Contents
Academic literature on the topic 'Habitations – Consommation d'énergie – Simulation, Méthodes de'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Habitations – Consommation d'énergie – Simulation, Méthodes de.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Habitations – Consommation d'énergie – Simulation, Méthodes de"
Carrier, F., and E. J. Schiller. "Méthode de dimensionnement du réservoir dans les systèmes de pompage photovoltaïques." Revue des sciences de l'eau 6, no. 2 (April 12, 2005): 175–93. http://dx.doi.org/10.7202/705172ar.
Full textDissertations / Theses on the topic "Habitations – Consommation d'énergie – Simulation, Méthodes de"
Vo, Minh Toàn. "Assessment of heat pump operating faults coupled with building energy simulation using Petri net model." Thesis, La Rochelle, 2021. https://tel.archives-ouvertes.fr/tel-03685404.
Full textHeat pumps give an efficient and sustainable solution for both heating and cooling. However, these systems sometimes operate with a lower efficiency, because of the faults. In this research, we focus on three operating faults : refrigerant leakage, condenser fouling, and evaporator fouling. They are the most frequent and most impacted operating faults. They evolve undetectably over time until they start to create the energy and comfort problems. We propose to develop a method to model these operating faults and to associate them with a building simulation model. In the first place, we developed physical models of an air-to-air residential heat pump in order to predict the coefficient of performance (COP/EER) of the heat pump, as a function of the use intensity, and operating fault. Then, a Petri net model was proposed to determine a priori structure of fault evolution. In the second step, we apply a notion of uncertainty of fault database to take into account different working cases and generalize the fault occurrence model. We associated it with the dynamic energy simulation tool COMETh, a building simulation model developed by CSTB, to simulate the annual energy consumption. This method helps us to analyze and determine the global uncertainty of fault impacts on the heat pump performance and on the whole energy consumption of the building. The method was applied to a case study of residential building in Paris over 15 years. With three heat pump operating faults, the building consumption remarkably increased from the third year. At the 15th year, the building consumption is double than the standard value. The results underline the possibility of the proposed methodology
Roujol, Stéphane Roger. "Méthodes de calcul prévisionnel des consommations d'énergie des bâtiments climatisés : incertitude et validation." Paris, ENMP, 2003. http://www.theses.fr/2003ENMP1178.
Full textUsers of model are often faced with problem of quality of results provided by models, i. E. What is the validity of models and what is the uncertainty of results? We purpose a validation method adapted to building energy simulation software package and a method to evaluate uncertainties introduced by inputs. First, we consider an moisture model which allow to calculate part of dehumidification on fan coil unit and a chiller model which allow to calculate electrical consumption at non rating point and part load conditions. No reference data are available for moisture model, so we propose several models and compare them. An empirical model of chiller is developed from manufacturer data and is compared with physical models. A statistical study of chiller gives default values. Validation of the whole software package is used to evaluate uncertainty due to the representation of building in the software. The influence of input data on energy consumption has been assessed by a sensitivity study carried by experience design. Method to evaluate uncertainty - Monte Carlo and uncertainties composition - are compared from a theoretical and practical point of view. A simple experimental design and the method of uncertainties composition are selected, they required a little number of calculations. Finally, the comparison with experimental data of building in operation shows a good agreement between the results on energy consumption of chiller, its uncertainty is around 20%
Kouki, Meriem. "Maîtrise énergétique des systèmes de production : proposition d'un outil d'aide à la conception de modèles de simulation à évènements discrets intégrant l'énergie." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4072.
Full textTodays, industries are compelled to innovate and improve their sustainability under economic, political and social pressure in a highly competitive market and within an increasing societal conscience towards environmental issues. In this context, several initiatives have been carried out at both academic and industrial levels to improve energy performance in the production phase. In parallel with technological advances, energy savings by production organization are not always exploited because of a lack of comprehension on the energy behavior of manufacturing systems. To solve this problem, Discrete Event Simulation is a reliable solution, but several barriers still prevent its industrial use: literature approaches lack genericity and reliable procedures for integrating energy consumption data in complex cases. The objective of our work is to propose a simulation tool allowing to predict the energy consumption of manufacturing systems, it serves as a tool to help decision-making to enhance energy performance and productivity usually considered as conflicting goals. This tool is designed following a generic and flexible approach to model and simulate workflows and energy flows in a single platform. In addition, a methodology for integrating complex energy consumption data, based on a stochastic approach, is proposed. Validation of our approach and our tool is carried out in the field of polymer processing
Li, Jun. "Instruments de politiques publiques pour la maîtrise de l’énergie dans les pays émergents : le cas de l’habitat en Chine." Paris, ENMP, 2009. http://pastel.archives-ouvertes.fr/pastel-00005310.
Full textMore than one billion square meters of housing should be built in Chinese cities by 2020. At the same time, demand for energy services of Chinese households is very likely to increase as a result of continually improved living standards. Space heating already accounts for almost 40% of energy consumption in the residential sector in China. Thus the energy performance of buildings in Chinese cities represents a major challenge for ensuring energy supply security and combating climate change in the next decades. Several regulations relating to the requirement of the thermal performance of housing entered into force in China successively since the 1990s, the long term consequences of failure in enforcement and implementation have been examined from both energy security and climate protection perspectives. Nevertheless, few of studies in literature have addressed the issue from the perspective of economic investment decision. None of previous studies have studied the extent to which the current decision on more or less efficient standards in the large-scale urban infrastructure like buildings will have ultimately impact on the financing capacity in transforming the society toward low-carbon energy supply and consumption model, and the role the energy efficiency in buildings will play in enabling the public authority to harness the benefits resulting from reduced operation costs in early stage to facilitating the investment in new technology research and development and deployment in the future. The thesis seeks to answer two fundamental questions: 1. Is there an optimal development pathway to buildings energy performance standards in the context of extremely rapid urbanisation in China? 2. If so, what are political and economic instruments to put in place to limit growth in energy demand and CO2 emissions in this sector by taking the economic and institutional characteristics into account? Based on a modelling approach, we compare a variety of strategies to manage energy demand in buildings and their economic costs in a Chinese city by 2030. Our quantitative analysis in the first part of thesis shows that the adoption of current Chinese BEE standards not only fails to achieve an optimal level from societal point of view, but would also be the most costly amongst the technical options available today even without taking into account any cost of environmental externalities. Inclusion of carbon price will certainly favour the high-efficiency construction technology. More importantly, the city-level long-term modelling results show that even partial non-compliance of building energy efficiency today will result in tremendous difficulty in transforming the whole infrastructure under climate and economic constraints. Financing the new generation of low-carbon supply technologies such as renewable heating and carbon capture and storage (CCS) require taking into account the buildings thermal quality without any delays, otherwise the whole urban infrastructure would be saddled with high operation costs dilemma for several decades because both retrofitting and alternative energy supply in this case would be extremely costly and difficult to undertake. Therefore we strongly recommend that serious attention must be attached to efficiency issue today, and the current thermal regulations should be strengthened significantly and quickly to avoid irreversible carbon lock-in deadlock in the next two decades. Indeed, financial shortage appears not to be the insurmountable barriers to upgrading the current efficiency standards based on our modelling results, instead the institutional aspect may be the main obstacle to the no-lose strategy that allows benefits creation and redistribution. Several economic and policy instruments are analysed in the second part to accompany the actions of buildings performance amelioration with removal of institutional barriers. We develop three main models to accompany the learning of high-efficiency construction technology and processing industry : 1). Establishment of a carbon financing system via the integration of the Clean Development Mechanism of the Kyoto Protocol into the construction sector ; 2). Flexibility of land use regulations on property developing and city zoning ; 3). Creation of economic incentives to facilitate third-financing of energy efficiency in buildings, including the involvement of municipal heat companies. In this regard, district heating pricing reform must be carried out accordingly
Rivalin, Lisa. "Vers une démarche de garantie des consommations énergétiques dans les bâtiments neufs : Méthodes d'évaluation des incertitudes associées à la simulation thermique dynamique dans le processus de conception et de réalisation." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM007/document.
Full textBefore the construction of a building, an energy performance guarantee consists in predicting the energy required for user comfort. To do that, it is necessary to state a contractual consumption and identify the key parameters to pay special attention to. Thus, for new buildings, consumption is calculated under design phase, when several data are uncertain. Thus, the dynamic thermal simulation is carried out with hypothetical data, without having the possibility to calibrate with measures.This PhD thesis aims to develop a method of uncertainty quantification during the design step and construction process of a new building. These uncertainties are classified into three categories: those associated with the calculation methods used for building and system modeling, those related to the lack of knowledge of model parameters and those due to the real use conditions of the building (occupancy and weather).To achieve this goal, uncertainties associated with the calculation methods are addressed, to identify some practices limiting the number of errors and the associated uncertainties. Then, a methodology is defined to choose the critical parameters used for the probabilistic study and to associate them with a distribution according to the available knowledge. The central part of this PhD thesis is dedicated to an exhaustive comparison of methods to select a fast uncertainty propagation and sensitivity analysis method. Finally, after illustrating the overall contracting approach and discussing the inclusion of financial risks, the method is applied on a real case, on which an adjustment formula is added to take into account actual weather and usage
Bouyer, Julien. "Modélisation et simulation des microclimats urbains - Étude de l'impact de l'aménagement urbain sur les consommations énergétiques des bâtiments." Phd thesis, Université de Nantes, 2009. http://tel.archives-ouvertes.fr/tel-00426508.
Full textLefevre, Benoit. "La soutenabilité environnementale des transports urbains dans les villes du sud : Le couple « transport – usage des sols » au cœur des dynamiques urbaines." Paris, ENMP, 2007. http://pastel.paristech.org/3538/01/BLEFEVRE_THESEFINALE_DEF.pdf.
Full textThe objective of this PhD dissertation is to explore if, in view of rapid demographic growth and limited financial capacities, the technologies accessible to poor cities can decrease trajectories of energy consumption and CO2 emissions due to urban transportation. Chapter 1 reviews what we already know of the determinants involved, and their recent evolutions. Chapter 2 analyzes conceivable transport and land-use solutions that would allow southern cities to attain sustainable development trajectories. The conclusions drawn from the first two chapters led us to analyze the interactions between the transport system and land-use system on a particular city, Bogota (Colombia). Chapter 3 studies the functional relations in the “Transport – Land Use” couple and its impact on urban space structuring processes in the long term, from the foundation of Bogota to the end of the 20th century. Chapter 4 focus on the impact of a new transportation infrastructure – the TransMilenio Bus Rapid Transit (BRT) – on real-estate and housing markets, on urban structure and the Origin-Destination trip matrix. Chapter 5 reviews the existing prospective tools able to simulate various combinations of realistic policies, and to measure their consequences on the levels of energy consumption and CO2 emissions related to urban transportation. The integrated urban “Transport – Land Use” model, TRANUS, is chosen and completed with a module of of energy consumption and CO2 emissions quantification, called “Energy Signature of Urban Transportation” (SETU). Chapter 6 tests the capacity of these combinations of policies to affect the trajectories of the energy consumption of urban transportation through the application of TRANUS-SETU on a case study, Bangalore (India)
Bilot, Nicolas. "Raisonner la filière de production de plaquettes forestières pour sa performance énergétique et l'exportation d'éléments nutritifs en forêt." Thesis, Paris, AgroParisTech, 2015. http://www.theses.fr/2015AGPT0033.
Full textThe increasing demand for energy wood requires a better knowledge about the production system. This work is about modelling the chain producing wood chips for energy.Growth and yield models are built by forest scientists, and some models can predict contents in biomass and nutrients in trees. The study of the chain of harvesting, transforming and transporting energy wood is made by a community of forest and wood scientists, relying on principles from process engineering. Fuel qualities from elemental composition are modelled in the field of energy sciences.By connecting and completing this knowledge, the thesis proposes an original approach to consistently integrate models from the different fields of science. This bottom-up approach conserves a high level of information about the system, and a high flexibility in the configuration of the simulated chain.Original models were developed for the chain. Model formulation was made respecting the most frequent level of detail found in literature. An original model was developed to predict fuel quality relying on nutrient content predicted with models developed in forest sciences.A software tool was developed to integrate these models. “ForEnerChips” calculates material fluxes from forest growth to heating plant via the whole chain. This allows for the assessment of energy balances, and nutrient exportations and restitutions, according to choices made in the configuration of the chain (scenario analysis). Its implementation into the CAPSIS software platform allows a potential connection to about 70 growth and yield models for different species, regions or management regimes.The simulator was connected so far to a particular growth and yield model for common beech (Fagus sylvatica L.). A scenario representative of current management practices was studied and compared to alternative scenarios. Other ideas of potential uses are suggested
Bontemps, Stéphanie. "Validation expérimentale de modèles : application aux bâtiments basse consommation." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0337/document.
Full textConstruction of low, passive and positive energy buildings is generalizing and existing buildings are being renovated. For this reason, it is essential to use simulation in order to estimate, among other things, energy and environmental performances reached by these new buildings. Expectations regarding guarantee of energy performance being more and more important, it is crucial to ensure the reliability of simulation tools being used. Indeed, simulation codes should reflect the behavior of these new kinds of buildings in the most consistent and accurate manner. Moreover, the uncertainty related to design parameters, as well as solicitations and building uses have to be taken into account in order to guarantee building energy performance during its lifetime.This thesis investigates the empirical validation of models applied to a test cell building. This validation process is divided into several steps, during which the quality of the model is evaluated as far as consistency and accuracy are concerned. Several study cases were carried out, from which we were able to identify the most influential parameters on model output, inspect the influence of time step on the empirical validation process, analyze the influence of initialization and confirm methodology’s ability to test the model
Favre, Bérenger. "Etude de stratégies de gestion énergétique des bâtiments par l'application de la programmation dynamique." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00957327.
Full text