Academic literature on the topic 'H2O'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'H2O.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "H2O"

1

Houriez, C., N. Ferré, J. P. Flament, M. Masella, and D. Siri. "Electronic Basis of the Comparable Hydrogen Bond Properties of Small H2CO/(H2O)nand H2NO/(H2O)nSystems (n= 1, 2)." Journal of Physical Chemistry A 111, no. 45 (November 2007): 11673–82. http://dx.doi.org/10.1021/jp075136z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferapontov, Yu A., M. A. Ul’yanova, and T. V. Sazhneva. "Parameters of Li2O2 · H2O crystallization from the LiOH-H2O2-H2O ternary system." Russian Journal of Inorganic Chemistry 53, no. 10 (October 2008): 1635–40. http://dx.doi.org/10.1134/s0036023608100197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kelsall, G. H., N. J. Welham, and M. A. Diaz. "Thermodynamics of ClH2O, BrH2O, IH2O, AuClH2O, AuBrH2O and AuIH2O systems at 298 K." Journal of Electroanalytical Chemistry 361, no. 1-2 (December 1993): 13–24. http://dx.doi.org/10.1016/0022-0728(93)87034-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frank, Walter, Thomas Stetzer, and Ludwig Heck. "Darstellung und Kristallstruktur von [(NH3)5Rh(H7O4)Rh(NH3)5](S2O6)2,5 · H2O (1). Ein gemischtes Aquopentamminrhodium(III)-hydroxopentamminrhodium(III)- dithionat mit einer neuartigen μ-H7O4-Struktureinheit / Preparation and Crystal Structure of [(NH3)5Rh(H7O4)Rh(NH3)5](S2O6)2,5 · H2O (1). A Mixed Aquopentaamminerhodium(III)-hydroxopentaamminerhodium(III) Dithionate with a Novel μ-H7O4 Structural Unit." Zeitschrift für Naturforschung B 43, no. 2 (February 1, 1988): 189–95. http://dx.doi.org/10.1515/znb-1988-0210.

Full text
Abstract:
The title compound 1 can be obtained from an aqueous solution of aquopentaammine rhodium(III) dithionate and hydroxopentaammine rhodium(III) dithionate. The crystal structure has been determined from single crystal X-ray diffraction data and refined to R = 0.035 for 4390 unique reflections. Crystal data: monoclinic, space group P21/c, a = 1300.9(5) pm. b = 1472.3(6) pm. c = 1478.8(9) pm, β = 106.20(4)°, Z = 4.In the crystal dinuclear rhodium cations with point group symmetry 1 (C1) are found. A central μ-H3O2-bridge is formed by strong hydrogen bonding between aquo and hydroxo ligands; this bridge is additionally coordinated by two molecules of water. The entire bridging system is therefore H7O4-(H3O2- · 2 H2O). O-O distances characterizing the strength of the three hydrogen bonds within this new kind of structural unit are O(H2O-Rh 1)-O(HO-Rh2): 248 pm. O(H2O-Rh 1)-O(H2Oa): 273 pm, O(HO-Rh2)-O(H2Ob): 287 pm. The hydrogen atoms involved in these bridges have been located. The small difference in the Rh 1-O(H2O) - (205.4(3) pm) and Rh2-O(OH)- (204.3(3) pm) distances indicates that the entire H7O4-- moiety serves as a μ-bridging unit between Rh 1 and Rh 2
APA, Harvard, Vancouver, ISO, and other styles
5

Harrison, William T. A. "[Y(HSeO3)(SeO3)(H2O)]·H2O." Acta Crystallographica Section E Structure Reports Online 62, no. 7 (June 21, 2006): i152—i154. http://dx.doi.org/10.1107/s1600536806023051.

Full text
Abstract:
The title compound, aqua(hydrogen trioxoselenato)(trioxoselenato)yttrium(III) monohydrate, which is isostructural with its samarium(III) and neodymium(III) analogues, contains YO8, SeO3 and HSeO3 coordination polyhedra, which fuse together by corner- and edge-sharing, resulting in a layered structure. A network of O—H...O hydrogen bonds helps to consolidate the crystal packing.
APA, Harvard, Vancouver, ISO, and other styles
6

Gencheva, G., D. Tsekova, G. Gochev, G. Momekov, G. Tyuliev, V. Skumryev, M. Karaivanova, and P. R. Bontchev. "Synthesis, Structural Characterization, and Cytotoxic Activity of Novel Paramagnetic Platinum Hematoporphyrin IX Complexes: Potent Antitumor Agents." Metal-Based Drugs 2007 (August 7, 2007): 1–13. http://dx.doi.org/10.1155/2007/67376.

Full text
Abstract:
Three novel stable Pt(III) complexes with distorted octahedral structure and (dz2)1 ground state have been obtained in the course of Pt(II)-hematoporphyrin IX ((7,12-bis(1-hydroxyethyl)-3,8,13,17-tetramethyl-21H-23H-porphyn-2,18-dipropionic acid), Hp) interaction in alkaline aqueous medium and aerobic conditions. A redox interaction also takes place together with the complexation process leading to the formation of Pt(III) species and organic radicals. The processes in the reaction system and the structure of the complexes formed cis-[Pt(III)(NH3)2(Hp−3H)(H2O)2]⋅H2O1, [Pt(III)(Hp−3H)(H2O)2]⋅H2O2, and [Pt((O,O)Hp−2H)Cl(H2O)3] 3, were studied by UV-Vis, IR, EPR and XPS spectra, thermal (TGS, DSC), potentiometric and magnetic methods. The newly synthesized complexes show promising cytotoxic activity comparable with that of cis-platin in in vitro tests against a panel of human leukemia cell lines. The observed cytotoxicity of the complex 2 against SKW-3 cells (KE-37 derivative) is due to induction of cell death through apoptosis.
APA, Harvard, Vancouver, ISO, and other styles
7

Gao, Aifang, Guoliang Li, Bin Peng, Jared D. Weidman, Yaoming Xie, and Henry F. Schaefer. "The water trimer reaction OH + (H2O)3 → (H2O)2OH + H2O." Physical Chemistry Chemical Physics 22, no. 17 (2020): 9767–74. http://dx.doi.org/10.1039/d0cp01418d.

Full text
Abstract:
All important stationary points on the potential energy surface (PES) for the reaction OH + (H2O)3 → (H2O)2OH + H2O have been fully optimized using the “gold standard” CCSD(T) method with the large Dunning correlation-consistent cc-pVQZ basis sets.
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Aifang, Guoliang Li, Bin Peng, Yaoming Xie, and Henry F. Schaefer. "The water dimer reaction OH + (H2O)2 → (H2O)–OH + H2O." Physical Chemistry Chemical Physics 19, no. 28 (2017): 18279–87. http://dx.doi.org/10.1039/c7cp03233a.

Full text
Abstract:
The stationary points, including the entrance complex, transition states, and the exit complex, for the reaction OH + (H2O)2 → (H2O)OH + H2O have been carefully examined using the “gold standard” CCSD(T) method with the correlation-consistent basis sets up to cc-pVQZ.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Nancy Renyou, and Donald D. Shillady. "Ab initio equilibrium constants for H2O–H2O and H2O–CO2." Journal of Chemical Physics 100, no. 7 (April 1994): 5230–36. http://dx.doi.org/10.1063/1.467187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jung, Bernd, and Gerd Meyer. "Notizen: Kristallstruktur von [As(C6H5)4]2[Re3Cl11(H20)] · H2O / Crystal Structure of [As(C6H5)4]2[Re3Cl11(H2O)] · H2O." Zeitschrift für Naturforschung B 45, no. 7 (July 1, 1990): 1097–99. http://dx.doi.org/10.1515/znb-1990-0733.

Full text
Abstract:
The crystal structure of(AsPh4)2[Re3Cl„(H2O)]·H2O, previously thought to be (AsPh4)2[Re3Cl11], was redetermined from single-crystal four-circle diffractometer data. The crystal system is triclinic, PĪ, a = 983.1(6), b = 1200.5(6), c = 2566.2(10) pm, α = 92.67(4), β = 99.95(4), γ = 113.38(2)°, Vm = 817.95(1) cm3/mol, R = 0.043,Rw= 0.033.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "H2O"

1

Oliveira, Rhuiago Mendes de. "Cálculo das propriedades dinâmicas dos sistemas moleculares H2O-He, H2O-Ne, H2O-Ar, H2O-Kr, H2O-Xe, CCl4-He, CCl4-Ar, CCl4-Ne, CCl4-O2, CCl4-D2O e CCl4-ND3." reponame:Repositório Institucional da UnB, 2014. http://repositorio.unb.br/handle/10482/17399.

Full text
Abstract:
Dissertação (mestrado)—Universidade de Brasília, Pós-Graduação em Física, 2014.
Submitted by Larissa Stefane Vieira Rodrigues (larissarodrigues@bce.unb.br) on 2014-12-09T17:05:57Z No. of bitstreams: 1 2014_RhuiagoMendesDeOliveira.pdf: 701976 bytes, checksum: 06685f90f88a213c31bd9179de2b0a31 (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2014-12-17T16:11:52Z (GMT) No. of bitstreams: 1 2014_RhuiagoMendesDeOliveira.pdf: 701976 bytes, checksum: 06685f90f88a213c31bd9179de2b0a31 (MD5)
Made available in DSpace on 2014-12-17T16:11:52Z (GMT). No. of bitstreams: 1 2014_RhuiagoMendesDeOliveira.pdf: 701976 bytes, checksum: 06685f90f88a213c31bd9179de2b0a31 (MD5)
O objetivo principal deste trabalho foi o c´alculo das energias e constantes espectroscópicas rovibracionais de dois conjuntos de sistemas moleculares: água com os gases nobres (H2O-He, H2O-Ne, H2O-Ar, H2O-Kr e H2O-Xe) e moléculas envolvendo o tetracloreto (CCl4-He, CCl4- Ne, CCl4-Ar, CCl4-O2, CCl4-D2O e CCl4-ND3). Todos estes cálculos foram realizados usando duas metodologias diferentes (Método das variáveis discretas e método de Dunham) e curvas de energias potenciais analíticas do tipo ILJ (do inglês ”Improved Lennard-Jones) com parâmetros ajustáveis obtidos experimentalmente. Os resultados obtidos pelas duas metodologias estão em um excelente acordo e os mesmos podem ser utilizados como referência para futuros experimentos de espectroscopia. ______________________________________________________________________________ ABSTRACT
The goal of this work was the calculation of the rovibrational energies and rovibrational spectroscopy constants of two sets of molecular systems: water with noble gas (H2O-He, H2ONe, H2O-Ar, H2O-Kr and H2O-Xe) and molecules composed by tetrachloride (CCl4-He, CCl4- Ne, CCl4-Ar, CCl4-O2, CCl4-D2O and CCl4-ND3). These calculations were determined using two different methodologies (discrete variable method and Dunham method) and Improved Lennard-Jones analytical potential energy curves with experimentally adjusted parameters. The discrete variable method and Dunham results are in an excellent agreement and they can be used as a standard for spectroscopic experiments.
APA, Harvard, Vancouver, ISO, and other styles
2

Norval, Mary. "UV laser multiphoton dissociation studies of H2O, NO2 and H2O2." Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/19199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McKendrick, Colin Bruce. "UV laser multiphoton dissociation studies of H2O, NO2 and H2O2." Thesis, University of Edinburgh, 1986. http://hdl.handle.net/1842/12630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bryce, Christine. "A kinetic study of gallium arsenide etching in H2O2-NH4OH-H2O solutions /." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41991.

Full text
Abstract:
Gallium arsenide, a compound semiconductor commonly used in optoelectronic devices, is often subjected to wet etching techniques during microelectronic device manufacture. In this work, the wet chemical etching of gallium arsenide in $ rm H sb2O sb2$-$ rm NH sb4OH$-H$ sb2$O solutions was studied using a batch stirred-tank reactor. A kinetic control regime was established and the influence of each component's concentration on the intrinsic etch rate was determined. The reaction rate was found, in the presence of excess NH$ sb4$OH, to fit a rate equation, r = k (H$ rm sb2O sb2 rbrack sp{0.75}$ at 15, 25, and 40$ sp circ$C with an activation energy of 33.7 kJ/mol. Using NaOH instead of NH$ sb4$OH resulted in greatly reduced reaction rates, and it was concluded that the presence of the ammonium ion increases the rate by forming soluble compounds with oxidized species of Ga and As. When mass transfer resistances are introduced, using a flow reactor to simulate an industrial etching apparatus, the reaction rates are considerably reduced and the rate's dependence on $ rm H sb2O sb2$ concentration is shifted closer to linear. Convective mass transfer expressions for flow past a flat plate were successfully used to predict the etch rate. The two reactors were used to etch samples masked by a circuit pattern, and the crystallography of GaAs dictated the shape of the etch profiles rather than the mass transfer limitations of the system.
APA, Harvard, Vancouver, ISO, and other styles
5

Thibert, Emmanuel. "Thermodynamique et cinétique des solutions solides HCl-H2O et HNO3-H2O : implications atmosphériques." Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00755697.

Full text
Abstract:
Le but de notre travail est de contribuer à la compréhension des interactions entre les gaz acides et la glace, à la fois pendant la phase atmosphérique de la glace, c'est à dire dans les nuages, et dans la neige après dépôt au sol. Les gaz polaires en général, et les acides en particulier, interagissent fortement avec la glace dans la quelle ils peuvent se dissoudre. Dans les nuages, ces interactions peuvent modifier fortement la composition de l'air, et ce point reste une inconnue majeure en chimie atmosphérique. La compréhension de la relation entre la composition de l'air et celle de la glace, appelée fonction de transfert air-neige, est également indispensable pour reconstituer la composition des paléoatmosphères à partir des carottes de glace. Afin de contribuer à élucider ces problèmes, nous avons étudié l'incorporation dans la glace des composés gazeux HCI et HN03. Les compositions à l'équilibre thermodynamique des solutions solides HCl-glace et HN03-glace, en fonction de la température et de la pression partielle du gaz, ont été obtenues expérimentalement en mesurant les profils de diffusion du gaz dans des monocristaux de glace. A -15 °C, le coefficient de diffusion est de l'ordre de 10-12 cm2/s pour HCI et de 10-10 cm2/s pour HN03. A la même température, sous une pression de 6 x 10-3 Pa, HN03 est environ 25 fois moins soluble que HCI avec pour solubilité respectives de 2,2 x 10-7 et 5 x 10-6 fraction molaire. Ces données ont été appliquées à différents phénomènes d'intérêt atmosphérique. Dans le cadre de la fonction de transfert air-neige, nos résultats ont été comparés à des données de terrain obtenues au Groenland. Il apparaît que, dans les flocons de neige, HCI en solution solide n'est pas en équilibre avec HCI en phase gazeuse. La teneur en HCI dans la neige est déterminée par des facteurs cinétiques lors de la formation des cristaux. Les résultats concernant HN03 suggèrent en revanche que, dans les flocons analysés, HN03 est en équilibre avec la phase gazeuse sans doute grâce à sa cinétique de diffusion plus rapide. Suite à ces résultats, nous avons proposé un mécanisme d'incorporation des gaz dans la glace lors de la croissance des cristaux. Celui-ci suggère que la relation liant la composition atmosphérique à la composition de la glace des nuages est fortement influencée par la dynamique atmosphérique et, en particulier, par les paramètres température et vitesse de refroidissement lors de la phase de formation du nuage. Les données obtenues au laboratoire intéressent aussi le domaine de l'hydrologie appliqué à la composition des eaux de fonte des neiges. Les résultats sur les solubilités de HCI et de HN03 et leur localisation probable dans le névé en cas de sursaturation expliquent semi quantitativement le phénomène observé d'élution préférentielle de l'ion nitrate par rapport à l'ion chlorure.
APA, Harvard, Vancouver, ISO, and other styles
6

Timofejeva, Oksana. "Nuosėdų formavimosi sistemose CuSO4 – K4P2O7 – H2O ir CuSO4 – (NH4)4P2O7 – H2O mechanizmo tyrimas." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090526_111134-61644.

Full text
Abstract:
Disertaciniame darbe naudojant IR-spektrometrijos, rentgenofazinės analizės, atominės absorbcinės spektroskopijos, kolorimetrijos analizės metodus buvo ištirta sistemose CuSO4 – K4P2O7 – H2O ir CuSO4 – (NH4)4P2O7 – H2O susidarančių mažai tirpių junginių sudėtis, jų susidarymo dėsningumai ir vykstančios reakcijos, įvairių veiksnių įtaka nuosėdų sudėčiai ir struktūrai. Nustatyta, kad sistemoje CuSO4 – K4P2O7 – H2O, be jau žinomų mažai tirpių junginių (paprastosios druskos Cu2P2O7 5H2O ir dvigubosios druskos Cu3K2(P2O7)2 H2O, susidaro ir naujas mokslinėje literatūroje neaprašytas junginys (Dimorfas B), dvigubajai druskai patiriant polimorfinį perėjimą. Polimorfinio perėjimo trukmė labai priklauso nuo pH ir reaguojančių jonų koncentracijų. FTIR duomenų analizė parodė, kad difosfato jonų energetinė būsena Cu – K ir Cu – NH4 Dimorfuose B panaši. Jų rentgenogramos yra panašios, tikėtina, kad šie junginiai – izostruktūriniai, jų kristalinės gardelės tipas – monoklininis. Naudojant Lazarevo lygtį bei Rulmonto priklausomybę buvo apskaičiuoti Cu – K ir Cu – NH4 Dimorfų A ir B bei paprastosios druskos P – O – P kampai, gauta, kad jie mažai keičiasi siaurame 123,1 – 127,1 º intervale. Nustatyta, kad dviguboji druska susidaro iš paprastosios, vykstant heterogeninei reakcijai: 3Cu2P2O7 5H2O↓ + H2P2O72– + 4K+ → 2Cu3K2(P2O7)2∙3H2O↓ + 2H++ 9H2O. Mokslinėje literatūroje tokia reakcija neaprašyta jokiai polifosfatų sistemai, jos tyrimo duomenys yra nauji. Taip pat nustatyta, kad heterogeninės... [toliau žr. visą tekstą]
At least three poorly soluble compounds can be formed in the CuSO4 – K4P2O7 – H2O system: a single salt Cu2P2O7.5H2O and two dimorph’s both having chemical formula Cu3K2(P2O7)2.3H2O. A previously known form of Cu3K2(P2O7)2.3H2O (we named it Dimorph A) transforms into a novel Dimorph B, which has a different structure. The similarities between the XRD patterns and vibrations spectra of copper–ammonium and copper–potassium Dimorph’s B imply that they are isostructural. The values of the angle for copper–potassium and copper–ammonium salts and Cu2P2O7.5H2O are relatively low and vary within a narrow range (123.1 – 127.1°). The formation of the compounds significantly depends on the conditions of the experiment. A double salt in the CuSO4 – K4P2O7 – H2O system may be formed after some time in the reaction mixture as a result of the following heterogeneous reaction: 3Cu2P2O7∙5H2O↓ + H2P2O72– + 4K+ → 2Cu3K2(P2O7)2∙3H2O↓ + 2H+ + 9H2O This reaction has not been previously described for any polyphosphate system. Therefore, novel results of scientific investigation are presented. The rate, duration and yield of heterogeneous reaction substantially depend on pH of the solution, [Cu2+ + P2O74–] and n ([P2O74–] / [Cu2+]). At a relatively low pH the induction time is high, the reaction rate is low and duration is long. The maximal yields close to 100% can be achieved when [Cu2+ + P2O74–] = 0.1 M. At increased pH values, the induction time, the yield and duration of the reaction diminish... [to full text]
APA, Harvard, Vancouver, ISO, and other styles
7

Zakharchuk, Vitaly. "Löslichkeit von Spinell und Korund in reinem H2O und in KOH-H2O-Lösung." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=983022410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Salavera, Muñoz Daniel. "Propiedades Termofísicas de nuevos fluidos de trabajo (H2O+LiBr+LiNO3+LiC1, NH3+H2O y NH3+H2O+KOH) para sistemas de refrigeración por absorción." Doctoral thesis, Universitat Rovira i Virgili, 2005. http://hdl.handle.net/10803/8530.

Full text
Abstract:
El incremento de la demanda energética, que acompaña al crecimiento experimentado por la economía mundial en las últimas décadas, obliga a la búsqueda de tecnologías más eficientes que permitan mitigar los efectos negativos que sobre el medio ambiente causa este crecimiento.
En España, una de las principales demandas energéticas se produce en los meses estivales, debido al aumento de aparatos de aire acondicionado. Para reducir esta demanda, la refrigeración por absorción activada por energía solar o calor residual se presenta como una de las opciones más interesantes de cara al futuro.
Los fluidos de trabajo convencionales (agua + bromuro de litio y amoniaco + agua) presentan una serie de inconvenientes: la limitada solubilidad y elevada corrosividad del bromuro de litio, y la necesidad de rectificación para la separación de la mezcla amoniaco + agua que determinan las propias limitaciones del uso de estos sistemas.
La adición de otros componentes puede paliar estos inconvenientes y mejorar así las prestaciones del ciclo. Así, el uso de sales de litio (cloruro, nitrato y ioduro) pueden reducir la corrosividad y aumentar la solubilidad del bromuro de litio, y el uso de hidróxidos alcalinos (de sodio y de potasio) aumentan la volatilidad relativa de la mezcla NH3+H2O y facilitar así la separación de ambos a la salida del generador.
La información existente respecto a las propiedades termofísicas de estas nuevas mezclas es insuficiente para una precisa simulación del ciclo de absorción, por lo que el objetivo de este trabajo ha sido completar el estudio de las propiedades termofísicas más características de cada mezcla, así como la adaptación y puesta en marcha de los dispositivos y técnicas experimentales para realizar dicho trabajo.
Para la mezcla H2O + (LiBr + LiNO3 + LiCl + LiI) se ha determinado experimentalmente la solubilidad, la capacidad calorífica y la densidad. La primera se ha llevado a cabo por medio de dos métodos politérmicos, uno visual y otro calorimétrico, este último por medio de un calorímetro Calvet. Este mismo calorímetro fue utilizado para la determinación experimental de las capacidades caloríficas a presión constante de las disoluciones acuosas por medio de un método incremental. Finalmente, las densidades de las disoluciones fueron determinadas por medio de un densímetro de precisión de tubo vibrante.
Para las mezclas NH3 + H2O + NaOH y NH3 + H2O + KOH se ha realizado un estudio teórico-experimental del equilibrio líquido-vapor, a partir de las medidas de presión de vapor por el método estático a distintas composiciones y temperaturas de diferentes mezclas, determinandose la composición de las fases en equilibrio a través del método de Barker adaptado para sistemas ternarios. Además, los resultados se han correlacionado mediante el método Electrolyte-NRTL. Asimismo, se han determinado experimentalmente y correlacionado en función de la temperatura y composición las capacidades caloríficas a presión constante y las densidades de las disoluciones por el método calorimétrico y de tubo vibrante, respectivamente.
The increase of the power demand, that accompanies to the experienced growth by the world economy in the last decades, forces the search of more efficient technologies which allow to mitigate the negative effects that on the environment this growth causes.
In Spain, one of the main power demands happen in the summer months, due to the increase of air conditioning apparatuses. In order to reduce this demand, absorption refrigeration systems driven by solar energy or waste heat comes up as one of the most interesting options with the view to the future.
The conventional working fluids (water + lithium bromide and ammonia + water) show some disadvantages: limited solubility and high corrosivity of the lithium bromide, and the necessity of rectification for the separation of the mixture ammonia + water that determine the own limitations of the use of these systems.
The addition of other components can to alleviate these disadvantages and improving like this the performance of the cycle. Thus, the use of lithium salts (chloride, nitrate and iodide) can to reduce the corrosivity and increasing the solubility of the lithium bromide, and the use of alkaline hydroxides (of sodium and potassium) increasing the volatileness relative of mixture NH3+H2O and to facilitate the separation of both in the exit of the generator.
The information with respect to the thermophysical properties of these new mixtures is insufficient for one precise simulation of the absorption cycle, reason why the objective of this work has been to complete the study of the more characteristic thermophysical properties of each mixture, as well as the adaptation and experimental beginning of the devices and techniques to make this work.
For the mixture H2O + (LiBr + LiNO3 + LiCl + LiI) solubility, heat capacity and density have been determined experimentally. The first has been carried out by means of two polythermal methods, one visual and another calorimetric, this last one by means of a Calvet calorimeter. This same calorimeter was used for the experimental determination of the heat capacities to constant pressure of the watery dissolutions by means of an incremental method. Finally, the densities of the dissolutions were determined by means of an accurate vibrating tube densimeter.
For the mixtures NH3 + H2O + NaOH and NH3 + H2O + KOH a theoretical-experimental study of the liquid-vapor equilibrium has been made, from the measures of vapor pressure by the static method to different compositions and temperatures from different mixtures, determining the composition of the equilibrium phases through the method of Barker adapted for ternary systems.
In addition, results have been correlated by means of the Electrolyte-NRTL method. Also, heat capacities to constant pressure and densities have been determined experimentally and correlated based on the temperature and composition of the dissolutions, by the calorimetric method and of vibrating tube, respectively.
L'increment de la demanda energètica, que ha acompanyat el creixement experimentat per l'economia mundial en les últimes dècades, fa necessària la recerca de tecnologies més eficients que permetin reduir els efectes negatius que aquest creixement efectua sobre el medi ambient.
A l'estat espanyol, les puntes més elevades de demanda energètica es produeix durant l'estiu, degut a l'augment d'aparells d'aire condicionat. Per a reduir aquesta demanda, la refrigeració per absorció activada per energia solar o calor residual es presenta com una de les opcions més interessants de cara al futur.
Els fluids de treball convencionals (aigua + bromur de liti i amoníac + aigua) presenten una sèrie d'inconvenients: la limitada solubilitat i elevada corrosivitat del bromur de liti, y la necessitat de rectificació per a la separació de la mescla amoníac + aigua que determinen les pròpies limitacions de l'ús de aquests sistemes.
L'addició d'altres components pot minorar aquests inconvenients i millorar així les prestacions del cicle. Així, l'ús de sales de liti (clorur, nitrat i iodur) poden reduir la corrosivitat i augmentar la solubilitat del bromur de liti, i la utilització d'hidròxids alcalins (de sodi i de potassi) augmenten la volatilitat relativa de la sistema NH3+H2O i faciliten la separació de ambdós a la sortida del generador.
La informació existent respecte a les propietats termofísiques d'aquests nous sistemes és insuficient per una precisa simulació del cicle d'absorció, per la qual cosa l'objectiu d'aquest treball ha estat completar l'estudi experimental de les propietats termofísiques més característiques de cada mescla, així com l'adaptació i posada en marxa dels dispositius i tècniques experimentals per a realitzar aquest treball.
Per al sistema H2O + (LiBr + LiNO3 + LiCl + LiI) s'han determinat experimentalment la solubilitat, la capacitat calorífica i la densitat. La primera d'aquestes propietats s'ha mesurat fent servir dos mètodes politèrmics, un de visual i l'altre calorimètric, aquest últim por medi de un calorímetre Calvet. Aquest calorímetre també va ser utilitzat per la determinació experimental de les capacitats calorífiques a pressió constant de les dissolucions aquoses fent servir un mètode incremental. Finalment, les densitats de les dissolucions es van determinar fent servir un densímetre de precisió de tub vibrant.
Pels sistemes NH3 + H2O + NaOH y NH3 + H2O + KOH s'ha realitzat un estudi teòric-experimental de l'equilibri líquid-vapor. A partir de les mesures de pressió de vapor pel mètode estàtic a distintes composicions i temperatures dels diferents sistemes s'ha determinat la composició de les fases en equilibri a través del mètode de Barker adaptat per a sistemes ternaris. A més a més, els resultats s'han correlacionat fent servir el mètode Electrolyte-NRTL. Tanmateix s'han determinat experimentalment i correlacionat en funció de la temperatura i composició les capacitats calorífiques a pressió constant i las densitats de les dissolucions emprant el mètode calorimètric i de tub vibrant, respectivament.
APA, Harvard, Vancouver, ISO, and other styles
9

Ermatchkov, Viktor. "Phasengleichgewichte in komplexen, chemisch reagierenden Systemen NH3 + SO2 + H2O + Salze und CO2 + H2O + MDEA, Piperazin /." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980777488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pereira, Carmen Ines Feltrin. "Elaboração e analise de diagramas de fases dos sistemas SDS+H2O, (SDS+H2O)+DeOH e (SDS+H2O+DeOH)+Na2SO4, com auxilio de microscopia petrografica e refratometria." reponame:Repositório Institucional da UFSC, 1991. http://repositorio.ufsc.br/xmlui/handle/123456789/75807.

Full text
Abstract:
Dissertação (mestrado) Universidade Federal de Santa Catarina. Centro de Ciencias Fisicas e Matematicas
Made available in DSpace on 2012-10-16T04:35:54Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-08T17:10:15Z : No. of bitstreams: 1 82128.pdf: 1863688 bytes, checksum: 59152695215c6c861fa76c5071a36a9d (MD5)
No presente trabalho elaboramos diagramas de fases de sistem liotrópicos, usando como surfactante Decilsulfato de Sódio (SDS). Partindo da concentração de 50%, em peso, de SDS e água tridestilada, determinamos uma concentração particular de existência de liomesofases (42,5% de SDS e 57,5% de H2O). Mantendo a razão da concentração para a formação do sistema ternário. Com base no diagrama de fase do sistema ternário, na região de maior estabilidade do nemático exibido pelo sistema, em temperatura, a razão (SDS + H2O) / DeOH foi escolhida para ser mantida constante quando da adição de Na2SO4, para a formação do sistema quaternário.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "H2O"

1

Stax, Bibs. H2O. Jupiter, Florida: Byrne Publishing, LLC, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Erbelding, Patricia. H2O. Paris, France: Corine Girieud, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Milchev, Kiril. H2O: Noveli. Sofii︠a︡: Lakov Pres, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martinotti, Guido. Accadueo: H2O. Milano: Skira, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goldberg, R. N. A bibliography of sources of thermodynamic data for the systems: CO2 [plus] NH3 [plus] H2O, CO2 [plus] H2S [plus] H2O, H2S [plus] NH3 [plus] H2O, and CO2 [plus] NH3 [plus] H2S [plus] H2O. Washington: National Bureau of Standards, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chang, Hasok. Is Water H2O? Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3932-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kasan, Goh. H2O and other proselyrics. Singapore: Landmark Books, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Illich, Ivan. H2O and the waters of forgetfulness. London: Boyars, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

H2O l'eau c'est la vie: Théâtre. Paris: Harmattan, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chang, Hasok. Is Water H2O?: Evidence, Realism and Pluralism. Dordrecht: Springer Netherlands, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "H2O"

1

Brown, J. M. "H2O+." In Landolt-Börnstein - Group II Molecules and Radicals, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11313410_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk, et al. "[H2O]." In Structure Types. Part 5: Space Groups (173) P63 - (166) R-3m, 385. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46933-9_289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk, et al. "Na0.35[H3O]0.17CoO2[H2O]1.2." In Structure Types. Part 5: Space Groups (173) P63 - (166) R-3m, 702. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46933-9_574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, I. Savysyuk, and R. Zaremba. "Th3(SO4)6(H2O)6∙H2O." In Structure Types. Part 10: Space Groups (140) I4/mcm – (136) P42/mnm, 774. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19662-1_651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, and I. Savysyuk. "Ag6P6O18∙H2O." In Structure Types. Part 8: Space Groups (156) P3m1 – (148) R-3, 761. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-70892-6_514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, and I. Savysyuk. "CaCO3∙H2O." In Structure Types. Part 8: Space Groups (156) P3m1 – (148) R-3, 437. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-70892-6_237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, and I. Savysyuk. "Sr5Al8O17∙H2O." In Structure Types. Part 8: Space Groups (156) P3m1 – (148) R-3, 845. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-70892-6_591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, and I. Savysyuk. "CoHPO4∙H2O." In Structure Types. Part 8: Space Groups (156) P3m1 – (148) R-3, 809. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-70892-6_557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, O. Pavlyuk, I. Savysyuk, and S. Stoyko. "AgSNO2[H2O]." In Structure Types. Part 7: Space Groups (160) R3m - (156) P3m1, 584–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69949-1_222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, O. Pavlyuk, I. Savysyuk, and S. Stoyko. "LiTiS2[H2O]." In Structure Types. Part 7: Space Groups (160) R3m - (156) P3m1, 779–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69949-1_335.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "H2O"

1

Alagiannis, Ioannis, Stratos Idreos, and Anastasia Ailamaki. "H2O." In SIGMOD/PODS'14: International Conference on Management of Data. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2588555.2610502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Thermodynamic analysis of Mn-As-H2O, Mn-Sb-H2O, Mn-Bi-H2O systems." In 6th International Conference on Biological, Chemical & Environmental Sciences. International Institute of Chemical, Biological & Environmental Engineering (IICBEE), 2016. http://dx.doi.org/10.15242/iicbe.c0816212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuo, Jer-Lai, Kaito Takahashi, Jake Tan, Hsiao-Han Chuang, and Ying-Cheng Li. "MULTIDIMENTIONAL NORMAL MODE CALCULATIONS FOR THE OH VIBRATIONAL SPECTRA OF (H2O)3+, (H2O)3+Ar, H+(H2O)3, AND H+(H2O)3Ar." In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.rg03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dutta, J. M. "Pressure broadening of H2O and HDO between 90k and 60k." In 17th International Conference on Infrared and Millimeter Waves. SPIE, 2017. http://dx.doi.org/10.1117/12.2298201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Militzer, Burkhard, and Shuai Zhang. "Ab initio simulations of superionic H2O, H2O2, and H9O4 compounds." In SHOCK COMPRESSION OF CONDENSED MATTER - 2017: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Author(s), 2018. http://dx.doi.org/10.1063/1.5044795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Larsson, K., M. Aldén, and J. Bood. "Simultaneous imaging of H2O2 and H2O concentration distributions using photofragmentation LIF." In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/lacsea.2014.lm2d.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krol, O., J. Andrieux, J. J. Counioux, R. Tenu, and C. Goutaudier. "Solubility and related equilibria in the KBO2– H2O and KBO2– H2O – KOH systems." In XXXV JEEP – 35th Conference on Phase Equilibria. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/jeep/200900023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lock, A. J., and H. J. Bakker. "Vibrational energy relaxation in H2O." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/up.2002.wd24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

HASKOPOULOS, A., and G. MAROULIS. "INTERMOLECULAR INTERACTIONS OF (H2O)2." In Proceedings of the International Conference (ICCMSE 2003). WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704658_0050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Garcia de Mattos, Gileine, Vera Ilza Medeiros, Jorge Luiz Gomes de Mattos, Adilia Lucas Goulart, and Tiago Ramires. "PRESERVANDO H2O PARA O FUTURO!" In 1° Encontro de Educação Ambiental da Fronteira Oeste. ,: Even3, 2021. http://dx.doi.org/10.29327/ieeafo2021.382280.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "H2O"

1

Zittel, P. F., and D. E. Masturzo. Vibrational Relaxation of H2O by H2, HCl, and H2O at 295K. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada252800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dinh, L., R. Maxwell, M. Schildbach, B. Balazs, and W. McLean, II. H2O Outgassing from Silicones. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/15014638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rard, J. Results from Boiling Temperature Measurements for Saturated Solutions in the Systems NaCl + Ca(NO3)2 + H2O, NaNO3 + KNO3 + H2O, and NaCl + KNO3 + H2O, and Dry Out Temperatures for NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/889972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dinh, L., and M. Balooch. Desorption Kinetics of H2O, H2, CO, and CO2 from Silica Reinforced Polysiloxane. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/792649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dinh, L. N., M. A. Schildbach, W. McLean, B. Balazs, J. D. LeMay, and M. Balooch. H2O Outgassing In and Its Effects on M9787 Silicone. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/15005328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yan, Haixing. The Vibrational Relaxation Processes in a CO2-N2-H2O Laser System. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada196860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lang, V. I. Relaxation Processes of Vibrationally Excited H2O in the Mesosphere and Thermosphere. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada241853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gupta, P., A. C. Dillon, A. S. Bracker, and S. M. George. FTIR Studies of H2O and D2O Decomposition on Porous Silicon Surfaces. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada226581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Davies, R. W., and S. F. Fahey. Calculation of H2O Far-Wing Absorption within the Single-Perturber Approximation. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada160405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burch, Darrell E. Absorption by H2O in Narrow Windows between 3000 and 4200 CM(-1). Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada166648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography