramento, il latte della mungitura del mattino, il latte in caldaia ottenuta dalla miscela tra il latte scremato della mungitura della sera con il latte della mungitura del mattino, la cagliata, il siero, la ricotta ottenuta dal siero e il residuo della lavorazione ossia la scotta. Inoltre, la cagliata è stata usata per produrre formaggi di “Malga” che sono stati stagionati per 6 e 12 mesi. Le caratteristiche chimico-fisiche sono state misurate con una tecnologia a infrarosso. I risultati dimostrano una variazione della produzione giornaliera e composizione chimica del latte, resa in formaggio e recupero/o perdita di nutrienti nel processo di caseificazione tradizionale. In particolare, si è osservata una riduzione della produzione giornaliera di latte, grasso, proteine e lattosio del latte durante la transumanza estiva. Tuttavia, si è anche osservato un effetto positivo sulla produzione e la composizione chimica del latte del ritorno delle vacche nelle aziende di fondo valle alla fine della stagione dell’alpeggio. La resa media di formaggio in questo lavoro è risultata del 14.2%, mentre i recuperi di grasso, proteine, solidi totali ed energia sono del 85.1%, 77.8%, 49.4% e 58.1%, rispettivamente. Questi risultati sono in linea con quelli trovato in letteratura. Nella seconda parte di questo contributo, è stato misurato il contenuto di composti volatili nello spazio di testa dei campioni con la tecnica SPME/GC-MS. Dopo l’analisi, sono stati identificati 49 VOCs appartenenti alle famiglie chimiche degli alcoli, aldeidi, acidi grassi, chetoni, esteri, lattoni, terpeni e composti solforati e fenolici. Inoltre, è stata studiata l’evoluzione dei VOCs e delle loro famiglie chimiche attraverso i processi di caseificazione, di produzione della ricotta e di stagionatura del formaggio. Il confronto tra la concentrazione dei VOCs dei 4 tipi di latte (intero e scremato della sera, intero del mattino, caldaia) ha dimostrato che il processo di scrematura influenza la concentrazione di metà dei composti volatili analizzati, seguito dall’effetto della mungitura (intero della sera vs. intero del mattino) e dall’effetto del mescolamento (latte scremato della sera mescolato in parti uguali con il latte del mattino). In generale, la panna, rispetto a cagliata e ricotta, ha un maggiore contenuto di acidi grassi, terpeni e composti solforati. Inoltre, la ricotta rispetto alla cagliata ha un’elevata concentrazione di VOC, probabilmente dovuta alla maggiore temperatura utilizzata durante il processo di produzione. L’effetto del progressivo depauperamento di nutriente del latte è stato studiato attraverso il confronto tra latte in caldaia, siero e scotta. Sebbene il latte abbia un maggiore contenuto di nutrienti, il siero e la scotta hanno una maggiore concentrazione di VOC ad eccezione delle famiglie chimiche degli esteri, terpeni, composti solforati e fenolici. Infine, l’effetto della maturazione è stato valutato attraverso il confronto tra le quantità di VOC della cagliata e dei formaggi stagionati (6 e 12 mesi). Il rilascio dei composti volatili incrementa con l’aumento del periodo di maturazione probabilmente dovuto a una maggiore attività enzimatica e microbiologica nel formaggio. In conclusione, le tecniche analitiche di spettrometria di massa utilizzate in questo lavoro (SPME/GC-MS e PTR-ToF-MS) hanno permesso di caratterizzare i composti volatili dei prodotti lattiero-caseari in maniera efficiente. Il sistema di allevamento, le caratteristiche individuali delle vacche hanno influenzato l’impronta aromatica di formaggi individuali stagionati. In particolare, riguardo alle caratteristiche individuali degli animali il principale effetto era lo stadio di lattazione seguito da ordine di parto e produzione giornaliera di latte. Sulla base dei fenotipi raccolti in questo lavoro è stato possibile effettuare un’analisi genetica, la quale ha dimostrato l’esistenza di un’interessante variabilità genetica connessa ai composti volatili del formaggio che potrebbe essere utile per una selezione (in)diretta delle vacche da latte sulla base di aspetti qualitativi in programmi di miglioramento genetico. Tuttavia sono necessarie altre ricerche in quest’area per esempio, nell’era della genomica, sarebbe interessante associare qualche regione specifica del genoma ai composti volatili. L’evoluzione dei composti volatile attraverso la filiera di produzione dipende da specifici aspetti tecnologici, come l’affioramento della panna, la temperatura di coagulazione e il periodo di stagionatura. Il monitoraggio dell’impronta aromatica permette di ottenere prodotti lattiero-caseari con delle specifiche caratteristiche organolettiche utili a differenziare il prodotto sul mercato e a migliorare l’efficienza dell’intera filiera produttiva sulla base di aspetti qualitativi.
APA, Harvard, Vancouver, ISO, and other styles
26

Amin, Hardik Surendra. "SPECIATION STUDIES FOR BIOGENIC VOLATILE ORGANIC COMPOUNDS AND SECONDARY ORGANIC AEROSOL GENERATED BY OZONOLYSIS OF VOLATILE ORGANIC COMPOUND MIXTURES." OpenSIUC, 2012. https://opensiuc.lib.siu.edu/dissertations/528.

Full text
Abstract:
Aerosols are either emitted directly into the atmosphere or are generated in the atmosphere; the latter process forms secondary organic aerosol (SOA). One of the important sources for SOA is the oxidation of volatile organic compounds (VOCs) by OH radicals, NOx, and O3. Aerosol can be visualized as suspended solid or liquid particle which is in equilibrium with surrounding gases. The products of SOA formation is a mixture of semi volatile organic compounds and a fraction of the products are condensable under atmospheric conditions. The condensable portion of aerosol is called particulate matter (PM) and these suspended particles can range in diameter from a few nanometers to microns. PM can impact climate through direct and indirect radiative forcing and can degrade air quality by reducing visibility and causing detrimental health effects. SOA can also form indoors, which also contributes to the health risk of PM. The severe impact of PM on human health and climate drives the scientific community to investigate the volatile organic compounds (VOCs) and their potential to form SOA, as well as the factors that alter the efficiency of SOA generation and the type of products. In a similar pursuit, the focus of this dissertation is the investigation of the SOA precursors that are emitted from trees and how they vary as a function of insect infestation. Also, the role of mixtures of VOCs as SOA precursors are investigated; commercial and lab made VOC mixtures are studied for SOA generation, product analysis, and absorption characteristics of aged SOA. Chapter 1 introduces PM, VOCs present in atmosphere, SOA generation, and speciation of products generated from the ozonolysis of VOCs. The impact of PM on human health and climate are summarized. A literature survey on the VOCs that are precursors to SOA and present in the outdoor and indoor environment is presented along with factors that may lead to variability in amount of VOCs. SOA generation from direct plant emissions and consumer products is surveyed. These studies show that VOC oxidation generate SOA which is important in the atmosphere due to climate and health effects and indoors due to health effects. A summary of SOA phase partitioning theories, the reaction mechanism for the formation of products from ozonolysis of the dominant biogenic SOA precursors (monoterpenes), and the factors that affect SOA generation is presented. Chapter 2 summarizes the results obtained from a field study assessing the impact of bark beetle infestation on SOA precursor emissions from forests in the Western United States. Samples of VOCs were collected by our collaborators from healthy and bark beetle infested trees using scent traps. We solvent extracted and analyzed by gas chromatography/mass spectrometry (GC/MS) nearly four hundred scent traps. An increase in the total and the individual VOCs emitted by infested trees was measured. A statistical analysis shows significant differences between the emissions from infested and healthy trees. A perspective is provided on potential impact of bark beetle infestation on regional SOA. The majority of the laboratory experiments for SOA generation have focused on individual VOCs as the single SOA precursor. However, as demonstrated in Chapter 2 for example, in a real environment multiple VOCs co-exist. Multiple SOA precursors undergo concurrent oxidation reactions, and it is not known if the products from concurrent oxidation of multiple precursors are the same as the sum of the products from individual SOA precursors. Mass closure analysis of field samples show that a significant fraction of the chemical identity of organic PM is unknown, but the chemistry impacts the toxicity of PM. Hence, it is important to understand SOA formation from realistic SOA mixtures. Chapter 3 describes the results of the SOA generation by ozonolysis of limonene and VOC mixtures containing limonene. We use an additive approach for building a surrogate VOC mixture close in composition to a commercially-available mixture. The yield of PM as a function of VOC precursor mixture was measured with respect to VOC composition using smog chamber SOA generation and scanning mobility particle sizing. PM in the chamber was collected onto filters and extracted, and the individual products of SOA were identified and quantified by GC/MS. The condensed-phase SOA products generated during these experiments for different VOC mixtures are compared. In Chapter 4, condensed-phase products sampled from SOA generated by the ozonolysis of α pinene and VOC mixtures containing α pinene, including two fir needle essential oils, are studied by extracting filter samples and analyzing the extracts by GC/MS. The products generated from VOC mixtures are characteristic of the most dominant VOC present in the mixture i.e. either limonene or α pinene. Some mixtures show the generation of new products which are not observed for corresponding individual VOC ozonolysis and hence can be used as marker for the corresponding VOC mixture. The distribution of α-pinene SOA products changes as the composition of the SOA precursor mixture changes. In Chapter 5, the UV visible absorption characteristics of ammonium ion aged SOA are discussed. Ammonium ion aging of aerosol leads impacts the radiative properties of aerosol and has the potential to impact aerosol's role in climate change. Filter samples containing SOA generated from two mixtures with different dominant monoterpenes (α-pinene-based Siberian fir needle oil and a limonene-based air freshener) were extracted. The absorption coefficients of the extracts were measured as a function of ammonium ion aging time using UV-visible absorption spectrometry. The conclusions from all above chapters are summarized in Chapter 6.
APA, Harvard, Vancouver, ISO, and other styles
27

Eltouny, Nermin. "Reduction of anthropogenic volatile and semi-volatile organic compounds by nanomaterials and photolysis." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86968.

Full text
Abstract:
Anthropogenic volatile organic compounds (VOCs) and semi-volatile organic (SVOCs) compounds are atmospheric pollutants contributing to the photochemical formation of tropospheric ozone. We combined adsorption and UV photolysis techniques for the removal and degradation of selected VOCs and SVOCs. For adsorption, we synthesized magnetite nanoparticles, a naturally occurring material, to avoid unknown detrimental impacts associated with new materials, as was the case with chlorofluorcarbons. The removal efficiency with magnetite was up to 98 % for aromatics, and 30% for light alkanes. Magnetite nanoparticles were regenerated, characterized (TEM, XRD, BET), and reused with no decrease in reported removal efficiencies. Photolysis alone removed up to 30% of aromatics, and less than 20% of light alkanes. The combination of adsorption, and photolysis did not improve the removal efficiency. Adsorption was attributed to London dispersion interactions for light alkanes, and to acid-base properties for aromatics. Reductions by photolysis were attributed to reactive radicals.
Les composés volatiles et semi-volatiles organiques de sources anthropogéniques sont des polluants atmosphériques participant à la formation d'ozone troposphérique. Nous avons associé l'adsorption et la photolyse par rayons ultraviolets, pour enlever et détruire ces composés. Nous avons synthétisé des nanoparticules de magnétite, un matériel abondant dans la nature, afin d'éviter la création d'un autre problème de pollution comme il est parvenu avec l'utilisation des fluorocarbure chlorés. L'efficacité d'enlèvement par adsorption atteint un maximum de 98 % pour les composés aromatiques et un maximum de 30% pour les alcanes légers. Les particules ont été regénérées, caractérisées (MET, XRD, BET), et réutilisées; aucune baisse en efficacité d'enlèvement n'est notée. Les expériences de photolyse atteignent une réduction maximale de 30% pour les composés aromatiques et de 20% pour les alcanes légers. Sous nos conditions expérimentales, aucune amélioration n'est notée par l'association des deux processus (adsorption et photolyse). La réduction par adsorption est attribuée aux forces d'attraction London pour les alcanes et aux propriétés acides et basiques pour les aromatiques. La réduction par photolyse s'explique par la formation de radicaux réactifs.
APA, Harvard, Vancouver, ISO, and other styles
28

Nguo, Manases Fuh. "TREATMENT OF ODOROUS VOLATILE ORGANIC COMPOUNDS USING UV/H2O2." Thesis, KTH, Energiprocesser, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-90432.

Full text
Abstract:
Odorous volatile organic compounds emissions from fried-food industries posed severed pollution problems both to the workers and the surrounding inhabitants. These industries need to look for cost effective and efficient methods to reduce these emitted gases.  Several solutions such as the use of centrifugation, scrubbers, ion exchangers, biofiltration, condensation, adsorption, absorption, and incineration have been exploited to reduce these smelling gases. Centriair in collaboration with KTH aim at using UV light in combination with ozone and hydrogen peroxide to degrade these odorous VOCs emitted from the frying of meat balls (SCAN) and chips. Several volatile organic compounds which are odorants with low threshold values were identified in the emitted gases from meat frying which includes: aldehydes, sulphur containing compounds, ketones, pyrazines, and alcohols. The type and concentration of these odorants emitted depends among other things primarily on the type of oil used during the frying process.  This work focuses on the use of advanced oxidation processes to abate theses odorous gases. The effect of UV dosage and the use of hydrogen peroxide were tested in a flow reactor. Ozone producing UV lamps were used for the treatment of 2,4-decadienal, Hexanal, furfural, and 2,5-dimethylpyrazine. A simultaneous chemical and odour analysis was done using a GC/MS Olfactometry system. UV/Ozone/H2O2 was effective in reducing the volatile organic compounds tested thus reducing the odor concentration. The percent removal was proportional to the energy dosage.
APA, Harvard, Vancouver, ISO, and other styles
29

Claeson, Anna-Sara. "Volatile organic compounds from microorganisms : identification and health effects." Doctoral thesis, Umeå : Univ, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bikbajeva, Žana. "Research of volatile organic compounds from petrol filling stations." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080627_142040-20633.

Full text
Abstract:
The research focuses on the environmental problem of volatile organic compounds in ambient air of petrol filling stations. The literature review of the issues, arising from petrol-related VOCs, with actual and proposed VOC emissions trends in Europe, have been performed. Besides petrol filling station’s typical technology layout, petrol nature and composition, applicable petrol vapour recovery solutions and their efficiency were examinated. The volatile organic compounds’ experimental research in two petrol stations of typical technology layout in Vilnius city under similar extreme meteorological conditions (VOC air pollution episodes with low winds, stable stratification and suspended photochemical removal) is done. The emitted from petrol stations VOC experiment is based on air pumped sampling in glass gas pipette and further determination using gas chromatography with flame ionization detector. The experimental results, presented by means of tables and diagrams, are analysed and discussed. The available results of the experiment are loaded into the environmental model “ALOHA” for air pollution evaluation and concentrations prediction in the ambient air under different meteorological conditions and technological emergency situations (petrol spillage) at petrol filling station. The research is summarized in conclusions and recommendations.
Tyrimas skirtas aplinkos oro taršos problemai lakiaisiais organiniais junginiais, išsiskiriančiais nuo benzino degalinių. Atlikta svarstomos aplinkosauginės problemos literatūros apžvalga. Apžvelgti oro taršos pasekmės skatinamos LOJ išsiskyrimų nuo benzino degalinių, aktualios ir numatomos LOJ emisijų tendencijos Europoje, tipinis benzino degalinės technologijos išsidėstymas, benzino sudėtis ir svarbiausios LOJ garų formavimui benzino savybės, taikomi garų grąžinimo sprendiniai ir jų efektyvumas. Detaliai aprašytas LOJ eksperimentinis tyrimas, atliktas dviejose Vilniaus miesto tipinės technologijos degalinėse esant panašioms kraštutinėms (LOJ taršos epizodai prie silpnų vėjų, stabilios stratifikacijos ir suspenduoto fotocheminio šalinimo) meteorologiniams sąlygoms. LOJ mėginių ėmimui panaudotas aktyvus metodas su aspiracija į dujines pipetes, LOJ koncentracijos nustatytos dujinės chromatografijos su liepsnos jonizacijos detektoriumi metodu. Tyrimo rezultatai, pateikti lentelių ir diagramų pavidalu, aptarti ir įvertinti. Eksperimento duomenys įkelti į oro kokybės modelį “ALOHA”, siekiant nustatyti LOJ pernašą ir sudaryti LOJ koncentracijų prognozė benzino degalinių aplinkos ore prie skirtingų meteorologinių parametrų ir avarinių technologinių situacijų (benzino išsiliejimas). Tiriamąjį darbą reziumuoja išvados ir rekomendacijos.
APA, Harvard, Vancouver, ISO, and other styles
31

Sellick, David Richard. "Oxidative destruction of volatile organic compounds using heterogeneous catalysis." Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/55119/.

Full text
Abstract:
The preparation, testing and characterisation of catalysts for the total oxidation of two volatile organic compounds (VOCs) have been studied. These two VOCs were naphthalene and propane. Naphthalene was the main focus of this study. CeZrC>2 with varied Ce:Zr ratios and preparation methods was investigated for the total oxidation of naphthalene. These preparation methods were all precipitation methods using different precipitating agents (urea, sodium carbonate and supercritical CO2). Zr contents as low as 1 molar percent enhanced activity for both urea and sodium carbonate precipitated catalysts compared to CeC>2. A supercritical analogue was found to be less active. Pt/SiC>2 as a catalyst for naphthalene total oxidation was studied with a view to optimise an existing impregnation technique. A Pt loading of 2.5wt% with a calcination regime of 550 °C for 12h in static air with a ramp rate of 5 °C/min was found to be optimal. These preparation conditions were found to increase the proportion of metallic Pt which was found to exist as large crystallites with low dispersion. Other catalyst features were probed in this study. The type of silica used as a support was changed to novel hollow sphere silica then nanopore silica but no improvement in activity was found. Pt was then substituted for Pd which again did not improve activity. It was found that the Pd existed as Pd oxide hence Pd oxide is not as active for naphthalene oxidation as metallic Pt. The preparation of impregnated catalysts using non-aqueous solvents on so-called 'hydrophobic' materials was also investigated. These were tested for both naphthalene and propane total oxidation. It was found that Pt and Pd based catalysts afforded the most active catalysts. Several supports were studied which interacted with the impregnated metals in different ways. This affected the nature of the impregnated metals and therefore the activities of these catalysts. Some of the more active catalysts used supports that were of a low surface area. A high surface area SnO2 support was produced and impregnated with Pd. The high surface area SnO2 was found to be more active than the original Pd/SnO2 catalyst for propane total oxidation.
APA, Harvard, Vancouver, ISO, and other styles
32

Leethochawalit, Malinee. "Vapour phase catalytic oxidation-biofiltration of volatile organic compounds." Thesis, Heriot-Watt University, 2006. http://hdl.handle.net/10399/182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Archbold, M. E. "Carbon isotopes of volatile organic compounds for environmental tracing." Thesis, Queen's University Belfast, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ferreira, Pinto Da Silva Carla Florbela. "Interactions between volatile organic compounds and natural building materials." Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760948.

Full text
Abstract:
There is increasing concern regarding the indoor air quality of energy efficient buildings. Indoor air pollutants, such as volatile organic compounds (VOCs) and particulates, commonly found in buildings, can be harmful to human health. Interior materials are known to be one of the main contributors to poor indoor air quality. There is a need to develop natural materials and systems in order to minimise the level of indoor air pollutants, or even reduce them to near zero through the use of VOC-free emitters and exploitation of the sink effect for airborne pollutants. Natural building materials are considered to possess low embodied energy and are environmentally-friendly. The aim of this research was to investigate the physical and chemical interactions between natural building materials and VOCs in new or refurbished buildings (e.g. dwellings, offices, hospitals, schools and retail outlets). Key to this was the identification of low VOC emission materials with the added benefit of passively improving the indoor air quality. Comprehensive chemical and physical characterisation of materials was undertaken in order to understand the mechanisms involved in the capture of VOCs by three classes of natural building materials: insulation, coatings and wood panels. In order to understand the interactions between VOCs and building materials, adsorption and desorption experiments were carried out in laboratory-scale environmental chambers and in a real size room with a volume of 30 m3, all with controlled temperature, relative humidity and air flow-rate. Four organic pollutants commonly found in indoor environments were selected for this study according to their physico-chemical properties: formaldehyde, toluene, limonene and dodecane. In the first stage of this research, TVOC and formaldehyde emissions from 18 commercially available natural building materials were analysed (six insulation materials, six coatings and six wood-based panels). These materials included natural wool, hemp fibres, wood fibres, gypsum, lime mortars, clay-based plasters and wood-based plasters. Four of these materials were selected to investigate their adsorption and desorption behaviour towards the selected organic pollutants. It was observed that, in general, all natural building materials showed very low, or even zero, VOC emissions. In the case of formaldehyde, this organic pollutant was found to be emitted by the wood-based panels due to the formaldehyde-based resins used to glue the wood fibres. In the case of coated wood panels, the resin impregnated paper coating was shown to act as a barrier to formaldehyde emission and as a result this showed lower emission levels compared to an equivalent uncoated material. With regard to the adsorption and desorption behaviour it was observed that highly porous materials such as lime mortar and MDF panels have good capacity to remove VOCs and formaldehyde from the indoor air due to their high surface area. They allow the diffusion of the organic pollutants through their bigger pores. Natural wool, classed as an insulation material, showed good affinity to adsorb formaldehyde due to chemisorption by the proteins present in the fibres. The later stages of this research involved the investigation of the adsorption/desorption behaviour of newly developed natural building materials incorporating bio-based additives with optimised capacity to remove VOCs from the air. The incorporations were as follows: walnut shell within MDF panels; hemp sheaves, pumice and brick powder within clay-based plasters; and cellulose flakes, natural wool and photocatalytic TiO2 particles within lime mortar. The combination of two materials was also used because of the affinity of each material with different VOCs, for example the incorporation of natural wool in a lime mortar formulation. The outcomes of this research demonstrate that, if careful consideration is given to materials selection when constructing a new building or during a refurbishment process, the old judgment “building materials are the main contributors to a poor indoor air quality” is not true. This is achieved by selecting materials with low- or zero-VOC emissions and with the capacity to remove organic pollutants from the indoor air. Therefore, these materials contribute to a better indoor air quality by releasing low or negligible emissions and by facilitating the removal of airborne pollutants.
APA, Harvard, Vancouver, ISO, and other styles
35

Szabó, Emese. "Atmospheric kinetics and photochemistry of oxygenated volatile organic compounds." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10099/document.

Full text
Abstract:
Les composés organiques volatils oxygénés (COVOs) sont des espèces chimiques importantes de l’atmosphère. Ils incluent, par exemple, les alcools aliphatiques, les aldéhydes, les cétones et les acides organiques. Dans la troposphère libre, l’abondance des COVOs est plus importante que celle des hydrocarbures non méthaniques et leur réactivité globale avec OH est comparable avec celle du méthane. En revanche le méthane est présent à une concentration plus élevée. La dégradation des COVOs dans l’atmosphère s’effectue soit par la réaction avec le radical OH, soit par photolyse. La dégradation des COVOs produit des radicaux libres qui vont influencer la capacité oxydante de l’atmosphère, les concentrations en oxydes d’azotes, en radical OH et en ozone troposphérique. L’ozone est le troisième plus important gaz à effet de serre dans l’atmosphère et est l’un des composants toxiques principaux des pollutions urbaines et intervient donc dans des problèmes environnementaux graves comme le réchauffement climatique et la dégradation de la qualité de l’air. L’objectif de ce travail est de contribuer à la compréhension du comportement atmosphérique de quelques COVOs en mesurant leurs paramètres cinétiques et photochimiques apportant des donnés afin de permettre la réalisation de modélisations informatiques et l’amélioration de la connaissance des mécanismes chimiques ayant lieu dans l’atmosphère
Oxygenated volatile organic compounds (OVOCs) are important constituents of the atmosphere. They include, e.g., aliphatic alcohols, aldehydes, ketones, and organic acids. In the free troposphere, the abundance of OVOCs is higher than that of the non-methane hydrocarbons and their overall reactivity with OH is comparable with that of methane, in contrast that methane is present in much higher concentration. Degradation of OVOCs in the atmosphere takes place via the reaction with OH radicals and, in the case of photochemically active molecules, via photolysis. Free radicals are formed in the photooxidative degradations of the oxygen containing organics which basically determine the oxidative capacity of the atmosphere, the transformation of nitrogen oxides and the concentration of OH radicals and tropospheric ozone. Ozone is the third most important greenhouse gas in the atmosphere, it is one of the toxic components of urban smog and so it is related to such grave environmental problems as global warming and the quality of air. The aim of this work is to contribute to the understanding of the atmospheric behaviour of a few OVOCs by measuring their kinetic and photochemical parameters. One of the major goals of a laboratory basic research in atmospheric chemistry is to provide kinetic and photochemical data for computer modelling and to deduce atmospheric transformation mechanisms in the case of some important chemicals
APA, Harvard, Vancouver, ISO, and other styles
36

Beale, Rachael. "Quantification of oxygenated volatile organic compounds (OVOCs) in seawater." Thesis, University of East Anglia, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551143.

Full text
Abstract:
Oxygenated Volatile Organic Compounds (OVOCs) are low molecular weight (Cl-C3 compounds), volatile species that include alcohols, aldehydes and ketones. They are ubiquitous throughout thetroposphere where they alter the oxidative capacity of the atmosphere and influence the global ozone budget. The role of the ocean in the cycling of OVOCs remains largely unanswered due to a paucity of water measurements. Thisis . partly due to analytical difficulties in extracting these labile species from solution. Their presence at trace (nanomolar) concentrations and their high solubility makes efficient extraction from solution challenging. This thesis reviews the global importance and the current understanding of the OVOCs and highlights the uncertainty created from a paucity of oceanic measurements. It also details the available analytical capabilities for analysing these species, both in air and water to provide a platform from which to start method development. Developmental work was undertaken in order to design and validate two separate analytical techniques for the extraction of OVOCs from seawater: I) A Membrane Inlet - Proton Transfer Reaction / Mass Spectrometer (MI-PTRlMS) was optimised for the quantification of methanol, acetaldehyde and acetone in seawater, 2) a Purge andTrap- Gas Chromatography / Flame Ionisation Detection (P&T-GCIFID) system was developed for the extraction of ethanol, l-propanol, 2-propanol, propanal, acetone and acetaldehyde. Their independent capabilities are discussed as well as the advantages of their simultaneous use to provide maximum information regarding OVOC content within a sample. These techniques were deployed on two research cruises to as~ess the importance of an upwelling region and also to determine the spatial variability of both the concentration and flux of OVOCs in the Atlantic Ocean. The methods that have been developed during this research have increased the available data on OVOC concentrations in seawater and have shown that the ocean is important in the cycling of these trace gases.
APA, Harvard, Vancouver, ISO, and other styles
37

Wheldon-Williams, Robyn. "Detection of volatile organic compounds using fuel cell sensors." Thesis, Bangor University, 2002. https://research.bangor.ac.uk/portal/en/theses/detection-of-volatile-organic-compounds-using-fuel-cell-sensors(358777e1-ad97-4ef0-86be-6dbd3c4d9f3f).html.

Full text
Abstract:
In this study the development of an improved electrochemical fuel cell sensor for the detection of low-levels of formaldehyde vapour is described. Current fuel cell sensors used in the commercial Formaldemeter™ instrument lack sensitivity, respond to methanol, and show an interference response to humidity. For the detection and accurate determination of low-level concentrations of formaldehyde an improvement in these characteristics is essential. Two routes were investigated to achieve these requirements. Firstly the oxygen reduction reaction at the cathode was replaced with that of a conducting polymer, polyaniline (P ANI). Before construction of the fuel cells the stability and open circuit behaviour of various P ANI films were investigated in order to assay their suitability as a cathode material in a fuel cell application. Based on these results various fuel cells containing P ANI as the cathode were prepared and incorporated into the FormaldemeterTM. The cells were then evaluated using a calibrated vapour stream. Fuel cells containing a Pt-black anode and a P ANI/SOlcoated Pt-black cathode in H2S04 electrolyte displayed a significant improvement in sensitivity, selectivity and a reduced humidity response. In addition a fast response time, excellent reproducibility and a long shelf life was demonstrated. It is proposed that a P ANI film coated on Pt-black behaves as a more stable electron sink for the cathodic reaction instead of the oxygen reduction reaction which is dependent on the diffusion of oxygen. The fast fuel cell response time is explained by the fast switching of PAN I « lOJls). In the second part of the work, the effect of changing fuel cell catalyst was investigated. Initially, the electrocatalytic activity of various noble metals and alloys electrodeposited on glassy carbon were investigated. Based on these results several fuel cell electrodes were prepared and characterised by SEM and EDAX. Fuel cells were then constructed and their performance evaluated. Cells made up of 50:50 % atomic weight ratio of platinum and palladium showed that while the fuel cell was active towards low levels of formaldehyde, its response to equivalent levels of methanol was very small.
APA, Harvard, Vancouver, ISO, and other styles
38

Tsui, Kin-yin Jeanie. "Biogenic volatile organic compound emissions in Hong Kong." View the Table of Contents & Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38029182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xie, Xiaofeng. "High Flow Air Sampler for Rapid Analysis of Volatile and Semi-Volatile Organic Compounds." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/6165.

Full text
Abstract:
Volatile and semi-volatile organic compounds are ubiquitous, and some of them are hazardous. The ability to rapidly detect and identify trace levels of them in air has become increasingly important. The conventional device used today for sampling and concentrating them in air is thermal desorption tubes filled with specific sorbents, which can only collect air samples at flow rates of 100-200 mL/min. In order to detect low concentration (ppt level) VOC compounds, long sampling time (>2 h) and sensitive detection are required. At the same time, portable instrumentation for on-site analysis has been developing rapidly. The somewhat lower performance of portable instruments compared to benchtop systems requires the sampling of even greater sample volume in order to reach the same detection limits. In this study, two high flow rate air sampling devices, i.e., a multi-capillary trap and a concentric packed trap, were developed to sample a large volume of air in a short time period. The multi-capillary trap was constructed by bundling analytical capillary gas chromatography columns together in parallel. As low as single digit ppt detection limits were reached in less than 25 min with this trap, and as high as 8.0 L/min flow rate was sampled. The simple and compact multi-capillary trap could be easily used with a conventional thermal desorption system to perform high flow rate sampling. A concentric packed high flow rate trap was also developed by packing sorbent layers concentrically around an empty tube. The concentric packed trap achieved a high flow rate (>10 L/min) because it had a high surface area and short sorbent bed. Also, its large sorbent amount (>1 g) provided large breakthrough volume (>100 L) required to achieve low detection limits. An equilibrium distribution sampling system was developed by absorbing selected analytes in granular PDMS to provide calibration for on-site instrumentation. Furthermore, a needle trap device was coupled in tandem to both high flow rate air samplers to perform second-stage concentration of VOCs down to the ppt level. Concentration factors of 104 to 105 were achieved within 30 min using both systems, i.e., over 10 to 100 times more sample was collected compared to conventional TD systems.
APA, Harvard, Vancouver, ISO, and other styles
40

Ellern, Ilya. "Metal organic frameworks based microcantilever gas sensors for detection of volatile organic compounds." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49127.

Full text
Abstract:
Metal Organic Frameworks (MOFs) are a new class of nanoporous materials with high surface area, thermal/chemical stability and a taylorable pore size. These properties make MOFs ideal for storage and gas separation applications. Piezoresistive microcantilever sensors are microfabricated devices that are highly sensitive to surface strain due to doped single crystal silicon regions. Changes in resistance generated by surface strain can be measured with a high degree of accuracy using a Wheatstone bridge and basic instrumentation. This thesis will discuss the use of piezoresistive microcantilever sensors as a transduction mechanism for detection of volatile organic compounds (VOC's) using MOF coatings. It will be shown that by coating a microcantilever with MOFs it is possible to detect low levels of different VOC's (hundreds of parts per million). Excellent sensitivity and a simple transduction mechanism make these devices low power and highly compact. Such devices would be capable of detecting a plethora of different analytes at low concentrations. Devices were engineered for maximum response and microfabricated in the cleanroom with high yield. A custom setup for testing the devices was designed and machined. A number of MOFs were selected and tested, their response was recorded and analyzed. Twelve different analytes including eleven VOC's and water were used to characterize the MOFs. Microcantilever sensors were shown to be durable, reliable and stable in long term testing despite being subjected to many different analytes. MOF coatings proved flexible, durable, stable and reversible. This work will show a promising new technology for a next generation gas sensor.
APA, Harvard, Vancouver, ISO, and other styles
41

O'Leary, Kevin C. "Source apportionment of volatile organic compounds in urban micro-environments." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0015/MQ48454.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lee, Robert George Marlor. "Factors that influence atmospheric concentration of semi-volatile organic compounds." Thesis, Lancaster University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Johnson, Emmanuel Uche. "Volatile organic compounds: novel potential biomarkers in bladder cancer diagnosis." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681344.

Full text
Abstract:
Bladder cancer is an important global disease. The gold standard for diagnosis is cystoscopy and biopsy; both are invasive and require highly trained personnel. In a majority of cases, treated patients are followed up by frequent cystoscopies lasting several years. The discovery of biomarkers indicating which individuals should proceed to cystoscopy would be an important addition to bladder cancer management. The odour of urine is produced by volatile organic compounds, (VOCs), detectable by gas chromatography and mass spectrometry (GC-MS). An analysis of the VOCs in urine from various groups of individuals including patients with bladder cancer is undertaken in search of possible discriminating compounds, which could be harnessed in future as a potential screening tool or adjunct in bladder cancer management. Methods First void urine was obtained from 64 patients with new non-muscle invasive bladder cancer, 71 cancer free patients with haematuria and 51 asymptomatic volunteers. After equilibration, the headspace above these pH adjusted urine samples was extracted for 20minutes, using a carboxen / polydimethylsiloxane solid phase micro-extraction fibre (SPME). This was followed by desorption and VOC identification by GC-MS. Results Urine headspace VOCs under acidic conditions, (pH of modified urine 2), were found to be discriminating. Identified compounds were analyzed using forward stepwise discriminant analysis: 9 VOCs when used together, gave 84.7% correct classification of samples (Haematuria control v Bladder cancer) with no change on cross validation of results. The calculated sensitivity and specificity of this model is 76.6% and 92.9% respectively, with Positive predictive value of 90.7% and Negative predictive value of 92.9%. These results are comparable, and in some cases better than those obtained using commercially available urinary bladder cancer biomarkers. Conclusion Volatile organic compounds in urinary head space change with the development of bladder cancer. Urinary VOCs are exciting novel potential biomarkers in the detection of bladder cancer.
APA, Harvard, Vancouver, ISO, and other styles
44

Cheung, William Hon Kit. "Metabolic profiling of volatile organic compounds and enhanced vibrational spectroscopy." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/metabolic-profiling-of-volatile-organic-compounds-and-enhanced-vibrational-spectroscopy(adcff7c7-96e3-4b5a-8d77-4a943b75f211).html.

Full text
Abstract:
Metabolomics is a post genomic field of research concerned with the study of low molecular weight compounds within a biological system permitting the investigation of the metabolite differences between natural and perturbed systems (such as cells, organs and tissues). Rapid identification and discrimination of biological samples based upon metabolic differences and physiological status in microbiology, mammalian systems (particularly for disease diagnosis), plants and food science is highly desirable. Volatile organic compound (VOC) profiling is a novel area of research where the composition of the VOCs emitted by the biological samples can be correlated to its origin and physiological status. The aim of this project was to investigate the applicability of VOC profiling as a potential complementary tool within metabolomics.In this project the discrimination of bacteria using a novel gas phase separation method was investigated and the development of VOC-based profiling tools for the collections of VOCs emitted from biological samples was also studied. The optimisation and validation of a high throughput method for VOC analysis was achieved and this was used to assess wound healing.VOC metabolite profiling was further extended to the discrimination of S. typhimurium contaminated meat; the study was conducted in parallel with metabolite profiling analysis for the analysis of non-volatile small molecules. Finally, enhanced vibrational spectroscopic techniques were applied to the characterisation and screening of dye molecules in contaminated foodstuffs using Raman spectroscopy. This thesis clearly demonstrates that VOC metabolic profiling is a complementary tool within the metabolomics toolbox, one of its great attractions is that it permits the characterisation of biological samples in a rapid and non-invasive manner. The technique provides detailed chemical information regarding the VOC composition present above the headspace of the sample and can be used to understand its physiological status and biological origin. VOCs metabolite profiling will become a valuable tool for non-invasive analysis of many biological systems. Raman spectroscopy is a sensitive and non-destructive technique which can generate detailed chemical and structural information regarding the analyte under investigation with little or no sample preparation needed. The effect of the weak Raman signal can be significantly amplified by coupling the analyte molecule to surfaces of nanoparticles and demonstrated that it is ideal for analysing aqueous dye solutions in a quantitative manner.
APA, Harvard, Vancouver, ISO, and other styles
45

O'Leary, Kevin C. (Kevin Charles) Carleton University Dissertation Engineering Civil and Environmental. "Source apportionment of volatile organic compounds in urban micro-environments." Ottawa, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bayless, Lynette Vera. "Photocatalytic oxidation of volatile organic compounds for indoor air applications." Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bhanegaonkar, Abhijeet Jagannath. "Exposure to Volatile Organic Compounds and Effect on Neurobehavioral Function." Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etd/1053.

Full text
Abstract:
Data of 1338 respondents from the Priority Toxicant Reference Range Study were analyzed to examine exposure to volatile organic compounds (VOCs). Self-reported contact to chemical products and blood concentrations of specific chemicals were analyzed. Neurobehavioral function was assessed by simple reaction time test (SRTT), symbol digit substitution test (SDST), and serial digit learning test (SDLT). Prevalence of exposure to VOC products was, for instance, air freshener/room deodorant - 34.7%, gasoline - 29.2%, finger nail polish - 16.2%, and diesel fuel/ kerosene - 10.6%. The 95th percentiles of blood VOCs (μg/L) were calculated for 41 chemicals including Benzene - 0.476, 1,1,1-Trichloroethane - 0.799, o-Xylene - 0.271, and Styrene - 0.177. Significant correlation coefficients included 0.216* with SRTT and 0.130* with SDST for 1,4-Dichlorobenzene, 0.097* with SDST for 1,1,2-Trichloroethane, 0.098* with SDLT for Chloroform, and 0.115* with SDLT for Dibromochloromethane (* p<0.05) suggesting possible neurobehavioral effects. Study results provided pilot data of exposure status and reference ranges of VOCs for the US population.
APA, Harvard, Vancouver, ISO, and other styles
48

Olson, David Alan. "In-home formation of halogenated volatile organic compounds (VOCS) implications for human exposure and indoor air quality /." Thesis, 2002. http://wwwlib.umi.com/cr/utexas/fullcit?p3086783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Santos, Vera Patrícia da Costa Oliveira. "Catalytic oxidation of volatile organic compounds." Doctoral thesis, 2010. http://hdl.handle.net/10216/59600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Santos, Vera Patrícia da Costa Oliveira. "Catalytic oxidation of volatile organic compounds." Tese, 2010. http://hdl.handle.net/10216/59600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography