Journal articles on the topic 'Häi Hung province'

To see the other types of publications on this topic, follow the link: Häi Hung province.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 43 journal articles for your research on the topic 'Häi Hung province.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Jing, Zhenxin Bao, Guoqing Wang, Xinlei Zhou, and Li Liu. "The Spatial and Temporal Assessment of the Water–Land Nexus in a Changing Environment: The Huang-Huai-Hai River Basin (China)." Water 14, no. 12 (June 13, 2022): 1905. http://dx.doi.org/10.3390/w14121905.

Full text
Abstract:
In addition to agriculture, the water–land nexus (WLN) also profoundly affects the sustainable development of industry and residents’ lives. However, little research has been designed to assess the water–land nexus from the perspective of industry development and people’s quality of life. In the current paper, Wi, a regional industrial water–land nexus matching index, and Wd, a matching index of the domestic water–land nexus, were proposed for evaluating the water–land nexus from the industry development and quality of life perspectives separately in the current paper. Furthermore, climate change and human activities have significant impacts on the water–land nexus. The WLNs were assessed spatially and temporally for the first time based on these two indexes in 128 municipalities in the Huang-Huai-Hai River Basin of China from 1951 to 2017 to analyze the impacts of the changing environment on them. The impact of changing environment was explored based on changes of some climate factors and land use. The value of Wi are higher in the eastern and southern cities than the western and northern cities, while Zhenjiang city in Jiangsu Province has the highest Wi. For Wd, there are two low Wd zones across the basin, while the minimum values occurred in Linxia Hui Autonomous Region (Wd = 35.34 mm). Wi and Wd in most cities in the basin showed a significant downward trend, and some cities in the southwest of the basin have the fastest-decreasing of Wd. Wt and Wa were also calculated to assess the total and agricultural water–land nexus separately based on existing research. The Wt for the Huang-Huai-Hai River Basin gradually increases from northwest to southeast, and its spatial distribution characteristics are similar to precipitation in the river basin. In addition, the government should simultaneously implement water transfer plans to reduce the agricultural water pressure in Ningxia and Gansu provinces. Dynamic driving factors of change of the four assessment indexes (Wt, Wa, Wi, Wd) are briefly analyzed in the end of the paper.
APA, Harvard, Vancouver, ISO, and other styles
2

Tuan Do, Huu, Lan Anh Phan Thi, and Ngoc Lam Bui. "Distribution of perfluoroalkyl substances (PFASs) in the water of the Bac Hung Hai River, Van Giang district, Hung Yen province, Vietnam." Vietnam Journal of Hydrometeorology 9, no. 12 (December 25, 2022): 46–53. http://dx.doi.org/10.36335/vnjhm.2021(9).46-53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yin, Wenjie, Litang Hu, and Jiu Jimmy Jiao. "Evaluation of Groundwater Storage Variations in Northern China Using GRACE Data." Geofluids 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/8254824.

Full text
Abstract:
Dynamic change of groundwater storage is one of the most important topics in the sustainable management of groundwater resources. Groundwater storage variations are firstly isolated from the terrestrial water storage change using the Global Land Data Assimilation System (GLDAS). Two datasets are used: (1) annual groundwater resources and (2) groundwater storage changes estimated from point-based groundwater level data in observation wells. Results show that the match between the GRACE-derived groundwater storage variations and annual water resources variation is not good in six river basins of Northern China. However, it is relatively good between yearly GRACE-derived groundwater storage data and groundwater storage change dataset in Huang-Huai-Hai Plain and the Song-Liao Plain. The mean annual depletion rate of groundwater storage in the Northern China was approximately 1.70 billion m3 yr−1 from 2003 to 2012. In terms of provinces, the yearly depletion rate is higher in Jing-Jin-Ji (Beijing, Tianjin, and Hebei province) and lowest in Henan province from 2003 to 2012, with the rate of 0.70 and 0.21 cm yr−1 Equivalent Water Height (EWH), respectively. Different land surface models suggest that the patterns from different models almost remain the same, and soil moisture variations are generally bigger than snow water equivalent variations.
APA, Harvard, Vancouver, ISO, and other styles
4

Le Van, Tan. "The thought of serving nation and people through Doan Nguyen Tuan's Chinese poetry." Journal of Science Social Science 65, no. 8 (August 2020): 68–77. http://dx.doi.org/10.18173/2354-1067.2020-0051.

Full text
Abstract:
Doan Nguyen Tuan, nick name Hai Ong, Hai Yen village, Quynh Coi district (now known as Hai An village, Quynh Nguyen commune, Quynh Phu district), Thai Binh province. He had Huong sewer following the Le Dynasty but did not work as mandarins, with Vu Huy Tan, Phan Huy Ich, Ngo Thi Nham..., he followed Tay Son. By the concept of flexible museum, Doan Nguyen Tuan pursued and persevered the path of religious practice in the disordered social condition. With more than 200 Han poems still left, Doan Nguyen Tuan had the opportunity to show quite clearly the important aspects of the content of the thought of his practice. Thus, it can be affirmed that he is one of the authors of fictional literature in the second half of the eighteenth century in particular, of Vietnamese literature in general. This is the main content we set out and solved in this article.
APA, Harvard, Vancouver, ISO, and other styles
5

ZHANG, K., Y. LI, and L. LIAN. "Pollen-mediated transgene flow in maize grown in the Huang-huai-hai region in China." Journal of Agricultural Science 149, no. 2 (August 12, 2010): 205–16. http://dx.doi.org/10.1017/s0021859610000602.

Full text
Abstract:
SUMMARYIn order to study pollen-mediated gene flow in transgenic maize (Zea mays L.) in the Huang-huai-hai region of China, field trials were conducted in Jinan, Shandong Province in 2006 and 2007. The frequencies of gene flow from the donor plots, planted with transgenic maize as a pollen source, to the receptor plots, planted with non-transgenic maize, under different temporal or spatial separations were evaluated. The results showed that the frequency of pollen-mediated gene flow of the als gene from transgenic maize to non-transgenic maize decreased significantly with increasing distance. No gene flow was detected at 300 m. At a distance of 30 m, delaying the planting date of the transgenic maize by 1 week decreased the frequency of gene flow by 70%. A delay of 2 weeks decreased the gene flow frequency by more than 90%, while no gene flow was seen when the sowing date was delayed by 3 weeks. The results suggest that an appropriate isolation distance of 300 m or a temporal separation of 3 weeks could prevent gene flow from transgenic maize to non-transgenic maize in the Huang-huai-hai region.
APA, Harvard, Vancouver, ISO, and other styles
6

Le Thi My, Dung. "Foreign direct investment in industrial development in the Northern key economic region in the period 2010 - 2018." Journal of Science Social Science 66, no. 2 (May 2021): 104–12. http://dx.doi.org/10.18173/2354-1067.2021-0030.

Full text
Abstract:
The Northern key economic region, which includes Hanoi, Vinh Phuc, Bac Ninh, Quang Ninh, Hai Duong and Hung Yen, is the main centers of Vietnamese politics, economics, culture and science and technology. This region has many advantages in terms of economic exchange and international integration. In the period of 2010 - 2018, the region has really become a reliable destination for domestic and foreign investors, attracting increasing investment capital, especially foreign direct investment (FDI) in the manufacturing industries. Thanks to FDI in industry, the growth rate of gross output is the highest among 4 key economic regions; changing industrial structure (emerging electronics, informatics, manufacture mechanics ...); ownership structure (the FDI sector ranks first with 4 key economic regions) and territorial structure (industrial production value of Bac Ninh province has surpassed that of Hanoi city, leading the whole Northern key economic region). The paper focuses on analyzing FDI in industrial development and its role in socio-economic development of the Northern key economic region in the period of 2010-2018.
APA, Harvard, Vancouver, ISO, and other styles
7

Ngam, Lo Thi, Hoang Van Chung, Nguyen Quang Truong, Nguyen Lan Hung Son, Thomas Ziegler, and Pham The Cuong. "FIRST RECORD OF Leptobrachella shiwandashanensis CHEN, PENG, PAN, LIAO, LIU & HUANG, 2021 (ANURA: MEGOPHRYIDAE) FROM VIETNAM." Journal of Forestry Science and Technology, no. 14 (2022): 28–32. http://dx.doi.org/10.55250/jo.vnuf.2022.14.028-032.

Full text
Abstract:
Leptobrachella shiwandashanensis was originally described from the evergreen forest of Mount Shiwandashan, Guangxi province, China. We herein record this species for the first time from Vietnam based on a new amphibian collection from Quang Son commune, Hai Ha district, Quang Ninh province. Morphological characteristics of the specimens from Quang Ninh province, Vietnam resemble those of the type series from China in the following characteristics: small size; head wider than long; pale brown dorsal surfaces, with distinct dark brown inverse-triangle-shaped marking between eyes; flanks with irregular black spots; ventral surface creamy white with brown spots on lateral margin; throat and chest nearly immaculate creamy white; fingers and toes free of webbing; dermal fringes on sides of fingers and toes absent; tibio-tarsal articulation reaching to posterior of the eye; iris bicolored, upper half brownish-red, transitioning to silver in the lower half. However, the specimens from Vietnam slightly differ from the type series from China by having a smaller size in males and a somewhat different dorsal colour pattern in the female. Genetic divergences between sequences of the Vietnamese specimens and those of L. shiwandashanensis from China are approximate 1.7–1.9% (16S gene). In addition to our morphological and molecular comparisons, we provide first natural history notes of L. shiwandashanensis from Vietnam.
APA, Harvard, Vancouver, ISO, and other styles
8

Huy, Chien Nguyen. "BIODIVERSITY OF ZOOBENTHOS AT THE CA RIVER, VIETNAM." Marine Research in Indonesia 33, no. 2 (December 31, 2008): 229–34. http://dx.doi.org/10.14203/mri.v33i2.499.

Full text
Abstract:
A research on zoobenthos biodiversity was carried out from September 2004 to September 2006 at the Ca river (the length of Nghe An and Ha Tinh provinces) showed a species composition consisted of 154 species, 115 genera, 72 families, 32 orders and 5 phyla, including Mollusca, Annelida, Arthropoda, Echinodermata and Sipuncula. The results showed that a decreasing trend in the number of zoobenthos species from the fresh water area to the estuary of the Ca River. The largest number of species was shown in route 1 (Cua Hoi) with 89 species (nearly 44.7%). The lowest value of species number was seen at route 5 with 31 species (15.5%). The Crustacea group was the most predominant group, including 47 species. The H' and d indexes indicated a decreasing biodiversity level from route 5 (Hung Lam, H' = 0.9 and d = 0.75) to route 1 (Cua Hoi, H' = 2.32 and d = 1.96). The average number of zoobenthos density was 149 individuals per m2. The average value in dry season was higher than that in rainy season (151 individuals per m2 compared to 146 individuals per m2, respectively). In the dry season, the biological indexes changed mainly according to salinity and turbidity factors. Meanwhile, in rainy season, the variation of zoobenthos species related essentially to other factors, DO and salinity.
APA, Harvard, Vancouver, ISO, and other styles
9

Truong, Le Quang. "Vuong Huu Quang and his poems inspired on the ambassador trip to China." Science & Technology Development Journal - Social Sciences & Humanities 4, no. 4 (December 6, 2020): First. http://dx.doi.org/10.32508/stdjssh.v4i4.599.

Full text
Abstract:
Vuong Huu Quang 王有光, with courtesy name Dung Hoi用晦 and poetic name Te Trai 濟齋, was a high-ranked mandarin of the Nguyen Dynasty. He was born in Tan Duc Village, Tan Long District, Phien An Town, Gia Dinh Province, Southern Vietnam, into a family of the Ming-Dynasty immigrants who originated from CangZhou County, Fujian Province. Vuong Huu Quang held many important positions in the imperial court across various localities and traveled to China for diplomatic mission twice in the fifth year of Thieu Tri Emperor (1845) and from the seventh year of Thieu Tri (1847) to the first year of Tu Duc Emperor (1848). His name, however, is unfamiliar to Vietnamese modern readers due to his limited written legacy, most of which was lost in history. Researchers have known of only two steles poems he left in China, one engraved on a stele in Wuxi and the other in the Yue Fei Temple. Upon reading the old collection Viet Nam Han van Yen hanh van hien tap thanh 越南漢文燕行文獻集成, I discovered that Vuong Huu Quang and his co-worker Pham Chi Huong enjoyed writing and responding in poetic form during their diplomatic trips to China. This article introduces several more poems of Vuong Huu Quang to expand our understanding of another Southern Vietnamese poet who have been mostly covered by time, and provides a brief analysis on the poetic style that Vuong Huu Quang and Pham Chi Huong applied in portraying historical figures.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Xue-Yan, Le Huang, Jie Liu, Hai-Bo Zhang, Kun Qiu, Fang Lu, and Gao Hu. "Migration Dynamics of Fall Armyworm Spodoptera frugiperda (Smith) in the Yangtze River Delta." Insects 14, no. 2 (January 26, 2023): 127. http://dx.doi.org/10.3390/insects14020127.

Full text
Abstract:
The Yangtze River Delta, located in East China, is an important passage on the eastern pathway of the northward migration of fall armyworm Spodoptera frugiperda (Smith) in China, connecting China’s year-round breeding area and the Huang-Huai-Hai summer maize area. Clarifying the migration dynamics of S. frugiperda in the Yangtze River Delta is of great significance for the scientific control and prevention of S. frugiperda in the Yangtze River Delta, even in the Huang-Huai-Hai region and Northeast China. This study is based on the pest investigation data of S. frugiperda in the Yangtze River Delta from 2019 to 2021, combining it with the migration trajectory simulation approach and the synoptic weather analysis. The result showed that S. frugiperda migrated to the Yangtze River Delta in March or April at the earliest, and mainly migrated to the south of the Yangtze River in May, which can be migrated from Guangdong, Guangxi, Fujian, Jiangxi, Hunan and other places. In May and June, S. frugiperda migrated further into the Jiang–Huai region, and its source areas were mainly distributed in Jiangxi, Hunan, Zhejiang, Jiangsu, Anhui and Hubei provinces. In July, it mainly migrated to the north of Huai River, and the source areas of the insects were mainly distributed in Jiangsu, Anhui, Hunan, Hubei and Henan. From the south of the Yangtze River to the north of the Huai River, the source areas of S. frugiperda were constantly moving north. After breeding locally, S. frugiperda can not only migrate to other regions of the Yangtze River Delta, but also to its surrounding provinces of Jiangxi, Hunan, Hubei, Henan, Shandong and Hebei, and even cross the Shandong Peninsula into Northeast China such as Liaoning and Jilin provinces. Trajectory simulation showed that the emigrants of S. frugiperda from the Yangtze River Delta moved northward, westward and eastward as wind direction was quite diverse in June–August. This paper analyzes the migration dynamics of S. frugiperda in the Yangtze River Delta, which has important guiding significance for the monitoring, early warning and the development of scientific prevention and control strategies for whole country.
APA, Harvard, Vancouver, ISO, and other styles
11

Xu, Zhe, Hongfu Li, Xiaoshuang Xia, Bo Liu, Li Gao, Wanquan Chen, and Taiguo Liu. "SSR Genotypes of the Puccinia triticina in 15 Provinces of China Indicate Regional Migration in One Season from East to West and South to North." Agronomy 12, no. 12 (December 4, 2022): 3068. http://dx.doi.org/10.3390/agronomy12123068.

Full text
Abstract:
Leaf rust of wheat caused by Puccinia triticina (Pt) is one of the most common fungal diseases in the southwest and northwest of China, the middle and lower reaches of the Yangtze River, and the southern part of the Huang-Huai-Hai river basin. Using 13 simple sequence repeat (SSR) markers, we systematically revealed the genotypic diversities, population differentiation and reproduction of Pt isolates in 15 wheat-producing areas in China. A total of 622 isolates were divided into 3 predominant populations, including the eastern Pt populations, consisting of Pt samples from 8 eastern provinces of Beijing, Hebei, Shanxi, Shaanxi, Anhui, Shandong, Henan, and Heilongjiang; the 4 western Pt populations from Gansu, Qinghai, Sichuan, and Inner Mongolia provinces; and the bridge Pt populations including Jiangsu, Hubei, and Yunnan, which communicated the other 2 populations as a “bridge”. The pathogen transmission of eastern Pt populations was more frequent than western Pt populations. The linkage disequilibrium test indicated that the whole Pt population was in a state of linkage disequilibrium. However, populations of Beijing, Hebei, Shaanxi, Jiangsu, Henan, and Heilongjiang provinces showed obvious linkage equilibrium, while the five provinces of Qinghai, Hubei, Anhui, Shandong, and Inner Mongolia supported clonal modes of reproduction.
APA, Harvard, Vancouver, ISO, and other styles
12

Nguyen Van, Long, and Hoang Son Tong Phuoc. "Temporal changes of key marine habitats in the World Biosphere Reserve of Cu Lao Cham - Hoi An, Quang Nam province." Tạp chí Khoa học và Công nghệ Biển 21, no. 2 (June 30, 2021): 191–200. http://dx.doi.org/10.15625/1859-3097/15063.

Full text
Abstract:
Assessments of marine habitats have played an essential role in the management and sustainable uses of marine biodiversity resources. Spatial and temporal changes in distribution and area of crucial marine habitats in the World Biosphere Reserve of Cu Lao Cham - Hoi An were assessed using remote sensing technology (Landsat 5-TM, SPOT4, and AVNIR2 Sentinel 2-MS) and aerial images in combination with ground-truthing at 60 key sites in the year of 2016 and back-interpretation for the years of 2004 and 2008. This study shows some 579 ha of coral reefs, 117 ha of mangrove forest (mainly by Nypa palm), and 43 ha of seagrass beds recorded in 2016. There was some 112.5 ha, including 77.1 ha of the Nypa palm in the Thu Bon estuaries, 34.6 ha of seagrass beds (Bai Ong and Bai Huong in Cu Lao Cham islands), and 0.8 ha of coral reefs lost between 2004 and 2016 due to development of infrastructure and marine culture. The declines of the Nypa palm and the seagrass beds in the Thu Bon estuaries have been threatening to the maintenance of essential nursery grounds of target species, especially in the area surrounding the Nypa palm forest “rung dua bay mau” at Cam Thanh commune.
APA, Harvard, Vancouver, ISO, and other styles
13

Zhao, Yanxi, Dengpan Xiao, Huizi Bai, De Li Liu, Jianzhao Tang, Yongqing Qi, and Yanjun Shen. "Climate Change Impact on Yield and Water Use of Rice–Wheat Rotation System in the Huang-Huai-Hai Plain, China." Biology 11, no. 9 (August 25, 2022): 1265. http://dx.doi.org/10.3390/biology11091265.

Full text
Abstract:
Global climate change has had a significant impact on crop production and agricultural water use. Investigating different future climate scenarios and their possible impacts on crop production and water consumption is critical for proposing effective responses to climate change. In this study, based on daily downscaled climate data from 22 Global Climate Models (GCMs) provided by Coupled Model Intercomparison Project Phase 6 (CMIP6), we applied the well-validated Agricultural Production Systems sIMulator (APSIM) to simulate crop phenology, yield, and water use of the rice–wheat rotation at four representative stations (including Hefei and Shouxian stations in Anhui province and Kunshan and Xuzhou stations in Jiangsu province) across the Huang-Huai-Hai Plain, China during the 2041–2070 period (2050s) under four Shared Socioeconomic Pathways (i.e., SSP126, SSP245, SSP370, and SSP585). The results showed a significant increase in annual mean temperature (Temp) and solar radiation (Rad), and annual total precipitation (Prec) at four investigated stations, except Rad under SSP370. Climate change mainly leads to a consistent advance in wheat phenology, but inconsistent trends in rice phenology across four stations. Moreover, the reproductive growth period (RGP) of wheat was prolonged while that of rice was shorted at three of four stations. Both rice and wheat yields were negatively correlated with Temp, but positively correlated with Rad, Prec, and CO2 concentration ([CO2]). However, crop ET was positively correlated with Rad, but negatively correlated with [CO2], as elevated [CO2] decreased stomatal conductance. Moreover, the water use efficiency (WUE) of rice and wheat was negatively correlated with Temp, but positively correlated with [CO2]. Overall, our study indicated that the change in Temp, Rad, Prec, and [CO2] have different impacts on different crops and at different stations. Therefore, in the impact assessment for climate change, it is necessary to explore and analyze different crops in different regions. Additionally, our study helps to improve understanding of the impacts of climate change on crop production and water consumption and provides data support for the sustainable development of agriculture.
APA, Harvard, Vancouver, ISO, and other styles
14

NI, Qi, and Shigetomo KIKUCHI. "THE SPACE COMPOSITION AND FORM-FEATURE OF A TRADITIONAL DWELLING OF THE HUI-ZHOU DISTRICT IN CHINA : The investigation in Cheng-kan village of Hui-zhou district, Huang shan city, An hui province Part 1." Journal of Architecture and Planning (Transactions of AIJ) 69, no. 575 (January 30, 2004): 7–12. http://dx.doi.org/10.3130/aija.69.7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ducotterd, Charlotte, Olivier Le Duc, Thong Van Pham, Benjamin Leprince, Cédric Bordes, Thinh Ly Nghiêm, Phuong Ho Thu, et al. "Previously Unrecorded Invasive Species and the Unsatisfying Knowledge of Turtle Communities in Northern Vietnam." Conservation 3, no. 1 (December 26, 2022): 1–13. http://dx.doi.org/10.3390/conservation3010001.

Full text
Abstract:
According to the IUCN, Southeast Asia is the area of the world with the highest number of threatened turtle species. The current status of chelonians is particularly catastrophic in Vietnam. However, there is still a lack of field data to unambiguously support this fact for a few species. To better understand the freshwater turtle diversity and eventually undertake efficient conservation actions, we conducted surveys with local fishers using standardized questionnaires in two independent river systems in northern Vietnam. A total of 112 questionnaires were administered to as many fishers in April and October 2022. We directly observed four sympatric freshwater species (Pelodiscus sinensis, Palea steindachneri, Mauremys sinensis and Sacalia quadriocellata) in Lao Cai and Yen Bai provinces, and two species (Pelodiscus sinensis and Palea steindachneri) in Bac Giang, Hai Duong, Thai Binh, and Hung Yen provinces. Based on the interviews, we added as possible the presence of two other species (Rafetus swinhoei and Pelochelys cantorii) in each of the two study areas. Moreover, we recorded for the first time in Vietnam, two wild individuals of an invasive alien species, the Common snapping turtle (Chelydra serpentina), confirming that the distribution and ecology of turtle species in Vietnam is poorly understood. Furthermore, recent photos (year 2019) of a 38 kg softshell turtle, possibly attributable to Rafetus swinhoei, were recorded from a restaurant in the area. In conclusion, interviews with local fishers have been found to be useful for exploring the likely presence and the local distribution of the various turtle species.
APA, Harvard, Vancouver, ISO, and other styles
16

CHEN, C., G. S. ZHOU, and Y. M. PANG. "Impacts of climate change on maize and winter wheat yields in China from 1961 to 2010 based on provincial data." Journal of Agricultural Science 153, no. 5 (November 10, 2014): 825–36. http://dx.doi.org/10.1017/s0021859614001154.

Full text
Abstract:
SUMMARYThe impacts of climate change on maize and winter wheat yields in China from 1961 to 2010 were studied in the current paper, based on provincial data. The results indicated that rising average temperatures resulted in decreased maize yield in most of the study regions, and reduced maize production at a national scale by c. 3·4% relative to the average from 1961 to 2010. Moreover, the warming resulted in a decrease of winter wheat yield in the Huang-Huai-Hai and southwest regions and led to an overall loss in production of c. 5·8% at a national scale. The decrease of diurnal temperature range (DTR) affected maize yield adversely in the west and central regions, but a beneficial DTR effect was observed in the other provinces. The changes in DTR resulted in increased maize production at a national scale by c. 0·6%. However, the generally decreasing trends for DTR resulted in an increasing winter wheat yield in the northwest and south regions but a decreasing yield in the other provinces, and the production of winter wheat at a national scale was reduced by c. 2·9% because of changes in DTR. Changes in precipitation increased maize and winter wheat yields in some provinces but reduced crop yield in others. There was no significant effect of precipitation on maize production at a national scale, but the contribution of precipitation change reached c. 1·6% for winter wheat production.
APA, Harvard, Vancouver, ISO, and other styles
17

Liu, Qiong, Ruimin Li, Nan Yang, and Mengmeng Gao. "Estimation of regional groundwater resources carrying capacity in Yangtze River Economic Belt." E3S Web of Conferences 245 (2021): 02007. http://dx.doi.org/10.1051/e3sconf/202124502007.

Full text
Abstract:
It is of great significance to evaluate the groundwater resources carrying capacity, for understanding the basic situation of regional groundwater resource availability and utilization, establishing a monitoring and warning mechanism for resources and environment carrying capacity, and supporting the research oriented to national spatial planning. In this paper, groundwater resources carrying capacity is proposed based on analysis of the quantity, quality and ecological feature of groundwater in Yangtze River Economic Belt, an evaluation methodology is established respectively from background and status of carrying capacity. Results show that integrated carrying capacity is medium in this region. The number of cities with strong, medium-strong, medium, medium-weak, and weak integrated carrying capacity are 27, 28, 51, 15, and 8 respectively. Cities with strong and medium-strong integrated carrying capacity are mainly located in Middle-Lower of Yangtze River, Huang-Huai-Hai Plain and Sichuan Basin. Cities with medium-weak and weak integrated carrying capacity are mainly located in coastal areas of Jiangsu and Zhejiang provinces, Sichuan red layer area, north of Sichuan Plateau, and Jinsha River basin.
APA, Harvard, Vancouver, ISO, and other styles
18

Cao, X. C., P. T. Wu, Y. B. Wang, and X. N. Zhao. "Assessing blue and green water utilisation in wheat production of China from the perspectives of water footprint and total water use." Hydrology and Earth System Sciences 18, no. 8 (August 25, 2014): 3165–78. http://dx.doi.org/10.5194/hess-18-3165-2014.

Full text
Abstract:
Abstract. The aim of this study is to estimate the green and blue water footprint (WF) and the total water use (TWU) of wheat crop in China in both irrigated and rainfed productions. Crop evapotranspiration and water evaporation loss are both considered when calculating the water footprint in irrigated fields. We compared the water use for per-unit product between irrigated and rainfed crops and analyzed the relationship between promoting the yield and conserving water resources. The national total and per-unit-product WF of wheat production in 2010 were approximately 111.5 Gm3 (64.2% green and 35.8% blue) and 0.968 m3 kg−1, respectively. There is a large difference in the water footprint of the per-kilogram wheat product (WFP) among different provinces: the WFP is low in the provinces in and around the Huang–Huai–Hai Plain, while it is relatively high in the provinces south of the Yangtze River and in northwestern China. The major portion of WF (80.9%) comes from irrigated farmland, and the remaining 19.1% is rainfed. Green water dominates the area south of the Yangtze River, whereas low green water proportions are found in the provinces located in northern China, especially northwestern China. The national TWU and total water use of the per-kilogram wheat product (TWUP) are 142.5 Gm3 and 1.237 m3 kg−1, respectively, containing approximately 21.7% blue water percolation (BWp). The values of WFP for irrigated (WFPI) and rainfed (WFPR) crops are 0.911 and 1.202 m3 kg−1, respectively. Irrigation plays an important role in food production, promoting the wheat yield by 170% and reducing the WFP by 24% compared to those of rainfed wheat production. Due to the low irrigation efficiency, more water is needed per kilogram in irrigated farmland in many arid regions, such as the Xinjiang, Ningxia and Gansu Provinces. We divided the 30 provinces of China into three categories according to the relationship between the TWUPI (TWU for per-unit product in irrigated farmland) and TWUPR (TWU for per-unit product in rainfed farmland): (I) TWUPI < TWUPR, (II) TWUPI = TWUPR, and (III) TWUPI > TWUPR. Category II, which contains the major wheat-producing areas in the North China Plain, produces nearly 75% of the wheat of China. The double benefits of conserving water and promoting production can be achieved by irrigating wheat in Category I provinces. Nevertheless, the provinces in this category produce only 1.1% of the national wheat yield.
APA, Harvard, Vancouver, ISO, and other styles
19

Sun, Le, Congmou Zhu, Shaofeng Yuan, Lixia Yang, Shan He, and Wuyan Li. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China." International Journal of Environmental Research and Public Health 19, no. 17 (September 1, 2022): 10922. http://dx.doi.org/10.3390/ijerph191710922.

Full text
Abstract:
This paper attempts to reveal the impact and mechanisms of digital inclusive finance (DIF) on agricultural carbon emission performance (ACEP). Specifically, based on the provincial panel data in China from 2011 to 2020, a super slacks-based measure (Super SBM) model is applied to measure ACEP. The panel regression model and spatial regression model are used to empirically analyze the impact of DIF on ACEP and its mechanism. The results show that: (1) during the study period, China’s ACEP exhibited a continuous growth trend, and began to accelerate after 2017. The high-value agglomeration areas of ACEP shifted from the Huang-Huai-Hai plain and the Pearl River Delta to the coastal regions and the Yellow River basin, the provincial differences displayed an increasing trend from 2011 to 2020. (2) DIF was found to have a significant positive impact on ACEP. The main manifestation is that the development of the coverage breadth and depth of use of DIF helps to improve the ACEP. (3) The positive impact of DIF on ACEP had a significant spatial spillover effect, that is, it had a positive effect on the improvement of ACEP in the surrounding provinces. These empirical results can help policymakers better understand the contribution of DIF to low-carbon agriculture, and provide them with valuable information for the formulation of supportive policies.
APA, Harvard, Vancouver, ISO, and other styles
20

Shen, Jianfei, Erli Dan, Yalin Lu, and Yiwei Guo. "Exploratory Research on Overfertilization in Grain Production and Its Relationship with Financial Factors: Evidence from China." Sustainability 13, no. 4 (February 18, 2021): 2176. http://dx.doi.org/10.3390/su13042176.

Full text
Abstract:
Although there have been many studies on the degree of overfertilization, there are few systematic comparative analyses on the degree of overfertilization of three major grain crops (wheat, rice, and maize) over a long time span in recent years. Whereas the studies of the influence of government efforts, individual characteristics of farmers, and economic factors on farmer’s fertilization decision ignored the financial consideration of farmers. This study aims to systematically investigate the degree of overfertilization in the production of three major grain crops in 21 provinces of China from 2004 to 2018 by developing a panel-data model, and explores the impact of financial factors on overfertilization by applying Arellano-Bover/Blundell-Bond linear dynamic panel-data estimation. The results showed an upward trend in overfertilization in the production of three grain crops from 2010 to 2018, although a decline between 2007 and 2009 may indicate that the financial crisis had a short-term impact on overfertilization. Overfertilization varied across regions, and chemical fertilizers were applied most excessively in wheat production in the Huang-Huai-Hai region and in maize in Southwest China. The analysis of financial factors showed that cash earnings from wheat and maize positively affected overfertilization, whereas cash cost and farmers’ income had opposite effects. In fact, farmers value cash earnings and cash costs rather than the time value of money. In addition, the sensitivity and cautiousness of farmers regarding economic events may indicate that farmers have a certain degree of economic rationality regarding fertilizer input in several provinces, such as Anhui and Yunnan. The study provides necessary supplements to existing research on the influence factors of overfertilization and has implications for improving the design of fertilizer sales collection methods by the government and the financial service sector.
APA, Harvard, Vancouver, ISO, and other styles
21

Tian, Peng, Yongchao Liu, Jialin Li, Ruiliang Pu, Luodan Cao, Haitao Zhang, Shunyi Ai, and Yunze Yang. "Mapping Coastal Aquaculture Ponds of China Using Sentinel SAR Images in 2020 and Google Earth Engine." Remote Sensing 14, no. 21 (October 26, 2022): 5372. http://dx.doi.org/10.3390/rs14215372.

Full text
Abstract:
Aquaculture has enormous potential for ensuring global food security and has experienced rapid growth globally. Thus, the accurate monitoring and mapping of coastal aquaculture ponds is necessary for the sustainable development and efficient management of the aquaculture industry. Here, we developed a map of coastal aquaculture ponds in China using Google Earth Engine (GEE) and the ArcGIS platform, Sentinel-1 SAR image data for 2020, the Sentinel-1 Dual-Polarized Water Index (SDWI), and water frequency obtained by identifying the special object features of aquaculture ponds and postprocessing interpretation. Our map had an overall accuracy of 93%, and we found that the coastal aquaculture pond area in China reached 6937 km2 in 2020. The aquaculture pond area was highest in Shandong, Guangdong, and Jiangsu Provinces, and at the city level, Dongying, Binzhou, Tangshan, and Dalian had the most aquaculture pond area. Aquaculture ponds had spatial heterogeneity; the aquaculture pond area in north China was larger than in south China and seaside areas had more pond area than inland regions. In addition, aquaculture ponds were concentrated near river estuaries, coastal plains, and gulfs, and were most dense in the Huang-Huai-Hai Plain and Pearl River Delta. We showed that GEE cloud processing and ArcGIS local processing could facilitate the classification of coastal aquaculture ponds, which can be used to inform and improve decision-making for the spatial optimization and intelligent monitoring of coastal aquaculture, with certain potential for spatial migration.
APA, Harvard, Vancouver, ISO, and other styles
22

Hoan, Vu Thi, Ngo Thi Lu, Rodkin M. V., Nguyen Quang, and Phan Thien Huong. "Seismic activity characteristics in the East Sea area." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 3 (June 4, 2018): 240–52. http://dx.doi.org/10.15625/0866-7187/40/3/12616.

Full text
Abstract:
In this paper, seismic activity characteristics in the East Sea area was analyzed by authors on the base of the unified earthquake catalog (1900-2017), including 131505 events with magnitude 3 ≤ Mw ≤ 8.4. The seismic intensity in the East Sea during the period 1900-2017 is characterized by the earthquake representative level Mw = 4.7. The strong earthquake activity in the East Sea area clearly shows the regularity in each stage. In the period from 1900 to 2017, the East Sea area has four periods of strong earthquake activity, each stage is nearly 30 years with particular characteristics. The distribution of the maximum earthquake quantities by years has a cyclicity in all four periods. In each stage there are 1-2 strong earthquakes with Mmax ≥ 8.0. The strong earthquakes with Mmax ≥ 7.5 have occurred by a repeatable rule of 3-5 years in all four stages. This allows the prediction of the maximum earthquake repeat cycle of Mmax ≥ 7.5 in the study area is 3-5 years. In other hand, the maximum magnitude values for the East Sea region has assessed by GEV method with several different predict periods (20, 40, 60, 80, 100 years), with predicted probability 80%. We concluded that it is possible that earthquake have Mmax = 8.7 will occur in next 100 years.ReferencesBautista C.B., Bautista M.L.P., Oike K., Wu F.T., Punongbayan R.S., 2001. A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 339, 279-310.Bui Cong Que, et al., 2010. Seismic and tsunamis hazard in coastal Viet Nam. Natural Science and Technology Publishing House, 311p.Bui Van Duan, Nguyen Cong Thang, Nguyen Van Vuong, Pham Dinh Nguyen, 2013. The magnitude of the largest possible earthquake in the Muong La-Bac Yen fault zone. J. Sci. of the Earth, 35, 53-59 (in Vietnamese).Cao Dinh Trieu, Pham Nam Hung, 2008. Deep-seated fault zone presents the risk of strong earthquakes in the East and South Vietnam Sea. Scientific Report of the First National Conference on Marine Geology, Ha Long, October, 9-10, 491-497.Hsu Ya-Ju, Yu Shui Ben, Song Teh.-Ru Alex, Bacolcol Teresito, 2012. Plate coupling along the Manila subduction zone between Taiwan and northern Luzon. J. Asian Earth Sci., 51, 98-108.http://www.ioc-tsunami.org/index.php?option=com_oe&task=viewDocumentRecord&docID=16478.http://www.jcomm.info/index.php?option=com_oevàtask=viewDocumentRecordvafdocID=16484.Kirby S., Geist E., Lee W.H., Scholl D., Blakely, R., October 2005. 660 Tsunami source characterization for western Pacific subduction 661 zones: a perliminary report. Report, USGS Tsunami Subduction 662 Source Working Group.Le Duc Anh, Nguyen Hoang., Shakirov RB., Tran T.H., 2017. Geochemistry of late miocene-pleistocene basalts in the Phu Quy island area (East Vietnam Sea): Implication for mantle source feature and melt generation, Vietnam J. Earth Sci., 39, 270-288.Le Huy Minh, Frederic Masson, Alain Bourdiilon, Patrick Lassudrie Duchesne, Rolland Fleury, Jyr-ching Hu, Vu Tuan Hung, Le Truong Thanh, Nguyen Chien Thang, Nguyen Ha Thanh, 2014. GPS data continuously in Vietnam and Southeast Asia. J. Sci. of the Earth, 36, 1-13.Le Van De, 1986. Outline of tectonics of the East Vietnam sea and adjacent areas. Proc. 1st Conf. Geol. Indoch., Ho Chi Minh City, 397-404, Hanoi.Ngo T.L., Tran V.P., 2013. Development of a new algorithm for the separation of seismic and anemone groups from the earthquake list to ensure the independence of events. Journal of Marine Science and Technology, Hanoi, 13(3A), 79-85.Nguyen Dinh Xuyen., et al., 2007. Report on the implementation of the task "Earthquake scenarios for tsunamis in the South China Sea". Institute of Meteorology and Hydrology.Nguyen Hong Phuong, 2015. Estimation of seismic hazard parameters for potential tsunami genic sources in the South China Sea region.Nguyen Hong Phuong, 2001. Probabilistic Seismic Hazard Assessment Along the Southeastern Coast of Vietnam, Natural Hazards, 24, 53-74.Nguyen Hong Phuong, 2004. Earthquake risk map of Vietnam and East Sea. J. Sci. of the Earth, 26, 97-111.Nguyen Hong Phuong, Bui Cong Que, 2012. Investigation of earthquake tsunami sources, capable of affecting Vietnamese coast, Nat Hazards, 64, 311-327.Nguyen Hong Phuong, Pham The Truyen, 2014. Probabilistic Seismic Hazard Assessment for the South Central Vietnam. J. Sci. of the Earth, 36, 451-461.Nguyen Hong Phuong, Pham The Truyen, Nguyen Ta Nam, 2017. Probabilistic Seismic Hazard Assessment for the Tranh River hydropower plant No2 site, Quang nam province, Vietnam J. Earth Sci., 38(2), 188-201.Nguyen Van Luong, Bui Cong Que, Nguyen Van Duong, 2008. Tectonic stresses and modern movements in the crust of the Earth in the East Sea area, Journal of Marine Science and Technology, 46-52.Nguyen Van Luong, Duong Quoc Hung, Bui Thi Thanh and Tong Duy Cuong, 2003. Characteristics of fault systems in the East Sea area. J. Sci. of the Earth., 25, 1-8 (in Vietnamese).Nguyen Van Luong, et al., 2002. Result of establishment of the list of earthquake dynamics in the East Sea area, studies on geology and marine geophysics, VII, Hanoi.Nguyen Van Luong, et al., 2008. Tectonic seismic and geodynamic features of the South China Sea, Proceedings of the 1st National Conference on Marine Geology and Sustainable Development, 9-10, Ha Long, 498-509.Pham Van Thuc and Nguyen Thi Kim Thanh, 2004. Earthquake zone in the South China Sea and coastal areas. Journal of Geology, A series, 285, 11-12.Pham Van Thuc, 2001, Characteristics of tsunamis in the East Sea region of Vietnam. TC and CNN, TI, 2, 52-64.Phan Trong Trinh, Ngo Van Liem, Vy Quoc Hai, John Beavan, Nguyen Van Huong, Hoang Quang Vinh, Bui Van Thom, Nguyen Quang Xuyen, Nguyen Dang Tuc, Dinh Van Thuan, Nguyen Trong Tan, Nguyen Viet Thuan, Le Huy Minh, Bui Thi Thao. Nguyen Huy Thinh, Dinh Van The, Le Minh Tung, Tran Quoc Hung, Nguyen Viet Tien, 2010b. Modern tectonic movement in the East Sea and surrounding areas. Journal of Geology. Series A, 320, 9-10, Hanoi.Phan Trong Trinh, 2006. The Tsunami and December 26, 2004 in the Indian Ocean: A Warning to Vietnam. Journal of Geology, Series A, 293, Hanoi.Phan Trong Trinh, et al., 2010a. Research on the tectonic activity, modern tectonics and geodynamics of the South China Sea as a scientific basis for forecasting the types of catastrophe involved and proposed solutions prevent. KC.09.11/06-10. Institute of Geology, 446p.Phan Trong Trinh, Nguyen Van Huong, Ngo Van Liem, Tran Dinh To, Vy Quoc Hai, Hoang Quang Vinh, Bui Van Thom, Nguyen Quang Xuyen, Nguyen Viet Thuan, Bui Thi Thao, 2011. Geological and geological hazards in Vietnam's sea and nearby. J. Sci. of the Earth, 33, 443-456.Pisarenko V.F., Sornette A., Sornette D. and Rodkin M.V, 2008. New approach to the Characterization of Mmax and of the Tail of the Distribution of Earthquake Magnitudes. Pure and Applied Geophysics, 165, 847-888.Pisarenko V.F, Sornette D. and Rodkin M.V., 2010. Distribution of maximum Earthquake magnitudes in future time intervals: application to the seismicity of Japan (1923-2007). EPS (Earth, Planets and Space), 62, 567-578.Pisarenko V.F., Rodkin M.V, and Rukavishnikova T.A., 2014. Estimation of the Probability of Strongest Seismic Disasters Based on the Extreme Value Theory. Physics of the Solid Earth, 50(3), 311-324.Pisarenko V.F., Rodkin M.V. and et al., 2012. New general quantile approach to the seismic rick assessment application to the Vietnam region. //Proceedings of the International Conference on "Geophysics - Cooperation and Sustainable Development." Science and Technology Publishing House. Hanoi, 161-167.Vu Thanh Ca, 2008. Report on the project to build a map of tsunami warning for coastal areas of Vietnam. Institute of Hydrometeorology and Environment - Ministry of Natural Resources and Environment.Yingchun Liu, Angela Santos, Shuo M. Wang, Yaolin Sh, Hailing Liu, David A. Yuen, 2007. Tsunami hazards along Chinese coast from potential earthquakes in the South China Sea. Phys. Earth Planet. Interiors, 163, 233-244.Zhiguo Xu, 2015. Seismicity and Focal mechanisms in the South China Sea Region and its Tectonic Significances.
APA, Harvard, Vancouver, ISO, and other styles
23

Zhao, Yingxing, Yuanquan Chen, Hongcui Dai, Jixiao Cui, Lin Wang, and Peng Sui. "Effects of Organic Amendments on the Improvement of Soil Nutrients and Crop Yield in Sandy Soils during a 4-Year Field Experiment in Huang-Huai-Hai Plain, Northern China." Agronomy 11, no. 1 (January 15, 2021): 157. http://dx.doi.org/10.3390/agronomy11010157.

Full text
Abstract:
To address the low productivity of sandy farmlands, our study aimed to conduct a comparative study on the effects of different organic amendment (OA) inputs for the potential improvement of crop yield and soil quality in sandy alkaline farmlands through the selection of a suitable OA. This study set up straw (ST) returning as control and chemical fertilizer (CF) treatment as a side control, and chose three OAs returning as treatments, including pig manure (PM), biogas residue (BR), and straw biochar (BC), for improving soil fertility, with all amendments having matched doses of nitrogen (N). The experiment was conducted at the Wuqiao Experimental Station (37°41 N, 116°37 E) of China Agricultural University in Hebei Province, China, from October 2012 to September 2016. The cropping rotation was the winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system. Through a consecutive four-year field experiment, the principal results showed that three types of OA application significantly increased soil organic carbon from 1.46 g kg−1 to 8.24 g kg−1, soil total N from 0.21 g kg−1 to 0.64 g kg−1, soil available potassium from 55.85 mg kg−1 to 288.76 mg kg−1, and soil available phosphate from 4.86 mg kg−1 to 65.00 mg kg−1 in the 0–20 cm soil layer. The BR was the most effective in improving soil nutrients as compared with the ST. The PM and BR treatments were more conducive to promoting crop yield by 6–20% than ST, and the BC treatment significantly reduced the yield of winter wheat by 19% and summer maize by 8%. As the BR and PM treatments improved the soil nutrient content and significantly increased crop yield, these were the top choices for transforming the low-yield sandy farmlands.
APA, Harvard, Vancouver, ISO, and other styles
24

Wang, Haokun, Hong Chen, Tuyen Thi Tran, and Shuai Qin. "An Analysis of the Spatiotemporal Characteristics and Diversity of Grain Production Resource Utilization Efficiency under the Constraint of Carbon Emissions: Evidence from Major Grain-Producing Areas in China." International Journal of Environmental Research and Public Health 19, no. 13 (June 24, 2022): 7746. http://dx.doi.org/10.3390/ijerph19137746.

Full text
Abstract:
As the most important driving force for ensuring the effective supply of grain in the country, the production stability of the major grain-producing areas directly concerns the national security of China. In this paper, considering the “water–soil–energy–carbon” correlation, water, soil and energy resource factors, and carbon emission constraints were included in an index system, and the global common frontier boundary three-stage super-efficient EBM–GML model was used to measure the grain production resource utilization efficiency of the major grain-producing areas in China from 2000 to 2019. This paper also analyzed the static and dynamic spatiotemporal characteristics and the restrictions of utilization efficiency. The results showed that, under the measurement of the traditional data envelopment analysis model, the grain production resource utilization efficiency in the major producing areas is relatively high, but there is still room to improve by more than 20%, and grain production still has enormous growth potential. After excluding external environmental and random factors, it was found that the utilization efficiency of grain production resources in the major producing areas decreased, and the efficiency and ranking of provinces changed significantly. External factors inhibit pure technical efficiency and expand the scale efficiency. The utilization efficiency of Northeast China was much higher than that of the Huang-Huai-Hai region and the middle and upper reaches of the Yangtze River region, and its grain production resource allocation management had obvious advantages. The total factor productivity index of food production resources showed an upward trend as a whole, and its change was affected by both technological efficiency and technological progress, of which technological progress had the greater impact. Therefore, reducing the differences in the external environment of different regions while making adjustments in accordance with their own potential is an effective way to further improve the utilization efficiency of food production resources.
APA, Harvard, Vancouver, ISO, and other styles
25

Ta, Thi Yen, and Thi Mai Thao Pham. "Applying diversity index and dominant species in research and selection of some indigenous plant species to absorb Pb, Zn." Journal of Vietnamese Environment 8, no. 4 (January 17, 2017): 240–46. http://dx.doi.org/10.13141/jve.vol8.no4.pp240-246.

Full text
Abstract:
The study was carried out at Dai Dong and Chi Dao communes, Van Lam District, Hung Yen Province. The biological diversity indexes and dominance index of species were used to identify native plant species which have the ability to absorb Pb and Zn. The results were verified by applying methods such as plant classification, quadrat cell counting, biological indicators and chemical analysis. Results showed that there are five species of plants with the highest dominant index calculated due to number of individuals in the study area including Bidens pilosa L (33.03%), Acroceras munroanum (8.14%), Commelina coelestis (7.83%), Carex capillacea (5.41%), Ipomoea aquatic (5.26%). Verified results showed that Bidens pilosa L, Acroceras munroanum, Commelina coelestis, Ipomoea aquatic can be used to treat Pb with the absorption concentration of 380 mg/kg, 288 mg/kg, 270 mg/kg, 223 mg/kg, respectively. Only Commelina coelestis can absorb Zn with the highest concentration of 73mg/kg. In summary, Pb absorption of dominant species in the study area is higher than the absorption of Zn. Nghiên cứu được thực hiện tại hai xã Đại Đồng và xã Chỉ Đạo, huyện Văn Lâm, tỉnh Hưng Yên nhằm xác định một số loài thực vật bản địa có khả năng hấp thụ Pb, Zn bằng cách sử dụng chỉ số đa dạng sinh học và chỉ số ưu thế loài. Kết quả được kiểm chứng bằng các phương pháp như phân loại thực vật, đếm ô quadrat, sử dụng chỉ số sinh học và phân tích hóa học. Kết quả cho thấy có có năm loài thực vật có chỉ số ưu thế cao nhất tính theo số lượng cá thể trong khu vực nghiên cứu là: Đơn buốt (33,03 %), Cỏ lá tre (8,14 %), Thài lài (7,83 %), Kiết tóc (5,41 %), Rau muống (5,26 %). Kết quả phân tích kiểm chứng thấy Đơn buốt, Cỏ lá tre, Thài lài, Rau muống có khả năng xử lý Pb với giá trị lần lượt là 380 mg/kg, 288 mg/kg, 270 mg/kg, 223 mg/kg. Trong khi đó chỉ có Thài lài là có khả năng hấp thu Zn với giá trị cao nhất là 73 mg/kg. Nhìn chung khả năng hấp thu Pb của các loài ưu thế tại khu vực nghiên cứu cao hơn so với khả năng hấp thu Zn.
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, W. Q., L. R. Wu, T. G. Liu, S. C. Xu, S. L. Jin, Y. L. Peng, and B. T. Wang. "Race Dynamics, Diversity, and Virulence Evolution in Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust in China from 2003 to 2007." Plant Disease 93, no. 11 (November 2009): 1093–101. http://dx.doi.org/10.1094/pdis-93-11-1093.

Full text
Abstract:
Stripe (or yellow) rust caused by Puccinia striiformis f. sp. tritici is the most destructive foliar disease of wheat in China. The pathogen populations were analyzed for virulence evolution, complexity, phenotypic dynamics, and diversity on temporal and spatial bases. A total of 41 races were identified and characterized from 4,714 stripe rust isolates collected during 2003 through 2007 from wheat growing areas in 15 provinces in China. The races were based on avirulence/virulence patterns to 19 differential host genotypes. Chinese stripe rust population exhibited high diversity with a complex virulence structure. Comparisons using the relative Shannon's index indicated that some differences in the richness and evenness of races were present in pathogen populations within years and between regions despite a national tendency to reduced diversity over time. A noticeably increased frequency of race CYR33 (Chinese yellow rust 33) with virulence for YrSu was the major virulence change recorded in this study compared to the results on an annual basis. Isolates of Puccinia striiformis f. sp. tritici from different regions showed differences in the composition of races, distribution frequency, and diversity. The uneven distribution of major races and comparatively greater diversity in the Northwest and Southwest regions than that in the Huang-Huai-Hai region suggest that long-distance migrations of the pathogen occur from one or more over-summering areas eastward into over-wintering areas. This supports the hypothesis that southern Gansu and northwestern Sichuan comprises a “center of origin for virulence”. Mutation of virulence or avirulence for host resistance in the stripe rust fungus may be the basic cause of the occurrence of new virulent types. The subsequent dominance of certain races will vary with parasitic fitness and the opportunities to be selected through large-scale cultivation of varieties with matching resistance genes. Implications of the center of origin for virulence variation and diversity in the pathogen population and an alternative strategy for limiting virulence evolution are discussed.
APA, Harvard, Vancouver, ISO, and other styles
27

Kong, De-Zhi, Cai-Li Lin, Shao-Shuai Yu, Guo-Zhong Tian, Hai-Bin Ma, and Sheng-Jie Wang. "Molecular Diversity and Evolutionary Relatedness of Paulownia Witches’-Broom Phytoplasma in Different Geographical Distributions in China." Biology 11, no. 11 (November 3, 2022): 1611. http://dx.doi.org/10.3390/biology11111611.

Full text
Abstract:
To reveal the distribution and transmission pathway of Paulownia witches’-broom (PaWB) disease, which is caused by phytoplasmas related to genetic variation, and the adaptability to the hosts and environments of the pathogenic population in different geographical regions in China, in this study, we used ten housekeeping gene fragments, including rp, fusA, secY, tuf, secA, dnaK, rpoB, pyrG, gyrB, and ipt, for multilocus sequence typing (MLST). A total of 142 PaWB phytoplasma strains were collected from 18 provinces or municipalities. The results showed that the genetic diversity was comparatively higher among the PaWB phytoplasma strains, and substantially different from that of the other 16SrI subgroup strains. The number of gene variation sites for different housekeeping genes in the PaWB phytoplasma strains ranged from 1 to 14 SNPs. Among them, rpoB (1.47%) and dnaK (1.12%) had higher genetic variation, and rp (0.20%) had the least genetic variation. The tuf and rpoB genes showed the fixation of positively selected beneficial mutations in the PaWB phytoplasma populations, and all housekeeping genes except tuf followed the neutral evolutionary model. We found an absence of recombination among PaWB phytoplasma sequence types (STs) for each housekeeping gene except dnaK, and no evidence for such recombination events for concatenated sequences of PaWB phytoplasma strains. The 22 sequence types were identified among the concatenated sequences of seven housekeeping genes (rp, fusA, secY, secA, tuf, dnaK, and rpoB) from 105 representative strains. We analyzed all 22 STs by goeBURST algorithm, forming two clonal complexes (CCs) and three singletons. Among them, ST1, as the primary founder of CC1, had the widest geographical distribution, accounting for 72.38% of all strains, with a high frequency of shared sequence type. The results of phylogenetic analysis of the concatenated sequences further revealed that the 105 strains were clustered into two representative lineages of PaWB phytoplasma, with obvious geographical differentiation. The ST1 strains of highly homogeneous lineage-1 were a widespread and predominant population in diseased areas. Lineage-2 contained strains from Jiangxi, Fujian, and Shaanxi provinces, highlighting the close genetic relatedness of the strains in these regions, which was also consistent with the results of most single-gene phylogenetic analysis of each gene. We also found that the variability in the northwest China population was higher than in other geographical populations; the range of genetic differentiation between the south of the Yangtze River population and the Huang-huai-hai Plain (or southwest China) population was relatively large. The achieved diversity and evolution data, as well as the MLST technique, are helpful for epidemiological studies and guiding PaWB disease control decisions.
APA, Harvard, Vancouver, ISO, and other styles
28

Hens, Luc, Nguyen An Thinh, Tran Hong Hanh, Ngo Sy Cuong, Tran Dinh Lan, Nguyen Van Thanh, and Dang Thanh Le. "Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 2 (January 19, 2018): 127–53. http://dx.doi.org/10.15625/0866-7187/40/2/11107.

Full text
Abstract:
Climate change induced sea-level rise (SLR) is on its increase globally. Regionally the lowlands of China, Vietnam, Bangladesh, and islands of the Malaysian, Indonesian and Philippine archipelagos are among the world’s most threatened regions. Sea-level rise has major impacts on the ecosystems and society. It threatens coastal populations, economic activities, and fragile ecosystems as mangroves, coastal salt-marches and wetlands. This paper provides a summary of the current state of knowledge of sea level-rise and its effects on both human and natural ecosystems. The focus is on coastal urban areas and low lying deltas in South-East Asia and Vietnam, as one of the most threatened areas in the world. About 3 mm per year reflects the growing consensus on the average SLR worldwide. The trend speeds up during recent decades. The figures are subject to local, temporal and methodological variation. In Vietnam the average values of 3.3 mm per year during the 1993-2014 period are above the worldwide average. Although a basic conceptual understanding exists that the increasing global frequency of the strongest tropical cyclones is related with the increasing temperature and SLR, this relationship is insufficiently understood. Moreover the precise, complex environmental, economic, social, and health impacts are currently unclear. SLR, storms and changing precipitation patterns increase flood risks, in particular in urban areas. Part of the current scientific debate is on how urban agglomeration can be made more resilient to flood risks. Where originally mainly technical interventions dominated this discussion, it becomes increasingly clear that proactive special planning, flood defense, flood risk mitigation, flood preparation, and flood recovery are important, but costly instruments. Next to the main focus on SLR and its effects on resilience, the paper reviews main SLR associated impacts: Floods and inundation, salinization, shoreline change, and effects on mangroves and wetlands. The hazards of SLR related floods increase fastest in urban areas. This is related with both the increasing surface major cities are expected to occupy during the decades to come and the increasing coastal population. In particular Asia and its megacities in the southern part of the continent are increasingly at risk. The discussion points to complexity, inter-disciplinarity, and the related uncertainty, as core characteristics. An integrated combination of mitigation, adaptation and resilience measures is currently considered as the most indicated way to resist SLR today and in the near future.References Aerts J.C.J.H., Hassan A., Savenije H.H.G., Khan M.F., 2000. Using GIS tools and rapid assessment techniques for determining salt intrusion: Stream a river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265-273. Doi: 10.1016/S1464-1909(00)00014-9. Alongi D.M., 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349. Doi: 10.1017/S0376892902000231 Alongi D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1, 30-39. Doi: 10.1007/s404641-015-0002-x. Anderson F., Al-Thani N., 2016. Effect of sea level rise and groundwater withdrawal on seawater intrusion in the Gulf Coast aquifer: Implications for agriculture. Journal of Geoscience and Environment Protection, 4, 116-124. Doi: 10.4236/gep.2016.44015. Anguelovski I., Chu E., Carmin J., 2014. Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. Global Environmental Change, 27, 156-167. Doi: 10.1016/j.gloenvcha.2014.05.010. Arustienè J., Kriukaitè J., Satkunas J., Gregorauskas M., 2013. Climate change and groundwater - From modelling to some adaptation means in example of Klaipèda region, Lithuania. In: Climate change adaptation in practice. P. Schmidt-Thomé, J. Klein Eds. John Wiley and Sons Ltd., Chichester, UK., 157-169. Bamber J.L., Aspinall W.P., Cooke R.M., 2016. A commentary on “how to interpret expert judgement assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik S.W. Van de Wal. Climatic Change, 137, 321-328. Doi: 10.1007/s10584-016-1672-7. Barnes C., 2014. Coastal population vulnerability to sea level rise and tropical cyclone intensification under global warming. BSc-thesis. Department of Geography, University of Lethbridge, Alberta Canada. Be T.T., Sinh B.T., Miller F., 2007. Challenges to sustainable development in the Mekong Delta: Regional and national policy issues and research needs. The Sustainable Mekong Research Network, Bangkok, Thailand, 1-210. Bellard C., Leclerc C., Courchamp F., 2014. Impact of sea level rise on 10 insular biodiversity hotspots. Global Ecology and Biogeography, 23, 203-212. Doi: 10.1111/geb.12093. Berg H., Söderholm A.E., Sönderström A.S., Nguyen Thanh Tam, 2017. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong delta, Vietnam. Sustainability Science, 12, 137-154. Doi: 10.1007/s11625-016-0409-x. Bilskie M.V., Hagen S.C., Medeiros S.C., Passeri D.L., 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41, 927-934. Doi: 10.1002/2013GL058759. Binh T.N.K.D., Vromant N., Hung N.T., Hens L., Boon E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau penisula, Vietnam. Environment, Development and Sustainability, 7, 519-536. Doi: 10.1007/s10668-004-6001-z. Blankespoor B., Dasgupta S., Laplante B., 2014. Sea-level rise and coastal wetlands. Ambio, 43, 996- 005.Doi: 10.1007/s13280-014-0500-4. Brockway R., Bowers D., Hoguane A., Dove V., Vassele V., 2006. A note on salt intrusion in funnel shaped estuaries: Application to the Incomati estuary, Mozambique.Estuarine, Coastal and Shelf Science, 66, 1-5. Doi: 10.1016/j.ecss.2005.07.014. Cannaby H., Palmer M.D., Howard T., Bricheno L., Calvert D., Krijnen J., Wood R., Tinker J., Bunney C., Harle J., Saulter A., O’Neill C., Bellingham C., Lowe J., 2015. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci. Discuss, 12, 2955-3001. Doi: 10.5194/osd-12-2955-2015. Carraro C., Favero A., Massetti E., 2012. Investment in public finance in a green, low carbon economy. Energy Economics, 34, S15-S18. Castan-Broto V., Bulkeley H., 2013. A survey ofurban climate change experiments in 100 cities. Global Environmental Change, 23, 92-102. Doi: 10.1016/j.gloenvcha.2012.07.005. Cazenave A., Le Cozannet G., 2014. Sea level rise and its coastal impacts. GeoHealth, 2, 15-34. Doi: 10.1002/2013EF000188. Chu M.L., Guzman J.A., Munoz-Carpena R., Kiker G.A., Linkov I., 2014. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion and nourishment. Environmental modelling and software, 52, 111-120. Doi.org/10.1016/j.envcsoft.2013.10.020. Church J.A. et al., 2013. Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of Intergovernmental Panel on Climate Change. Eds: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Cambridge University Press, Cambridge, UK. Connell J., 2016. Last days of the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pacific Viewpoint, 57, 3-15. Doi: 10.1111/apv.12118. Dasgupta S., Laplante B., Meisner C., Wheeler, Yan J., 2009. The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379-388. Doi: 10.1007/s 10584-008-9499-5. Delbeke J., Vis P., 2015. EU climate policy explained, 136p. Routledge, Oxon, UK. DiGeorgio M., 2015. Bargaining with disaster: Flooding, climate change, and urban growth ambitions in QuyNhon, Vietnam. Public Affairs, 88, 577-597. Doi: 10.5509/2015883577. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, 2015. Enhancement of coastal protection under the context of climate change: A case study of Hai Hau coast, Vietnam. Proceedings of the 10th Asian Regional Conference of IAEG, 1-8. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, Lan Nguyen Chau, 2017. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. Journal of Coastal Conservation, 21, 47-62. Donner S.D., Webber S., 2014. Obstacles to climate change adaptation decisions: A case study of sea level rise; and coastal protection measures in Kiribati. Sustainability Science, 9, 331-345. Doi: 10.1007/s11625-014-0242-z. Driessen P.P.J., Hegger D.L.T., Bakker M.H.N., Van Renswick H.F.M.W., Kundzewicz Z.W., 2016. Toward more resilient flood risk governance. Ecology and Society, 21, 53-61. Doi: 10.5751/ES-08921-210453. Duangyiwa C., Yu D., Wilby R., Aobpaet A., 2015. Coastal flood risks in the Bangkok Metropolitan region, Thailand: Combined impacts on land subsidence, sea level rise and storm surge. American Geophysical Union, Fall meeting 2015, abstract#NH33C-1927. Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marba N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. Doi: 10.1038/nclimate1970. Erban L.E., Gorelick S.M., Zebker H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9, 1-20. Doi: 10.1088/1748-9326/9/8/084010. FAO - Food and Agriculture Organisation, 2007.The world’s mangroves 1980-2005. FAO Forestry Paper, 153, Rome, Italy. Farbotko C., 2010. Wishful sinking: Disappearing islands, climate refugees and cosmopolitan experimentation. Asia Pacific Viewpoint, 51, 47-60. Doi: 10.1111/j.1467-8373.2010.001413.x. Goltermann D., Ujeyl G., Pasche E., 2008. Making coastal cities flood resilient in the era of climate change. Proceedings of the 4th International Symposium on flood defense: Managing flood risk, reliability and vulnerability, 148-1-148-11. Toronto, Canada. Gong W., Shen J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China.Continental Shelf Research, 31, 769-788. Doi: 10.1016/j.csr.2011.01.011. Gosian L., 2014. Protect the world’s deltas. Nature, 516, 31-34. Graham S., Barnett J., Fincher R., Mortreux C., Hurlimann A., 2015. Towards fair outcomes in adaptation to sea-level rise. Climatic Change, 130, 411-424. Doi: 10.1007/s10584-014-1171-7. COASTRES-D-12-00175.1. Güneralp B., Güneralp I., Liu Y., 2015. Changing global patterns of urban expoàsure to flood and drought hazards. Global Environmental Change, 31, 217-225. Doi: 10.1016/j.gloenvcha.2015.01.002. Hallegatte S., Green C., Nicholls R.J., Corfee-Morlot J., 2013. Future flood losses in major coastal cities. Nature Climate Change, 3, 802-806. Doi: 10.1038/nclimate1979. Hamlington B.D., Strassburg M.W., Leben R.R., Han W., Nerem R.S., Kim K.-Y., 2014. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4, 782-785. Doi: 10.1038/nclimate2307. Hashimoto T.R., 2001. Environmental issues and recent infrastructure development in the Mekong Delta: Review, analysis and recommendations with particular reference to large-scale water control projects and the development of coastal areas. Working paper series (Working paper No. 4). Australian Mekong Resource Centre, University of Sydney, Australia, 1-70. Hibbert F.D., Rohling E.J., Dutton A., Williams F.H., Chutcharavan P.M., Zhao C., Tamisiea M.E., 2016. Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. Doi: 10.1016/j.quascirev.2016.04.019. Hinkel J., Lincke D., Vafeidis A., Perrette M., Nicholls R.J., Tol R.S.J., Mazeion B., Fettweis X., Ionescu C., Levermann A., 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292-3297. Doi: 10.1073/pnas.1222469111. Hinkel J., Nicholls R.J., Tol R.S.J., Wang Z.B., Hamilton J.M., Boot G., Vafeidis A.T., McFadden L., Ganapolski A., Klei R.J.Y., 2013. A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. Doi: 10.1016/j.gloplacha.2013.09.002. Huong H.T.L., Pathirana A., 2013. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci., 17, 379-394. Doi: 10.5194/hess-17-379-2013. Hurlimann A., Barnett J., Fincher R., Osbaldiston N., Montreux C., Graham S., 2014. Urban planning and sustainable adaptation to sea-level rise. Landscape and Urban Planning, 126, 84-93. Doi: 10.1016/j.landurbplan.2013.12.013. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, 2011. Climate change vulnerability and risk assessment study for Ca Mau and KienGiang provinces, Vietnam. Hanoi, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN), 250p. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, Ca Mau PPC, 2011. Climate change impact and adaptation study in The Mekong Delta - Part A: Ca Mau Atlas. Hanoi, Vietnam: Institute of Meteorology, Hydrology and Environment (IMHEN), 48p. IPCC-Intergovernmental Panel on Climate Change, 2014. Fifth assessment report. Cambridge University Press, Cambridge, UK. Jevrejeva S., Jackson L.P., Riva R.E.M., Grinsted A., Moore J.C., 2016. Coastal sea level rise with warming above 2°C. Proceedings of the National Academy of Sciences, 113, 13342-13347. Doi: 10.1073/pnas.1605312113. Junk W.J., AN S., Finlayson C.M., Gopal B., Kvet J., Mitchell S.A., Mitsch W.J., Robarts R.D., 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Science, 75, 151-167. Doi: 10.1007/s00027-012-0278-z. Jordan A., Rayner T., Schroeder H., Adger N., Anderson K., Bows A., Le Quéré C., Joshi M., Mander S., Vaughan N., Whitmarsh L., 2013. Going beyond two degrees? The risks and opportunities of alternative options. Climate Policy, 13, 751-769. Doi: 10.1080/14693062.2013.835705. Kelly P.M., Adger W.N., 2000. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47, 325-352. Doi: 10.1023/A:1005627828199. Kirwan M.L., Megonigal J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rice. Nature, 504, 53-60. Doi: 10.1038/nature12856. Koerth J., Vafeidis A.T., Hinkel J., Sterr H., 2013. What motivates coastal households to adapt pro actively to sea-level rise and increased flood risk? Regional Environmental Change, 13, 879-909. Doi: 10.1007/s10113-12-399-x. Kontgis K., Schneider A., Fox J;,Saksena S., Spencer J.H., Castrence M., 2014. Monitoring peri urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377-388. Doi: 10.1016/j.apgeogr.2014.06.029. Kopp R.E., Horton R.M., Little C.M., Mitrovica J.X., Oppenheimer M., Rasmussen D.J., Strauss B.H., Tebaldi C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383-406. Doi: 10.1002/2014EF000239. Kuenzer C., Bluemel A., Gebhardt S., Quoc T., Dech S., 2011. Remote sensing of mangrove ecosystems: A review.Remote Sensing, 3, 878-928. Doi: 10.3390/rs3050878. Lacerda G.B.M., Silva C., Pimenteira C.A.P., Kopp Jr. R.V., Grumback R., Rosa L.P., de Freitas M.A.V., 2013. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: Adaptive measures to the impacts of sea level rise. Mitigation and Adaptation Strategies for Global Change, 19, 104-1062. Doi: 10.1007/s11027-013-09459-x. Lam Dao Nguyen, Pham Van Bach, Nguyen Thanh Minh, Pham Thi Mai Thy, Hoang Phi Hung, 2011. Change detection of land use and river bank in Mekong Delta, Vietnam using time series remotely sensed data. Journal of Resources and Ecology, 2, 370-374. Doi: 10.3969/j.issn.1674-764x.2011.04.011. Lang N.T., Ky B.X., Kobayashi H., Buu B.C., 2004. Development of salt tolerant varieties in the Mekong delta. JIRCAS Project, Can Tho University, Can Tho, Vietnam, 152. Le Cozannet G., Rohmer J., Cazenave A., Idier D., Van de Wal R., de Winter R., Pedreros R., Balouin Y., Vinchon C., Oliveros C., 2015. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 44-56. Doi: 10.1016/j.envsoft.2015.07.021. Le Cozannet G., Manceau J.-C., Rohmer J., 2017. Bounding probabilistic sea-level projections with the framework of the possible theory. Environmental Letters Research, 12, 12-14. Doi.org/10.1088/1748-9326/aa5528.Chikamoto Y., 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888-892. Doi: 10.1038/nclimate2330. Lovelock C.E., Cahoon D.R., Friess D.A., Gutenspergen G.R., Krauss K.W., Reef R., Rogers K., Saunders M.L., Sidik F., Swales A., Saintilan N., Le Xuan Tuyen, Tran Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559-563. Doi: 10.1038/nature15538. MA Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Current state and trends. Island Press, Washington DC, 266p. Masterson J.P., Fienen M.N., Thieler E.R., Gesch D.B., Gutierrez B.T., Plant N.G., 2014. Effects of sea level rise on barrier island groundwater system dynamics - ecohydrological implications. Ecohydrology, 7, 1064-1071. Doi: 10.1002/eco.1442. McGanahan G., Balk D., Anderson B., 2007. The rising tide: Assessing the risks of climate changes and human settlements in low elevation coastal zones.Environment and urbanization, 19, 17-37. Doi: 10.1177/095624780707960. McIvor A., Möller I., Spencer T., Spalding M., 2012. Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International, 1-27. Merryn T., Pidgeon N., Whitmarsh L., Ballenger R., 2016. Expert judgements of sea-level rise at the local scale. Journal of Risk Research, 19, 664-685. Doi.org/10.1080/13669877.2015.1043568. Monioudi I.N., Velegrakis A.F., Chatzipavlis A.E., Rigos A., Karambas T., Vousdoukas M.I., Hasiotis T., Koukourouvli N., Peduzzi P., Manoutsoglou E., Poulos S.E., Collins M.B., 2017. Assessment of island beach erosion due to sea level rise: The case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci., 17, 449-466. Doi: 10.5194/nhess-17-449-2017. MONRE - Ministry of Natural Resources and Environment, 2016. Scenarios of climate change and sea level rise for Vietnam. Publishing House of Environmental Resources and Maps Vietnam, Hanoi, 188p. Montz B.E., Tobin G.A., Hagelman III R.R., 2017. Natural hazards. Explanation and integration. The Guilford Press, NY, 445p. Morgan L.K., Werner A.D., 2014. Water intrusion vulnerability for freshwater lenses near islands. Journal of Hydrology, 508, 322-327. Doi: 10.1016/j.jhydrol.2013.11.002. Muis S., Güneralp B., Jongman B., Aerts J.C.H.J., Ward P.J., 2015. Science of the Total Environment, 538, 445-457. Doi: 10.1016/j.scitotenv.2015.08.068. Murray N.J., Clemens R.S., Phinn S.R., Possingham H.P., Fuller R.A., 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and Environment, 12, 267-272. Doi: 10.1890/130260. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding. A global assessment. Plos One, 10, 1-22. Doi: 10.1371/journal.pone.0118571. Nguyen A. Duoc, Savenije H. H., 2006. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 10, 743-754. Doi: 10.5194/hess-10-743-2006. Nguyen An Thinh, Nguyen Ngoc Thanh, Luong Thi Tuyen, Luc Hens, 2017. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An, World Heritage site. Journal of Environment, Development and Sustainability. Nguyen An Thinh, Luc Hens (Eds.), 2018. Human ecology of climate change associated disasters in Vietnam: Risks for nature and humans in lowland and upland areas. Springer Verlag, Berlin.Nguyen An Thinh, Vu Anh Dung, Vu Van Phai, Nguyen Ngoc Thanh, Pham Minh Tam, Nguyen Thi Thuy Hang, Le Trinh Hai, Nguyen Viet Thanh, Hoang Khac Lich, Vu Duc Thanh, Nguyen Song Tung, Luong Thi Tuyen, Trinh Phuong Ngoc, Luc Hens, 2017. Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam). Environ Dev Sustain, 19, 745-767. Doi: 10.1007/s/10668-016-9761-3. Nguyen Van Hoang, 2017. Potential for desalinization of brackish groundwater aquifer under a background of rising sea level via salt-intrusion prevention river gates in the coastal area of the Red River delta, Vietnam. Environment, Development and Sustainability. Nguyen Tho, Vromant N., Nguyen Thanh Hung, Hens L., 2008. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environmental Geology, 54, 1739-1746. Doi: 10.1007/s00254-007-0951-z. Nguyen Thang T.X., Woodroffe C.D., 2016. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River delta. Sustainability Science, 11, 645-659. Doi: 10.1007/s11625-015-0336-2. Nicholls N.N., Hoozemans F.M.J., Marchand M., Analyzing flood risk and wetland losses due to the global sea-level rise: Regional and global analyses.Global Environmental Change, 9, S69-S87. Doi: 10.1016/s0959-3780(99)00019-9. Phan Minh Thu, 2006. Application of remote sensing and GIS tools for recognizing changes of mangrove forests in Ca Mau province. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh City, Vietnam, 9-11 November, 1-17. Reise K., 2017. Facing the third dimension in coastal flatlands.Global sea level rise and the need for coastal transformations. Gaia, 26, 89-93. Renaud F.G., Le Thi Thu Huong, Lindener C., Vo Thi Guong, Sebesvari Z., 2015. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre province, Mekong Delta. Climatic Change, 133, 69-84. Doi: 10.1007/s10584-014-1113-4. Serra P., Pons X., Sauri D., 2008. Land cover and land use in a Mediterranean landscape. Applied Geography, 28, 189-209. Shearman P., Bryan J., Walsh J.P., 2013.Trends in deltaic change over three decades in the Asia-Pacific Region. Journal of Coastal Research, 29, 1169-1183. Doi: 10.2112/JCOASTRES-D-12-00120.1. SIWRR-Southern Institute of Water Resources Research, 2016. Annual Report. Ministry of Agriculture and Rural Development, Ho Chi Minh City, 1-19. Slangen A.B.A., Katsman C.A., Van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M., 2012. Towards regional projections of twenty-first century sea-level change based on IPCC RES scenarios. Climate Dynamics, 38, 1191-1209. Doi: 10.1007/s00382-011-1057-6. Spencer T., Schuerch M., Nicholls R.J., Hinkel J., Lincke D., Vafeidis A.T., Reef R., McFadden L., Brown S., 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Global and Planetary Change, 139, 15-30. Doi:10.1016/j.gloplacha.2015.12.018. Stammer D., Cazenave A., Ponte R.M., Tamisiea M.E., 2013. Causes of contemporary regional sea level changes. Annual Review of Marine Science, 5, 21-46. Doi: 10.1146/annurev-marine-121211-172406. Tett P., Mee L., 2015. Scenarios explored with Delphi. In: Coastal zones ecosystems services. Eds., Springer, Berlin, Germany, 127-144. Tran Hong Hanh, 2017. Land use dynamics, its drivers and consequences in the Ca Mau province, Mekong delta, Vietnam. PhD dissertation, 191p. VUBPRESS Brussels University Press, ISBN 9789057186226, Brussels, Belgium. Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, Mai Van Khiem, Nguyen Xuan Hien, Doan Ha Phong, 2016. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam. Tran Hong Hanh, Tran Thuc, Kervyn M., 2015. Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau province, Vietnam. Remote Sensing, 7, 2899-2925. Doi: 10.1007/s00254-007-0951-z Van Lavieren H., Spalding M., Alongi D., Kainuma M., Clüsener-Godt M., Adeel Z., 2012. Securing the future of Mangroves. The United Nations University, Okinawa, Japan, 53, 1-56. Water Resources Directorate. Ministry of Agriculture and Rural Development, 2016. Available online: http://www.tongcucthuyloi.gov.vn/Tin-tuc-Su-kien/Tin-tuc-su-kien-tong-hop/catid/12/item/2670/xam-nhap-man-vung-dong-bang-song-cuu-long--2015---2016---han-han-o-mien-trung--tay-nguyen-va-giai-phap-khac-phuc. Last accessed on: 30/9/2016. Webster P.J., Holland G.J., Curry J.A., Chang H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Doi: 10.1126/science.1116448. Were K.O., Dick O.B., Singh B.R., 2013. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage Basin, Kenya. Applied Geography, 41, 75-86. Williams G.A., Helmuth B., Russel B.D., Dong W.-Y., Thiyagarajan V., Seuront L., 2016. Meeting the climate change challenge: Pressing issues in southern China an SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373-381. Doi: 10.1016/j.rsma.2016.07.002. Woodroffe C.D., Rogers K., McKee K.L., Lovdelock C.E., Mendelssohn I.A., Saintilan N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. Doi: 10.1146/annurev-marine-122414-034025.
APA, Harvard, Vancouver, ISO, and other styles
29

Lam, Hoang Quoc, and Nguyen An Thinh. "NGHIÊN CỨU MÂU THUẪN VÀ LỰA CHỌN ƯU TIÊN TRONG QUY HOẠCH TỔNG HỢP KHÔNG GIAN VEN BIỂN HUYỆN HẢI HẬU - NGHĨA HƯNG TỈNH NAM ĐỊNH." Tạp chí Khoa học và Công nghệ biển 20, no. 1 (May 5, 2020). http://dx.doi.org/10.15625/1859-3097/20/1/13294.

Full text
Abstract:
Hai Hau - Nghia Hung are two coastal districts in the Southeast of Nam Dinh province with total area of 35,652.29 km2. Located in the middle between the Southern provinces of the Red river delta and the North Central provinces, Hai Hau and Nghia Hung are about 100 km from Hanoi along National Route 1A and 80 km from Hai Phong, in an area directly affected by the Hanoi - Hai Phong - Quang Ninh growth triangle. The two districts have an approximately 47 km coastline accounting for over 65% of the coastline of the province. Along the coastline there are four rivers: Red river, So river, Ninh Co river and Day river emptying into the sea through the estuaries: Ba Lat, Ha Lan, Ninh Co and Day, which facilitate the development in industry, agriculture, sea ports, trade, tourism... This is also a region with high-speed economic development and a series of plannings. Thus, a number of conflicts in exploiting and using natural resources and environmental protection have been raised, leading to destroyed sceneries, lost ecological balance, and becoming an anxious problem. This paper presents experimental results in defining the conflicts and priorities between sectors and economic fields in integrated coastal space planning of Hai Hau - Nghia Hung districts to select the economic sectors that have the most potential and advantages. Therefore, it will be appropriate in space usage in exploiting and using natural resources and environmental protection, which will provide the basis for the development of a sustainable marine economy.
APA, Harvard, Vancouver, ISO, and other styles
30

Myint, Ohnmar, Nguyen Thi Hoa, Naoyuki Fuke, Apisit Pornthummawat, Nguyen Thi Lan, Takuya Hirai, Ayako Yoshida, and Ryoji Yamaguchi. "A persistent epidemic of porcine epidemic diarrhoea virus infection by serological survey of commercial pig farms in northern Vietnam." BMC Veterinary Research 17, no. 1 (July 5, 2021). http://dx.doi.org/10.1186/s12917-021-02941-7.

Full text
Abstract:
Abstract Background Porcine epidemic diarrhoea (PED) is a highly contagious infectious disease with negative economic impacts on the swine industry. PED outbreaks were reported from 2009 to 2015, but sporadic infection has been observed until now in Vietnam. However, the seroprevalence of PEDV infection has not yet been reported for commercial pig farms in Vietnam. The aim of this study was to assess the seroprevalence of PEDV infection in Vietnamese pig farms to reveal the endemic status of PEDV in northern Vietnam. Results A serological survey of PEDV infection was carried out using indirect ELISA in commercial pig farms in Hai Duong, Hung Yen and Thai Binh provinces in northern Vietnam in 2019. Twenty sera were randomly collected from each of 10 commercial pig farms, from each province; none of the farms had vaccinated for PEDV. Serological evidence of natural PEDV infection, expressed as a high antibody titre, was observed in the pig farms in all 3 provinces. The OD values were significantly higher (p < 0.001) for pig sera from Thai Binh than from Hai Duong and Hung Yen. No significant differences (p > 0.05) were detected for seropositivity to PEDV based on locality, age, pig breed and farm size. Conclusions This study indicates serological evidence of natural PEDV infection with high antibody titre in commercial pig farms. PEDV infection was widespread among the pig population in these 3 provinces and that good management and strict biosecurity are needed at these pig farms.
APA, Harvard, Vancouver, ISO, and other styles
31

Ling, Minhua, Hongbao Han, Xingling Wei, and Cuimei Lv. "Temporal and spatial distributions of precipitation on the Huang-Huai-Hai Plain during 1960–2019, China." Journal of Water and Climate Change, March 2, 2021. http://dx.doi.org/10.2166/wcc.2021.313.

Full text
Abstract:
Abstract The Huang-Huai-Hai Plain is an important commercial grain production base in China. Understanding the temporal and spatial variations in precipitation can help prevent drought and flood disasters and ensure food security. Based on the precipitation data for the Huang-Huai-Hai Plain from 1960 to 2019, this study analysed the spatiotemporal distribution of total precipitation at different time scales using the Mann–Kendall test, the wavelet analysis, the empirical orthogonal function (EOF), and the centre-of-gravity model. The results were as follows: (1) The winter precipitation showed a significant upward trend on the Huang-Huai-Hai Plain, while other seasonal trends were not significant. (2) The precipitation on the Huang-Huai-Hai Plain shows a zonal decreasing distribution from southeast to northwest. (3) The application of the EOF method revealed the temporal and spatial distribution characteristics of the precipitation field. The cumulative variance contribution rate of the first two eigenvectors reached 51.5%, revealing two typical distribution fields, namely a ‘global pattern’ and a ‘north-south pattern’. The ‘global pattern’ is the decisive mode, indicating that precipitation on the Huang-Huai-Hai Plain is affected by large-scale weather systems. (4) The annual precipitation barycentres on the Huang-Huai-Hai Plain were located in Jining city and Taian city, Shandong Province, and the spatial distribution pattern was north-south. The annual precipitation barycentres tended to move southwest, but the trend was not obvious. The annual precipitation barycentre is expected to continue to shift to the north in 2020.
APA, Harvard, Vancouver, ISO, and other styles
32

Nguyễn Đăng, Nhật, Tiến Đỗ Thanh, Hiền Hiền, Minh Nguyễn Tử, and Đàn Trương Văn. "ĐÁNH GIÁ HIỆU QUẢ KINH TẾ VÀ MÔI TRƯỜNG CỦA VIỆC SỬ DỤNG ĐÈN LED CHUYÊN DỤNG TRONG CÂU MỰC TẠI XÃ HẢI DƯƠNG, THỊ XÃ HƯƠNG TRÀ, TỈNH THỪA THIÊN HUẾ." Tạp chí Khoa học và công nghệ nông nghiệp Trường Đại học Nông Lâm Huế 5, no. 2 (2021). http://dx.doi.org/10.46826/huaf-jasat.v5n2y2021.463.

Full text
Abstract:
Nghiên cứu nhằm đánh giá hiệu quả kinh tế và môi trường của việc sử dụng hệ đèn LED chuyên dụng trên các thuyền câu mực so với hệ đèn LED tự chế tại xã Hải Dương, thị xã Hương Trà, tỉnh Thừa Thiên Huế. Kết quả cho thấy, chi phí trung bình của thuyền dùng đèn LED chuyên dụng (98,89 ± 2,47 ngàn đồng) thấp hơn thuyền dùng đèn LED tự chế (103,89 ± 2,17 ngàn đồng), trong khi, lợi nhuận trung bình 1 chuyến của thuyền khai thác bằng đèn LED chuyên dụng (946,8 ± 44,31 ngàn đồng) cao hơn đèn LED tự chế (572,4 ± 27,04 ngàn đồng) và tỷ suất lợi nhuận của mô hình khai thác bằng đèn LED chuyên dụng (2,04 ± 0,09) cao hơn so với đèn LED tự chế (1,19 ± 0,06). Sử dụng đèn LED chuyên dụng lượng phát thải khí CO2 hàng năm giảm trên 58 tấn CO2/năm, điều đó cho thấy hiệu quả bảo vệ môi trường cũng như là bảo vệ sức khỏe của con người khi sử dụng đèn LED chuyên dụng cao trong câu mực.
APA, Harvard, Vancouver, ISO, and other styles
33

Hong Hanh, Nguyen Thi. "Study on quantifying carbon in the soil of mangrove plantation in Nam Hung community, Tien Hai district, Thai Binh province." TAP CHI SINH HOC 36, no. 1 (August 23, 2014). http://dx.doi.org/10.15625/0866-7160/v36n1.4517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shao, Hudie, Qing Xue, Ke Yao, Jiangkuan Cui, Wenkun Huang, Lingan Kong, Chuanren Li, et al. "Origin and Phylogeography of Chinese Cereal Cyst Nematode Heterodera avenae Revealed by Mitochondrial COI Sequences." Phytopathology®, May 4, 2022. http://dx.doi.org/10.1094/phyto-12-21-0532-r.

Full text
Abstract:
Heterodera avenae, a globally distributed plant-parasitic nematode, is one of the most significant pests on cereal crops. In China, it is widely distributed in cereal-growing areas of 16 provinces and causes serious yield losses. In the present study, a total of 98 populations of H. avenae were collected from major wheat-growing regions in China and six other countries. The mitochondrial COI genes were amplified and analyzed. Forty-one mitochondrial COI haplotypes were identified, suggesting a high genetic diversity and endemism level of H. avenae in China. Phylogenetic analysis showed that H. avenae populations in China were divided into four clades. Significant evolutionary and genetic differences were found between Chinese (except Hubei) and foreign populations. Hap1, the most widely distributed haplotype, was considered to be a separate evolutionary origin in China. The gene flow of H. avenae from the northwestern region to the north China region and Huang-Huai-Hai region was significant, so as the direction between north China and Huang-Huai-Hai region. We speculate that water flowing from the Yellow River and mechanical harvesters promoted gene exchange among these groups. A distance-based redundancy analysis showed that genetic distances observed among H. avenae populations were explained foremost not only by geographic distance but also by temperature and precipitation. This study provides theoretical support for the origin and spread of H. avenae populations in China and elsewhere in the world.
APA, Harvard, Vancouver, ISO, and other styles
35

Du, Zhiwei, Yuexian Liu, Jingtao Ding, Guoyuan Zou, Zhengyi Hu, and Ruili Zhang. "Evaluation of the local decoupling of livestock and cropland in the Huang-Huai-Hai region." Environmental Science and Pollution Research, July 25, 2022. http://dx.doi.org/10.1007/s11356-022-21993-2.

Full text
Abstract:
AbstractDecoupling livestock and cropland production at regional scale have poor resource-use efficiency and detrimental effects on environment in China. It is therefore necessary to identify the decoupled livestock and cropland production system and make recommendations to recouple livestock and cropland. This study used the indexes of land carrying capacity (LCC), animal manure absorption capacity (AMAC), and risk warning value (R) to evaluate the coupling between cropland and livestock at the local scale in the Huang-Huai-Hai region. The decoupling of cropland and livestock in the case of Beijing (SY_BJ) was found assessed with lower theoretical value of LCC and higher theoretical value of AMAC compared with local actual situation, categorized as grade IV with a high R value (above 1). Contrary results were found that the livestock and cropland production systems were coupled at the local scale in the cases located in Hebei and Shandong Provinces, categorized as grade I or II. Two measures were used to optimize the decoupled case by adjusting the ratio of manure to fertilization or reducing breeding quantity. The decoupled case of SY_BJ could be optimized by adjusting the ratio of manure to fertilization (95.34% based on nitrogen and 81.97% based on phosphorus, respectively). The breeding quantity in this case should be reduced by at least 46% to recouple the livestock and cropland at the local level to manage nutrient surpluses from livestock and poultry breeding.
APA, Harvard, Vancouver, ISO, and other styles
36

Hoang, Nguyen Van, Le Quang Dao, Dong Thu Van, Pham Lan Hoa, and Vu Dinh Hai. "Fundamentals of Delineation of Area of Mineral and hot Water Potential in Duyen Hai area, Hung Ha district, Thai Binh Province, Viet Nam for Exploration Purpose." VNU Journal of Science: Earth and Environmental Sciences 36, no. 2 (June 24, 2020). http://dx.doi.org/10.25073/2588-1094/vnuees.4468.

Full text
Abstract:
Mineral and hot water is a valuable resource that can be used for nursing and physiotherapy, making bottled water, making beverage and healing, exploiting useful minerals, energy extraction, even cultivation spirulina and other purposes. Hot groundwater was discovered during the 90s of the 20th century in Duyen Hai commune, Hung Ha district, Thai Binh province, but no exploration and evaluation studies were conducted to determine the potential of the mineral and hot water in the area. Spatial distribution of groundwater temperature and the total mineralization in the study area of the mineral and hot water occurrence and its surrounding area has allowed to identify the area of mineral and hot water origin, and that the hot water belongs to average hot water with a temperature of about 49 degrees Celsius. Analyzing the tectonic structure has showed that the mineral and hot water is formed at an area surrounded by three class-2 faults, which have a vertical displacement amplitude of 100 m - 1,000 m and a destructive zone of over 100 m. This is an area with favorable conditions to bring geothermal source and dissolved minerals in surrounding rocks to groundwater in the above aquifers. The approach presented in the paper can be applied to conduct research on potential mineral and hot water in other areas: determine values of some mineral and hot water parameters such as temperature and TDS, compile maps of spatial distribution of the parameters, clarify characteristics of tectonic structure relevant to anomaly of high temperature and TDS.
APA, Harvard, Vancouver, ISO, and other styles
37

Lee, Changyoung, Tran The Bach, Do Van Hai, Bui Hong Quang, Bui Thu Ha, and Nguyen Trung Thanh. "Assesment of Bioactivity of Some Plant Species in Bac Huong Hoa Nature Reserve and its near Places of Quang Tri Province." VNU Journal of Science: Natural Sciences and Technology 35, no. 1 (March 27, 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4873.

Full text
Abstract:
Plant species were collected inBac Huong Hoa Nature Reserve and its near places to study the bioactivity.15 species anti cancer cell lines such as AGS, A549, HCT116, MCF-7, HL60, SNU-1 , HT-1080 . 7 species anti 1 cancer cell line (Strophanthus perakensis Scort. ex King & Gamble, Ilex cochinchinensis (Lour.) Loes., Garcinia benthamii Pierre, Ostodes paniculata Blume, Syzygium syzygioides (Miq.) Merr. & L.M. Perry, Camellia furfuracea (Merr.) Cohen-Stuart, Linostoma decandrum (Roxb.) Wall. ex Meisn.); 4 species anti 2 cancer cell lines (Tithonia diversifolia (Hemsl.) A. Gray, Illigera parviflora Dunn, Callicarpa arborea Roxb., Alpinia napoensis H. Dong & G.J. Xu); 3 species anti 3 cancer cell lines (Annona glabra L., Trevesia sphaerocarpa Grushv. & N. Skvorts., Myrsine seguinii H. Lév.); 1 species anti 4 cancer cell lines (Casearia membranacea Hance); Some species anti AGS-stomach cancer cell line very well: Annona glabra L., Tithonia diversifolia (Hemsl.) A. Gray, Illigera parviflora Dunn; 1 species anti A549-lung cancer very well: Myrsine seguinii H. Lév.15 species belong to 15 families: Annonaceae, Apocynaceae, Aquifoliaceae, Araliaceae, Asteraceae, Clusiaceae, Euphorbiaceae, Flacourtiaceae, Hernandiaceae, Verbenaceae, Myrsinaceae, Myrtaceae, Theaceae, Thymelaeaceae, Zingiberaceae. 50 species belong to 30 families with anti-inflamatory activities, 5 species with high anti-inflamatory activities are Myrsine seguinii Levl. (Myrsinaceae), Croton kongensis Gagnep. (Euphorbiaceae), Ilex cochinchinensis (Lour.) Loes. (Aquifoliaceae), Trevesia sphaerocarpa Grushv. & N. Skvorts. (Araliaceae) and Garcinia benthamii Pierre (Clusiaceae). The above informations are used to orient the study on medicinal plants in Bac Huong Hoa Nature Reserve and remedies of Van Kieu ethnic group. Keywords Bac Huong Hoa,Bioactivity, Plants,Van Kieu References [1] Nguyễn Tiến Bân (chủ biên) và cs, Danh lục các loài thực vật Việt Nam, tập 2, 3, Nxb Nông nghiệp, Hà Nội, 2003 - 2005.[2] Phạm Hoàng Hộ, Cây cỏ Việt Nam(3 quyển), Nxb Trẻ, Thành phố Hồ Chí Minh, 1999 - 2000.[3] Nguyễn Nghĩa Thìn, Các phương pháp nghiên cứu thực vật,Nxb Đại học Quốc gia Hà Nội, Hà Nội, 2007.[4] Nguyễn Thị Duyên, Nghiên cứu thành phần hóa học và tác dụng sinh học của cây Bảy lá một hoa - Paris polyphyllavar. chinensis Franchet thu thập tại Việt Nam, Luận án Tiến sĩ hóa học, 2017.[5] Phạm Đức Thắng, Nghiên cứu cấu trúc và hoạt tính sinh học một số hợp chất phân lập từ cây cọ hạ long - Livistona halongensisT.H. Nguyen & Kiew và cây Rau má - Centella asiatica(Linn.) Urban, Luận án tiến sĩ hóa học, 2012.[6] Mai Hùng Thanh Tùng, Nghiên cứu thành phần hóa học và hoạt tính sinh học của hai loài Khổ sâm mềm - Brucea mollisWall. ex Kurz và Cơm rượu trái hẹp – Glycosmis stenocarpa(Drake) Guillaum) ở Việt Nam, Luận án tiến sĩ hóa học, 2012.[7] Tôn Nữ Liên Hương, Khảo sát thành phần hóa học và một số hoạt tính sinh học của hai cây Rau má lá sen -Hydrocotyle bonariensisComm. ex Lam. và Hydrocotyle vulgarisL. (Apiaceae), Luận án tiến sĩ hóa học, 2013.[8] K.H. Kim, E.J. Kim, M.J. Kwun, T.T. Bach, S.M. Eum, J.Y. Choi, S. Cho, S.J. Kim, S.I. Jeong, M. Joo, Suppression of lung inflammation by the methanol extract of Spilanthes acmella Murray is related to differential regulation of NF-κB and Nrf2, Journal of Ethnopharmacology 217 (2018) 89.
APA, Harvard, Vancouver, ISO, and other styles
38

CHEN, TRAN VAN, NGUYEN DUC TUAN, NGUYEN THANH TRIET, NGUYEN HOANG AN, PHAN THI THAO NGUYEN, NGUYEN THI THANH HAI, NGUYEN THANH TO NHI, et al. "Morphological and molecular characterization of Distichochlamys citrea M.F. Newman in Bach Ma National Park, Thua Thien Hue Province, Vietnam." Biodiversitas Journal of Biological Diversity 23, no. 4 (April 11, 2022). http://dx.doi.org/10.13057/biodiv/d230442.

Full text
Abstract:
Abstract. Chen TV, Tuan ND, Triet NT, An NH, Nguyen PTT, Hai NTT, Nhi NTT, Co NQ, Nhi HTH, Huong HV, Phuong TTB, Nhung NTA. 2022. Morphological and molecular characterization of Distichochlamys citrea M.F. Newman in Bach Ma National Park, Thua Thien Hue Province, Vietnam. Biodiversitas 23: 2066-2079. Distichochlamys citrea (Black Ginger or gung den) is a medicinal plant endemic to Vietnam. However, this species is not easily identified due to the lack of a detailed description. Therefore, this study aimed to characterize morphological and molecular aspects of D. citrea from Bach Ma National Park, Vietnam. Six representative plants were selected for the following analyses. Macromorphological features were observed and compared with previous studies. The rhizomes, roots, petioles, and leaves were then histologically analyzed using iodine green-carmine staining. The ground rhizomes and leaves were also microscopically examined for powder characteristics. Finally, the D. citrea DNA barcode was amplified by Internal Transcribe Spacer (ITS) primers. Macromorphologically, D. citrea differs from other Distichochlamys species. Black Ginger, particularly, has elongated rhizomes (with scars from the shoots of previous years), green leaves, spread inflorescences, and yellow labellum (with deep slits). Additionally, D. citrea’s micromorphological structures (epidermis, exodermis, hypodermis, cortex, endodermis, and root pith) are similar to the genus Zingiber. However, the absence of calcium oxalate and silica crystals in the root is unique and can be used to distinguish this plant from other Zingiberaceae members. The sequenced amplicons (96.54% similar to Genbank's D. citrea ITS) demonstrated the ITS marker’s ability to identify Black Ginger.
APA, Harvard, Vancouver, ISO, and other styles
39

CHEN, TRAN VAN, NGUYEN DUC TUAN, NGUYEN THANH TRIET, NGUYEN HOANG AN, PHAN THI THAO NGUYEN, NGUYEN THI THANH HAI, NGUYEN THANH TO NHI, et al. "Morphological and molecular characterization of Distichochlamys citrea M.F. Newman in Bach Ma National Park, Thua Thien Hue Province, Vietnam." Biodiversitas Journal of Biological Diversity 23, no. 4 (April 11, 2022). http://dx.doi.org/10.13057/biodiv/d230442.

Full text
Abstract:
Abstract. Chen TV, Tuan ND, Triet NT, An NH, Nguyen PTT, Hai NTT, Nhi NTT, Co NQ, Nhi HTH, Huong HV, Phuong TTB, Nhung NTA. 2022. Morphological and molecular characterization of Distichochlamys citrea M.F. Newman in Bach Ma National Park, Thua Thien Hue Province, Vietnam. Biodiversitas 23: 2066-2079. Distichochlamys citrea (Black Ginger or gung den) is a medicinal plant endemic to Vietnam. However, this species is not easily identified due to the lack of a detailed description. Therefore, this study aimed to characterize morphological and molecular aspects of D. citrea from Bach Ma National Park, Vietnam. Six representative plants were selected for the following analyses. Macromorphological features were observed and compared with previous studies. The rhizomes, roots, petioles, and leaves were then histologically analyzed using iodine green-carmine staining. The ground rhizomes and leaves were also microscopically examined for powder characteristics. Finally, the D. citrea DNA barcode was amplified by Internal Transcribe Spacer (ITS) primers. Macromorphologically, D. citrea differs from other Distichochlamys species. Black Ginger, particularly, has elongated rhizomes (with scars from the shoots of previous years), green leaves, spread inflorescences, and yellow labellum (with deep slits). Additionally, D. citrea’s micromorphological structures (epidermis, exodermis, hypodermis, cortex, endodermis, and root pith) are similar to the genus Zingiber. However, the absence of calcium oxalate and silica crystals in the root is unique and can be used to distinguish this plant from other Zingiberaceae members. The sequenced amplicons (96.54% similar to Genbank's D. citrea ITS) demonstrated the ITS marker’s ability to identify Black Ginger.
APA, Harvard, Vancouver, ISO, and other styles
40

Hieu, Tran Trung. "Organizing Bilingual Biology Lessons to Develop English Skills in High School Students." VNU Journal of Science: Education Research 34, no. 2 (May 18, 2018). http://dx.doi.org/10.25073/2588-1159/vnuer.4131.

Full text
Abstract:
English is one of the most vital and necessary tools for people’s successes in many aspects of life. Therefore, building good ways to develop English skills in students is an urgent demand. Organizing English-Vietnamese bilingual lesson is interpreted as educational method in which a foreign language enrichment measure packaged into content teaching, so it is one of the effective ways to improve this skill for students. By investigating 457 students and 27 high school biology teachers in An Giang province, the study pointed out two issues of the reality of using English in biology teaching in high schools: (1) Teachers have rarely used English in teaching activities, (2) Students’ English ability has been really weak. The study has built up the processes of organizing an English-Vietnamese bilingual lesson. The paper demonstrated that high school students’ English ability and qualification has been improved by using these proposed processes. Keywords Bilingual biology lessons, bilingual teaching, English ability, biology teaching References Dinh Quang Bao & Nguyen Duc Thanh (1998). Theories of biology teaching. Vietnam Education Publishing House (in Vietnamese).Bonces, J. R., 2012. Content and language integrated learning (CLIL): Considerations in the Colombian context. Gist Education and Learning Research Journal, 6, 177-189.Dalton-Puffer, C., 2011. Content-and-language integrated learning: From practice to principles? Annual Review of Applied Linguistics, Cambridge University Press, 31, 182–204.Dong Hai Nguyen, 2013. Bilingual education in Vietnam: Successes and challenges. Cambrigde Educational Leadership Seminar, Ho Chi Minh city. Retrieved from ttp://www.cambridgeassessment.org.uk/images/137032-dr-dong-hai-nguyen-presentation-slides-.pdfPhan Duc Duy, 1999. Trainning biology teaching skills for students based on studying pedagogy cases. Doctor thesis, Hanoi National University of Education, Hanoi, Vietnam, 34-57 (in Vietnamese).Hadisantosa, N., Huong, T. T. T., Johnstone, R., Keyuravong, S., & Lee, W., 2010. Learning through English: Policies, challenges and prospects (Insight from East Asia). Malaysia: British Council.Nguyen Van Hien, 2009. Developing the skills of applying information technology in organizing biology lessons in students. Doctor thesis, Hanoi National University of Education, Hanoi, Vietnam, 62-65 (in Vietnamese).Tran Trung Hieu, 2017. Organizing English-Vietnamese bilingual lessons in biology teaching in high school. Teacher of Vietnam Scientific Magazine, 123, 37-39 (in Vietnamese).Dao Thi Hoang Hoa, 2014. Teaching Chemistry through the medium of English using content and language integrated learning approach. Journal of Science, Ho Chi Minh city University of Education, 54 (in Vietnamese).Tran Ba Hoanh, 1993. Techniques of biology teaching. Vietnam Education Publishing House (in Vietnamese).Nguyen Tan Hung, 2010. Dual language instruction – The best way for the improvement of professional knowledge and foreign language competence. Journal of Science and Technology, Da Nang University, 2(37), 192-197 (in Vietnamese).Nha, T. T. V., & Burn, A., 2014. English as a medium of instruction: Challenges for Vietnamese tertiary lecturers. The journal of Asia TEFL, 11(3), 1-31.Thuong Nguyen, 2017. Vietnam national foreign language 2020 project after 9 years: A difficult stage. The Asian Conference on Education & International Development 2017, National Chengchi University, Taiwan.
APA, Harvard, Vancouver, ISO, and other styles
41

Ni, Chunhui, Yurong Liu, Yonggang Liu, Huixia Li, Mingming Shi, Min Zhang, and Bian Han. "First Report of Chestnut Blight Caused by Cryphonectria parasitica on Chestnut (Castanea seguinii) in Gansu Province, China." Plant Disease, July 19, 2022. http://dx.doi.org/10.1094/pdis-03-22-0556-pdn.

Full text
Abstract:
In China, chestnut blight usually causes insignificant damage to fruit production of Chinese chestnut (Castanea mollissima Blume) and no serious disease epidemics occur, due to the high resistance to Cryphonectria parasitica (Huang et al. 1998). According to recent surveys, chestnut blight was mainly found in sixteen provinces including Shandong, Hebei, Anhui, Hunan, Jiangxi, Beijing, and Fujian, with severe cases occurring occasionally (Guo et al. 2005). The disease incidence has been aggravated with increasing monoculture of newly improved chestnut cultivars in chestnut-producing areas (Yan et al. 2007), though it was not detected in Gansu Province. In September 2021, some chestnut trees (Castanea seguinii) showing symptoms of crown dieback and diffuse sunken cankers on the trunk with swelled margins and subsequent cracking of the outer bark, were collected in mountains of Hui County in Longnan City, Gansu Province (E 104° 15′ 5.76″ ,N 35° 11′ 30.84″). Symptomatic branches were washed using tap water and dried on sterilized tissue paper. The Junction between diseased and healthy tissue was cut from the bark and sterilized with NaClO (2.5 %) for 2 minutes, then plated on potato dextrose agar (PDA) and incubated at 25 ℃ for 3 to 4 days. After fungal colonies formed, mycelia were transferred and subcultured onto new PDA media and then purified using single spore culture. After 7 days, colonies turned yellow white. Uninucleate conidia were formed in orange pycnidia and the orange pigments could turn purple if in 2% KOH. Conidia were straight or slightly curved, hyaline, with 2.5-3.5 × 1.2-1.5 μm in size. The characteristics of the culture and morphology were similar with those of C. parasitica (Tziros et al. 2016). Perithecia were not found on culture medium. In accordance with previous findings, the sexual stage of C. parasitica appears on diseased trees in late October. For molecular identification, genomic DNA was extracted from mycelium using a Fungal Genomic DNA Extraction Kit (Tsingke Biotech Co. Ltd, Xi’an, China), the ITS region was amplified with primers ITS1/ITS4 (Sorrentino et al. 2019), and the TEF1-α region was amplified with primers TEF-1H/TEF-2T (O’Donnel et al. 1998). Cloning and sequencing of PCR products were carried out by Tsingke Biotech Co. Ltd, Xi’an, China. The resulting sequences were deposited in GenBank (ITS sequence accession number: OM033734, TEF sequence accession number: OM12254). BLAST results revealed that the sequences of ITS and TEF shared identity over 99% with those of C. parasitica strains (GenBank accession number: AY308953, KP524763, KP824756 and KF220299). Based on morphological and molecular characteristic, the fungal isolates were identified as C. parasitica. To verify pathogenicity, thirty 3-year-old chestnut seeding (70 cm high, 1 cm diameter) of Castanea seguinii were used for inoculation. Chestnut branches were wounded (five wounds per sapling) using a hole punch and inoculated with a mycelial plug (5 mm in diameter) from the edge of 7-day-old, actively growing colonies. Pathogen-free PDA plugs were used as controls. To prevent desiccation, inoculated wounds were sealed with parafilm, and saplings were incubated in a greenhouse at 25℃. Each treatment consisted of 5 seedling and the pathogenicity tests were repeated three times. After inoculation for 5 weeks, symptoms of bark cankers were observed on branches similar to those of diseased chestnut trees in the field. Control saplings with sterile PDA discs did not display symptoms. C. parasitica was reisolated from inoculated branches. To our knowledge, this is the first report of C. parasitica causing chestnut blight in Gansu Province, one of the few areas in the China thought to be free of the disease. The specimens were found in the westernmost part of the natural distribution of chestnuts in China. There are more than 2.6 million chestnut trees, which constitute one of the most important economic forests in Hui County Gansu Province (Yang et al. 2005). The occurrence of chestnut blight could be a restricting factor for chestnut forests.
APA, Harvard, Vancouver, ISO, and other styles
42

Hong, Pham Thi Thanh, and Tran Van Hai. "Customer Satisfaction in Mobile Service Quality: Evidence from Hanoi and Ho Chi Minh City’s Officers." VNU Journal of Science: Economics and Business 34, no. 5E (December 27, 2018). http://dx.doi.org/10.25073/2588-1108/vnueab.4182.

Full text
Abstract:
This study explores the factors influencing the quality of telecommunication services in Hanoi and Ho Chi Minh City. By conducting an online survey of 413 office workers, the results indicate that among the five components of the perceived quality of telecommunications services, reliability, assurance, and empathy are Key factors affecting consumer satisfaction in Hanoi and Ho Chi Minh City. The findings of this research help mobile service providers to understand how consumers perceive the quality of mobile services. Thus, mobile service providers would effectively design marketing strategy to improve customer loyalty as well as enter new markets. Keywords: Mobile service, service quality, online survey, empirical study, Vietnam. References [1] Boohene, R., & Agyapong, G., “Analysis of the antecedents of customer loyalty of telecommunication industry in Ghana: The case of Vodafone (Ghana)”, International Business Research, 4 (2011) 1, 229-240.[2] Leelakulthanit, O., & Hongcharu, B., “Factors that impact customers satisfaction: Evidence from the Thailand mobile cellular network industry”, International Journal of Management and Marketing Research, 4 (2011) 2, 67-76.[3] Eugenia Y. Huang, Sheng-Wei Lin, Ya-Chu Fan, “M-S-Qual: Mobile service quality measurement”, Electronic Commerce Research and Applications, 14 (2015), 126-142, http://dx.doi.org/10.2016/j.elerap.2015.01.003[4] Omotayo, O., & Abiodun, A., “Service quality, value offer, satisfaction, and loyalty: An empirical relationship in the Nigerian telecom industry”, Contemporary Management Research, 5 (2011) 2, 14-23.[5] Lee, Roy Chun, “Telecommunications in Vietnam”, Chung-Hua Institution for Economic Research (CIER). Chinese Taipei WTO Center, C.20 (2011), p.1.[6] Agarwal, S., M. Erramilli, et al., “Market orientation and performance in service firms: role of innovation”, Journal of Services Marketing 17 (2003) 1, 68-82.[7] Agyapong, G., “The effect of service quality on customer satisfaction in the utility industry: A case of Vodafone (Ghana)”, International Journal of Business and Management, 6 (2011) 5, 203-210. http://dx.doi.org/10.5539/ijbm.v6n5p203[8] Yee, R. W. Y., Yeung, A. C. L. & Cheng, T. C. E., “An empirical study of employee loyalty, service quality and firm performance in the service industry”, International Journal of Production Economics, 124 (2010) 1, 109-120. http://dx.doi.org/10.1016/j.ijpe.2009.10.015[9] Le The Gioi and Nguyen Minh Duan, “Improving the competitiveness of VMS-MOBIFONE on mobile communication market”, Journal of Science and Technology, University of Da Nang, 2 (2007) 19, 68-72.[10] Dinh Thi Hong Thuy, “Research the factors affecting on the decision for mobile telecommunications of students in Ho Chi Minh City”, Master Thesis, (2008).[11] Le Thi Tuyet Trinh, “Research the customer satisfaction in using Vinaphone mobile service in Binh Dinh province”, Master Thesis, 2012.[12] Bui Van Trinh and Luu Ngoc Mai Anh, “Research the customer satisfaction in using Viettel mobile service in Hai Giang province”, Master Thesis, 2013.[13] Pizam, A., Ellis, T., “Customer satisfaction and its measurement in hospitality enterprises”, International Journal of Contemporary Hospitality Management 11 (1999) 7, p. 326-339, http://dx.doi.org/10.1108/09596119910293231[14] A. Parasuraman, Valarie A. Zeithaml, Leonard L. Berry, “A Conceptual Model of Service Quality and Its Implications for Future Research”, The Journal of Marketing, Vol. 49, No. 4 (1985), pp. 41-50[15] Cronin Jr, J. J., & Taylor, S. A. “SERVPERF versus SERVQUAL: reconciling performance-based and perceptions-minus-expectations measurement of service quality”. The Journal of Marketing, 58 (1994). 125-131.[16] Aydin, S. and G. Ozer, “National Customer Satisfaction Indices: An Implementation in the Turkish Mobile Telephone Market”, Marketing Intelligence and Planning, 23 (2005) 5, 486-504.[17] Mishra, R.C and Sandilya, A., Reliability and Quality Management, New Age International Publishers, 2009.[18] Torsten J. Gerpott, Ilknur Bicak, “Telecommunication service choice and use among migrants: The case of German-Turkish consumers”, Computers in Human Behavior, 6 (2016), 584-596, http://dx.doi.org/10.2016/j.chb.2016.03.018[19] Uddin, M. B., Akhter, B., “Customer satisfaction in mobile phone services in Bangladesh: A survey research”, Management & Marketing X (1) (2012), 20-36.
APA, Harvard, Vancouver, ISO, and other styles
43

Thanh Binh, Nguyen Thi, Nguyen Thi Hai Yen, Dang Kim Thu, Nguyen Thanh Hai, and Bui Thanh Tung. "The Potential of Medicinal Plants and Bioactive Compounds in the Fight Against COVID-19." VNU Journal of Science: Medical and Pharmaceutical Sciences 37, no. 3 (September 14, 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4372.

Full text
Abstract:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus , is causing a serious worldwide COVID-19 pandemic. The emergence of strains with rapid spread and unpredictable changes is the cause of the increase in morbidity and mortality rates. A number of drugs as well as vaccines are currently being used to relieve symptoms, prevent and treat the disease caused by this virus. However, the number of approved drugs is still very limited due to their effectiveness and side effects. In such a situation, medicinal plants and bioactive compounds are considered a highly valuable source in the development of new antiviral drugs against SARS-CoV-2. This review summarizes medicinal plants and bioactive compounds that have been shown to act on molecular targets involved in the infection and replication of SARS-CoV-2. Keywords: Medicinal plants, bioactive compounds, antivirus, SARS-CoV-2, COVID-19 References [1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019, Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[2] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int, 2021 (accessed on: August 27, 2021).[3] H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang et al., SARS Coronavirus Entry into Host Cells Through a Novel Clathrin- and Caveolae-Independent Endocytic Pathway, Cell Research, Vol. 18, No. 2, 2008, pp. 290-301, https://doi.org/10.1038/cr.2008.15.[4] A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K. Y. Yuen., Coronaviruses-Drug Discovery and Therapeutic Options, Nature Reviews Drug Discovery, Vol. 15, 2016, pp. 327-347, https://doi.org/10.1038/nrd.2015.37.[5] A. Prasansuklab, A. Theerasri, P. Rangsinth, C. Sillapachaiyaporn, S. Chuchawankul, T. Tencomnao, Anti-COVID-19 Drug Candidates: A Review on Potential Biological Activities of Natural Products in the Management of New Coronavirus Infection, Journal of Traditional and Complementary Medicine, Vol. 11, 2021, pp. 144-157, https://doi.org/10.1016/j.jtcme.2020.12.001.[6] R. E. Ferner, J. K. Aronson, Chloroquine and Hydroxychloroquine in Covid-19, BMJ, Vol. 369, 2020, https://doi.org/10.1136/bmj.m1432[7] J. Remali, W. M. Aizat, A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection, Frontiers in Pharmacology, Vol. 11, 2021, https://doi.org/10.3389/fphar.2020.589044.[8] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Medical Virology, Vol. 92, 2020, pp. 418‐423. https://doi.org/10.1002/jmv.25681.[9] B. Benarba, A. Pandiella, Medicinal Plants as Sources of Active Molecules Against COVID-19, Frontiers in Pharmacology, Vol. 11, 2020, https://doi.org/10.3389/fphar.2020.01189.[10] N. T. Chien, P. V. Trung, N. N. Hanh, Isolation Tribulosin, a Spirostanol Saponin from Tribulus terrestris L, Can Tho University Journal of Science, Vol. 10, 2008, pp. 67-71 (in Vietnamese).[11] V. Q. Thang Study on Extracting Active Ingredient Protodioscin from Tribulus terrestris L.: Doctoral dissertation, VNU University of Science, 2018 (in Vietnamese).[12] Y. H. Song, D. W. Kim, M. J. C. Long, H. J. Yuk, Y. Wang, N. Zhuang et al., Papain-Like Protease (Plpro) Inhibitory Effects of Cinnamic Amides from Tribulus terrestris Fruits, Biological and Pharmaceutical Bulletin, Vol. 37, No. 6, 2014, pp. 1021-1028, https://doi.org/10.1248/bpb.b14-00026.[13] D. Dermawan, B. A. Prabowo, C. A. Rakhmadina, In Silico Study of Medicinal Plants with Cyclodextrin Inclusion Complex as The Potential Inhibitors Against SARS-Cov-2 Main Protease (Mpro) and Spike (S) Receptor, Informatics in Medicine Unlocked, Vol. 25, 2021, pp. 1-18, https://doi.org/10.1016/j.imu.2021.100645.[14] R. Dang, S. Gezici, Immunomodulatory Effects of Medicinal Plants and Natural Phytochemicals in Combating Covid-19, The 6th International Mediterranean Symposium on Medicinal and Aromatic Plants (MESMAP-6), Izmir, Selcuk (Ephesus), Turkey, 2020, pp. 12-13.[15] G. Jiangning, W. Xinchu, W. Hou, L. Qinghua, B. Kaishun, Antioxidants from a Chinese Medicinal Herb–Psoralea corylifolia L., Food Chemistry, Vol. 9, No. 2, 2005, pp. 287-292, https://doi.org/10.1016/j.foodchem.2004.04.029.[16] B. Ruan, L. Y. Kong, Y. Takaya, M. Niwa, Studies on The Chemical Constituents of Psoralea corylifolia L., Journal of Asian Natural Products Research, Vol. 9, No. 1, 2007, pp. 41-44, https://doi.org/10.1080/10286020500289618.[17] D. T. Loi, Vietnamese Medicinal Plants and Herbs, Medical Publishing House, Hanoi, 2013 (in Vietnamese).[18] S. Mazraedoost, G. Behbudi, S. M. Mousavi, S. A. Hashemi, Covid-19 Treatment by Plant Compounds, Advances in Applied NanoBio-Technologies, Vol. 2, No. 1, 2021, pp. 23-33, https://doi.org/10.47277/AANBT/2(1)33.[19] B. A. Origbemisoye, S. O. Bamidele, Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review, Asian Journal of Medical Principles and Clinical Practice, 2020, pp. 15-26, https://journalajmpcp.com/index.php/AJMPCP/article/view/30124[20] A. Mandal, A. K. Jha, B. Hazra, Plant Products as Inhibitors of Coronavirus 3CL Protease, Frontiers in Pharmacology, Vol. 12, 2021, pp. 1-16, https://doi.org/10.3389/fphar.2021.583387[21] N. H. Tung, V. D. Loi, B. T. Tung, L.Q. Hung, H. B. Tien et al., Triterpenen Ursan Frame Isolated from the Roots of Salvia Miltiorrhiza Bunge Growing in Vietnam, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 2, 2016, pp. 58-62, https://js.vnu.edu.vn/MPS/article/view/3583 (in Vietnamese).[22] J. Y. Park, J. H. Kim, Y. M. Kim, H. J. Jeong, D. W. Kim, K. H. Park et al., Tanshinones as Selective and Slow-Binding Inhibitors for SARS-CoV Cysteine Proteases. Bioorganic and Medicinal Chemistry, Vol. 20, No. 19, 2012, pp. 5928-5935, https://doi.org/10.1016/j.bmc.2012.07.038.[23] F. Hamdani, N. Houari, Phytotherapy of Covid-19. A Study Based on a Survey in North Algeria, Phytotherapy, Vol. 18, No. 5, 2020, pp. 248-254, https://doi.org/10.3166/phyto-2020-0241.[24] P. T. L. Huong, N. T. Dinh, Chemical Composition And Antibacterial Activity of The Essential Oil From The Leaves of Regrowth Eucalyptus Collected from Viet Tri City, Phu Tho Province, Vietnam Journal of Science, Technology and Engineering, Vol. 18, No. 1, 2020, pp. 54-61 (in Vietnamese).[25] M. Asif, M. Saleem, M. Saadullah, H. S. Yaseen, R. Al Zarzour, COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties, Inflammopharmacology, Vol. 28, 2020, pp. 1153-1161, https://doi.org/10.1007/s10787-020-00744-0.[26] I. Jahan, O. Ahmet, Potentials of Plant-Based Substance to Inhabit and Probable Cure for The COVID-19, Turkish Journal of Biology, Vol. 44, No. SI-1, 2020, pp. 228-241, https://doi.org/10.3906/biy-2005-114.[27] A. D. Sharma, I. Kaur, Eucalyptus Essential Oil Bioactive Molecules from Against SARS-Cov-2 Spike Protein: Insights from Computational Studies, Res Sq., 2021, pp. 1-6, https://doi.org/10.21203/ rs.3.rs-140069/v1. [28] K. Rajagopal, P. Varakumar, A. Baliwada, G. Byran, Activity of Phytochemical Constituents of Curcuma Longa (Turmeric) and Andrographis Paniculata Against Coronavirus (COVID-19): An in Silico Approach, Future Journal of Pharmaceutical Sciences, Vol. 6, No. 1, 2020, pp. 1-10, https://doi.org/10.1186/s43094-020-00126-x[29] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan et al., Structure of The SARS-CoV-2 Spike Receptor-Binding Domain Bound to The ACE2 Receptor, Nature, Vol. 581, No. 7807, 2020, pp. 215-220, https://doi.org/10.1038/s41586-020-2180-5.[30] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-Cov-2 and Other Lineage B Betacoronaviruses, Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.[31] C. Yi, X. Sun, J. Ye, L. Ding, M. Liu, Z. Yang et al., Key Residues of The Receptor Binding Motif in The Spike Protein of SARS-Cov-2 That Interact with ACE2 and Neutralizing Antibodies, Cellular and Molecular Immunology, Vol. 17, No. 6, 2020, pp. 621-630, https://doi.org/10.1038/s41423-020-0458-z.[32] N. T. Thom, Study on The Composition and Biological Activities of Flavonoids from The Roots of Scutellaria baicalensis: Doctoral Dissertation, Hanoi University of Science and Technology, 2018 (in Vietnamese).[33] Y. J. Tang, F. W. Zhou, Z. Q. Luo, X. Z. Li, H. M. Yan, M. J. Wang et al., Multiple Therapeutic Effects of Adjunctive Baicalin Therapy in Experimental Bacterial Meningitis, Inflammation, Vol. 33, No. 3, 2010, pp. 180-188, https://doi.org/10.1007/s10753-009-9172-9.[34] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li et al., Scutellaria Baicalensis Extract and Baicalein Inhibit Replication of SARS-Cov-2 and Its 3C-Like Protease in Vitro, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 36, No. 1, 2021, pp. 497-503, https://doi.org/10.1080/14756366.2021.1873977.[35] Z. Iqbal, H. Nasir, S. Hiradate, Y. Fujii, Plant Growth Inhibitory Activity of Lycoris Radiata Herb. and The Possible Involvement of Lycorine as an Allelochemical, Weed Biology and Management, Vol. 6, No. 4, 2006, pp. 221-227, https://doi.org/10.1111/j.1445-6664.2006.00217.x.[36] S. Y. Li, C. Chen, H. Q. Zhang, H. Y. Guo, H. Wang, L. Wang et al., Identification of Natural Compounds with Antiviral Activities Against SARS-Associated Coronavirus, Antiviral Research, Vol. 67, No. 1, 2005, pp. 18-23, https://doi.org/10.1016/j.antiviral.2005.02.007.[37] S. Kretzing, G. Abraham, B. Seiwert, F. R. Ungemach, U. Krügel, R. Regenthal, Dose-dependent Emetic Effects of The Amaryllidaceous Alkaloid Lycorine in Beagle Dogs, Toxicon, Vol. 57, No. 1, 2011, pp. 117-124, https://doi.org/10.1016/j.toxicon.2010.10.012.[38] Y. N. Zhang, Q. Y. Zhang, X. D. Li, J. Xiong, S. Q. Xiao, Z. Wang, et al., Gemcitabine, Lycorine and Oxysophoridine Inhibit Novel Coronavirus (SARS-Cov-2) in Cell Culture, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 1170-1173, https://doi.org/10.1080/22221751.2020.1772676.[39] Y. H. Jin, J. S. Min, S. Jeon, J. Lee, S. Kim, T. Park et al., Lycorine, a Non-Nucleoside RNA Dependent RNA Polymerase Inhibitor, as Potential Treatment for Emerging Coronavirus Infections, Phytomedicine, Vol. 86, 2021, pp. 1-8, https://doi.org/10.1016/j.phymed.2020.153440.[40] H. V. Hoa, P. V. Trung, N. N. Hanh, Isolation Andrographolid and Neoandrographolid from Andrographis Paniculata Nees, Can Tho University Journal of Science, Vol. 10, 2008, pp. 25-30 (in Vietnamese)[41] S. K. Enmozhi, K. Raja, I. Sebastine, J. Joseph, Andrographolide as a Potential Inhibitor Of SARS-Cov-2 Main Protease: An in Silico Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 9, 2021, pp. 3092-3098, https://doi.org/10.1080/07391102.2020.1760136.[42] S. A. Lakshmi, R. M. B. Shafreen, A. Priya, K. P. Shunmugiah, Ethnomedicines of Indian Origin for Combating COVID-19 Infection by Hampering The Viral Replication: Using Structure-Based Drug Discovery Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 13, 2020, pp. 4594-4609, https://doi.org/10.1080/07391102.2020.1778537.[43] N. P. L. Laksmiani, L. P. F. Larasanty, A. A. G. J. Santika, P. A. A. Prayoga, A. A. I. K. Dewi, N. P. A. K. Dewi, Active Compounds Activity from The Medicinal Plants Against SARS-Cov-2 Using in Silico Assay, Biomedical and Pharmacology Journal, Vol. 13, No. 2, 2020, pp. 873-881, https://dx.doi.org/10.13005/bpj/1953.[44] N. A. Murugan, C. J. Pandian, J. Jeyakanthan, Computational Investigation on Andrographis Paniculata Phytochemicals to Evaluate Their Potency Against SARS-Cov-2 in Comparison to Known Antiviral Compounds in Drug Trials, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 12, 2020, pp. 4415-4426, https://doi.org/10.1080/07391102.2020.1777901.[45] S. Hiremath, H. V. Kumar, M. Nandan, M. Mantesh, K. Shankarappa,V. Venkataravanappa et al., In Silico Docking Analysis Revealed The Potential of Phytochemicals Present in Phyllanthus Amarus and Andrographis Paniculata, Used in Ayurveda Medicine in Inhibiting SARS-Cov-2, 3 Biotech, Vol. 11, No. 2, 2021, pp. 1-18, https://doi.org/10.1007/s13205-020-02578-7.[46] K. S. Ngiamsuntorn, A. Suksatu, Y. Pewkliang, P. Thongsri, P. Kanjanasirirat, S. Manopwisedjaroen, et al., Anti-SARS-Cov-2 Activity of Andrographis Paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, Journal of Natural Products, Vol. 84, No. 4, 2021, pp. 1261-1270, https://doi.org/10.1021/acs.jnatprod.0c01324.[47] D. X. Em, N. T. T. Dai, N. T. T. Tram, D. X. Chu, Four Compounds Isolated from Azadirachta Indica Jus leaves. F., Meliaceae, Pharmaceutical Journal, Vol. 59, No. 7, 2019, pp. 33-36 (in Vietnamese).[48] V. V Do, N. T. Thang, N. T. Minh, N. N. Hanh, Isolation, Purification and Investigation on Antimicrobial Activity of Salanin from Neem Seed Kernel (Azadirachta Indica A. Juss) of The Neem Tree Planted in Ninh Thuan Province, Vietnam, Journal of Science and Technology, Vol. 44, No. 2, 2006, pp. 24-31 (in Vietnamese).[49] P. I. Manzano Santana, J. P. P. Tivillin, I. A. Choez Guaranda, A. D. B. Lucas, A. Katherine, Potential Bioactive Compounds of Medicinal Plants Against New Coronavirus (SARS-Cov-2): A Review, Bionatura, Vol. 6, No. 1, 2021, pp. 1653-1658, https://doi.org/10.21931/RB/2021.06.01.30[50] S. Borkotoky, M. Banerjee, A Computational Prediction of SARS-Cov-2 Structural Protein Inhibitors from Azadirachta Indica (Neem), Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 11, 2021, pp. 4111-4121, https://doi.org/10.1080/07391102.2020.1774419.[51] R. Jager, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, J. M. Wilson, Comparative Absorption of Curcumin Formulations, Nutrition Journal, Vol. 13, No. 11, 2014, https://doi.org/10.1186/1475-2891-13-11.[52] D. Praditya, L. Kirchhoff, J. Bruning, H. Rachmawati, J. Steinmann, E. Steinmann, Anti-infective Properties of the Golden Spice Curcumin, Front Microbiol, Vol. 10, No. 912, 2019, https://doi.org/10.3389/fmicb.2019.00912.[53] C. C. Wen, Y. H. Kuo, J. T. Jan, P. H. Liang, S. Y. Wang, H. G. Liu et al., Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities Against Severe Acute Respiratory Syndrome Coronavirus, Journal of Medicinal Chemistry, Vol. 50, No. 17, 2007, pp. 4087-4095, https://doi.org/10.1021/jm070295s.[54] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[55] M. Kandeel, M. Al Nazawi, Virtual Screening and Repurposing of FDA Approved Drugs Against COVID-19 Main Protease, Life Sciences, Vol. 251, No. 117627, 2020, pp. 1-5, https://doi.org/10.1016/j.lfs.2020.117627.[56] V. K. Maurya, S. Kumar, A. K. Prasad, M. L. B. Bhatt, S. K. Saxena, Structure-Based Drug Designing for Potential Antiviral Activity of Selected Natural Products from Ayurveda Against SARS-CoV-2 Spike Glycoprotein and Its Cellular Receptor, Virusdisease, Vol. 31, No. 2, 2020, pp. 179-193, https://doi.org/10.1007/s13337-020-00598-8.[57] M. Hoffmann, H. Kleine Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, Vol. 181, No. 2, 2020, pp. 271-280, https://doi.org/10.1016/j.cell.2020.02.052.[58] S. Katta, A. Srivastava, R. L. Thangapazham, I. L. Rosner, J. Cullen, H. Li et al., Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells, International Journal of Molecular Sciences, Vol. 20, No. 19, 2019, pp. 4891-4907, https://doi.org/10.3390/ijms20194891.[59] D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao et al., Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin, ACS Applied Nano Materials, Vol. 1, No. 10, 2018, pp. 5451-5459, https://doi.org/10.1021/acsanm.8b00779.[60] T. Huynh, H. Wang, B. Luan, In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease, the Journal of Physical Chemistry Letters, Vol. 11, No. 11, 2020, pp. 4413-4420, https://doi.org/10.1021/acs.jpclett.0c00994.[61] D. D'Ardes, A. Boccatonda, I. Rossi, M. T. Guagnano, COVID-19 and RAS: Unravelling an Unclear Relationship, International Journal of Molecular Sciences, Vol. 21, No. 8, 2020, pp. 3003-3011, https://doi.org/10.3390/ijms21083003. [62] X. F. Pang, L. H. Zhang, F. Bai, N. P. Wang, R. E. Garner, R. J. McKallip et al., Attenuation of Myocardial Fibrosis with Curcumin is Mediated by Modulating Expression of Angiotensin II AT1/AT2 Receptors and ACE2 in Rats, Drug Design Development Therapy, Vol. 9, 2015, pp. 6043-6054, https://doi.org/10.2147/DDDT.S95333.[63] Y. Yao, W. Wang, M. Li, H. Ren, C. Chen, J. Wang et al., Curcumin Exerts its Anti-Hypertensive Effect by Down-Regulating the AT1 Receptor in Vascular Smooth Muscle Cells, Scientific Reports, Vol. 6, No. 25579, 2016, pp. 1-6, https://doi.org/10.1038/srep25579.[64] V. J. Costela Ruiz, R. Illescas Montes, J. M. Puerta Puerta, C. Ruiz, L. Melguizo Rodríguez, SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease, Cytokine Growth Factor Reviews, Vol. 54, 2020, pp. 62-75, https://doi.org/10.1016/j.cytogfr.2020.06.001.[65] H. Valizadeh, S. Abdolmohammadi Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi et al., Nano-Curcumin Therapy, a Promising Method in Modulating Inflammatory Cytokines in COVID-19 Patients, International Immunopharmacology, Vol. 89 (PtB), No. 107088, 2020, pp. 1-12, https://doi.org/10.1016/j.intimp.2020.107088.[66] Y. H. Lo, R. D. Lin, Y. P. Lin, Y. L. Liu, M. H. Lee, Active Constituents from Sophora Japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes, Journal of Ethnopharmacology, Vol. 124, No. 3, 2009, pp. 625-629, https://doi.org/10.1016/j.jep.2009.04.053.[67] A. Robaszkiewicz, A. Balcerczyk, G. Bartosz, Antioxidative and Prooxidative Effects of Quercetin on A549 Cells, Cell Biology International, Vol. 31, No. 10, 2007, pp. 1245-1250, https://doi.org/10.1016/j.cellbi.2007.04.009[68] N. Uchide, H. Toyoda, Antioxidant Therapy as a Potential Approach to Severe Influenza-associated Complications, Molecules (Basel, Switzerland), Vol. 16, No. 3, 2011, pp. 2032-2052, https://doi.org/10.3390/molecules16032032.[69] M. P. Nair, C. Kandaswami, S. Mahajan, K. C. Chadha, R. Chawda, H. Nair et al., The Flavonoid, Quercetin, Differentially Regulates Th-1 (IFNgamma) and Th-2 (IL4) Cytokine Gene Expression by Normal Peripheral Blood Mononuclear Cells, Biochimica et Biophysica Acta - Molecular Cell Research, Vol. 1593, No. 1, 2002, pp. 29-36, https://doi.org/10.1016/s0167-4889(02)00328-2.[70] X. Chen, Z. Wang, Z. Yang, J. Wang, Y. Xu, R. X. Tan et al., Houttuynia Cordata Blocks HSV Infection Through Inhibition of NF-κB Activation, Antiviral Research, Vol. 92, No. 2, 2011, pp. 341-345, https://doi.org/10.1016/j.antiviral.2011.09.005.[71] T. N. Kaul, E. J. Middleton, P. L. Ogra, Antiviral Effect of Flavonoids on Human Viruses, Journal of Medical Virology, Vol. 15. No. 1, 1985, pp. 71-79, https://doi.org/10.1002/jmv.1890150110.[72] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. AbuBakar, Antiviral Activity of Four Types of Bioflavonoid Against Dengue Virus Type-2, Virology Journal, Vol. 8, No. 1, 2011, pp. 560-571, https://doi.org/10.1186/1743-422X-8-560.[73] J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park et al., Evaluation of Polyphenols from Broussonetia Papyrifera as Coronavirus Protease Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, No. 1, 2017, pp. 504-515, https://doi.org/10.1080/14756366.2016.1265519.[74] S. C. Cheng, W. C. Huang, J. H. S. Pang, Y. H. Wu, C. Y. Cheng, Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, International Journal of Molecular Sciences, Vol. 20, No. 12, 2019, pp. 2957-2981, https://doi.org/10.3390/ijms20122957. [75] O. J. Lara Guzman, J. H. Tabares Guevara, Y. M. Leon Varela, R. M. Álvarez, M. Roldan, J. A. Sierra et al., Proatherogenic Macrophage Activities Are Targeted by The Flavonoid Quercetin, The Journal of Pharmacology and Experimental Therapeutics, Vol. 343, No. 2, 2012, pp. 296-303, https://doi.org/10.1124/jpet.112.196147.[76] A. Saeedi Boroujeni, M. R. Mahmoudian Sani, Anti-inflammatory Potential of Quercetin in COVID-19 Treatment, Journal of Inflammation, Vol. 18, No. 1, 2021, pp. 3-12, https://doi.org/10.1186/s12950-021-00268-6.[77] M. Smith, J. C. Smith, Repurposing Therapeutics for COVID-19: Supercomputer-based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-human ACE2 Interface, ChemRxiv, 2020, pp. 1-28, https://doi.org/10.26434/chemrxiv.11871402.v4.[78] S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, S. Soetjipto, Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study, Preprints, 2020, pp. 1-14, https://doi.org/10.20944/preprints202003.0226.v1.[79] J. M. Calderón Montaño, E. B. Morón, C. P. Guerrero, M. L. Lázaro, A Review on the Dietary Flavonoid Kaempferol, Mini Reviews in Medicinal Chemistry, Vol. 11, No. 4, 2011, pp. 298-344, https://doi.org/10.2174/138955711795305335.[80] A. Y. Chen, Y. C. Chen, A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention, Food Chem, Vol. 138, No. 4, 2013, pp. 2099-2107, https://doi.org/10.1016/j.foodchem.2012.11.139.[81] S. Schwarz, D. Sauter, W. Lu, K. Wang, B. Sun, T. Efferth et al., Coronaviral Ion Channels as Target for Chinese Herbal Medicine, Forum on Immunopathological Diseases and Therapeutics, Vol. 3, No. 1, 2012, pp. 1-13, https://doi.org/10.1615/ForumImmunDisTher.2012004378.[82] R. Zhang, X. Ai, Y. Duan, M. Xue, W. He, C. Wang et al., Kaempferol Ameliorates H9N2 Swine Influenza Virus-induced Acute Lung Injury by Inactivation of TLR4/MyD88-mediated NF-κB and MAPK Signaling Pathways, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, Vol. 89, 2017, pp. 660-672, https://doi.org/10.1016/j.biopha.2017.02.081.[83] K. W. Chan, V. T. Wong, S. C. W. Tang, COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease, The American Journal of Chinese medicine, Vol. 48, No. 3, 2020, pp. 737-762, https://doi.org/10.1142/S0192415X20500378.[84] Y. F. Huang, C. Bai, F. He, Y. Xie, H. Zhou, Review on the Potential Action Mechanisms of Chinese Medicines in Treating Coronavirus Disease 2019 (COVID-19), Pharmacological Research, Vol. 158, No. 104939, 2020, pp. 1-10, https://doi.org/10.1016/j.phrs.2020.104939.[85] L. Xu, X. Zheng, Y. Wang, Q. Fan, M. Zhang, R. Li et al., Berberine Protects Acute Liver Failure in Mice Through Inhibiting Inflammation and Mitochondria-dependent Apoptosis, European Journal of Pharmacology, Vol. 819, 2018, pp. 161-168, https://doi.org/10.1016/j.ejphar.2017.11.013.[86] X. Chen, H. Guo, Q. Li, Y. Zhang, H. Liu, X. Zhang et al., Protective Effect of Berberine on Aconite‑induced Myocardial Injury and the Associated Mechanisms, Molecular Medicine Reports, Vol. 18, No. 5, 2018, pp. 4468-4476, https://doi.org/10.3892/mmr.2018.9476.[87] K. Hayashi, K. Minoda, Y. Nagaoka, T. Hayashi, S. Uesato, Antiviral Activity of Berberine and Related Compounds Against Human Cytomegalovirus, Bioorganic & Medicinal Chemistry Letters, Vol. 17, No. 6, 2007, pp. 1562-1564, https://doi.org/10.1016/j.bmcl.2006.12.085.[88] A. Warowicka, R. Nawrot, A. Gozdzicka Jozefiak, Antiviral Activity of Berberine, Archives of Virology, Vol. 165, No. 9, 2020, pp. 1935-1945, https://doi.org/10.1007/s00705-020-04706-3.[89] Z. Z. Wang, K. Li, A. R. Maskey, W. Huang, A. A. Toutov, N. Yang et al., A Small Molecule Compound Berberine as an Orally Active Therapeutic Candidate Against COVID-19 and SARS: A Computational and Mechanistic Study, FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, Vol. 35, No. 4, 2021, pp. e21360-21379, https://doi.org/10.1096/fj.202001792R.[90] A. Pizzorno, B. Padey, J. Dubois, T. Julien, A. Traversier, V. Dulière et al., In Vitro Evaluation of Antiviral Activity of Single and Combined Repurposable Drugs Against SARS-CoV-2, Antiviral Research, Vol. 181, No. 104878, 2020, https://doi.org/10.1016/j.antiviral.2020.104878.[91] B. Y. Zhang, M. Chen, X. C. Chen, K. Cao, Y. You, Y. J. Qian et al., Berberine Reduces Circulating Inflammatory Mediators in Patients with Severe COVID-19, The British Journal of Surgery, Vol. 108, No. 1, 2021, pp. e9-e11, https://doi.org/10.1093/bjs/znaa021.[92] K. P. Latté, K. E. Appel, A. Lampen, Health Benefits and Possible Risks of Broccoli - an Overview, Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association, Vol. 49, No. 12, 2011, pp. 3287-3309, https://doi.org/10.1016/j.fct.2011.08.019.[93] C. Sturm, A. E. Wagner, Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways, International Journal of Molecular Sciences, Vol. 18, No. 9, 2017, pp. 1890-1911, https://doi.org/10.3390/ijms18091890.[94] R. T. Ruhee, S. Ma, K. Suzuki, Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages, Antioxidants (Basel, Switzerland), Vol. 8, No. 12, 2019, pp. 577-589, https://doi.org/10.3390/antiox8120577.[95] S. M. Ahmed, L. Luo, A. Namani, X. J. Wang, X. Tang, Nrf2 Signaling Pathway: Pivotal Roles in Inflammation, Biochimica et Biophysica Acta Molecular Basis of Disease, Vol. 1863, No. 2, 2017, pp. 585-597, https://doi.org/10.1016/j.bbadis.2016.11.005.[96] Z. Sun, Z. Niu, S. Wu, S. Shan, Protective Mechanism of Sulforaphane in Nrf2 and Anti-Lung Injury in ARDS Rabbits, Experimental Therapeutic Medicine, Vol. 15, No. 6, 2018, pp. 4911-4951, https://doi.org/10.3892/etm.2018.6036.[97] H. Y. Cho, F. Imani, L. Miller DeGraff, D. Walters, G. A. Melendi, M. Yamamoto et al., Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease, American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 2, 2009, pp. 138-150, https://doi.org/10.1164/rccm.200804-535OC.[98] M. J. Kesic, S. O. Simmons, R. Bauer, I. Jaspers, Nrf2 Expression Modifies Influenza A Entry and Replication in Nasal Epithelial Cells, Free Radical Biology & Medicine, Vol. 51, No. 2, 2011, pp. 444-453, https://doi.org/10.1016/j.freeradbiomed.2011.04.027.[99] A. Cuadrado, M. Pajares, C. Benito, J. J. Villegas, M. Escoll, R. F. Ginés et al., Can Activation of NRF2 Be a Strategy Against COVID-19?, Trends in Pharmacological Sciences, Vol. 41, No. 9, 2020, pp. 598-610, https://doi.org/10.1016/j.tips.2020.07.003.[100] J. Gasparello, E. D'Aversa, C. Papi, L. Gambari, B. Grigolo, M. Borgatti et al., Sulforaphane Inhibits the Expression of Interleukin-6 and Interleukin-8 Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein, Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, Vol. 87, No. 53583, 2021, https://doi.org/10.1016/j.phymed.2021.153583.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography