Academic literature on the topic 'H-Pseudodifferential operators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'H-Pseudodifferential operators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "H-Pseudodifferential operators"

1

Yang, Jie. "On L 2 -Boundedness of h -Pseudodifferential Operators." Journal of Function Spaces 2021 (February 20, 2021): 1–5. http://dx.doi.org/10.1155/2021/6690963.

Full text
Abstract:
Let T a h be the h -pseudodifferential operators with symbol a . When a ∈ S ρ , 1 m and m = n ρ − 1 / 2 , it is well known that T a h is not always bounded in L 2 ℝ n . In this paper, under the condition a x , ξ ∈ L ∞ S ρ n ρ − 1 / 2 ω , we show that T a h is bounded on L 2 .
APA, Harvard, Vancouver, ISO, and other styles
2

Taylor, Michael. "The Technique of Pseudodifferential Operators (H. O. Cordes)." SIAM Review 38, no. 3 (1996): 540–42. http://dx.doi.org/10.1137/1038101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Deng, Yu-long. "Commutators of Pseudodifferential Operators on Weighted Hardy Spaces." Journal of Mathematics 2022 (January 20, 2022): 1–6. http://dx.doi.org/10.1155/2022/8851959.

Full text
Abstract:
In this paper, we establish an endpoint estimate for the commutator, b , T , of a class of pseudodifferential operators T with symbols in Hörmander class S ρ , δ m R n . In particular, there exists a nontrivial subspace of B M O R n such that, when b belongs to this subspace, the commutators b , T is bounded from H ω 1 R n into L ω 1 R n , which we extend the well-known result of Calderón-Zygmund operators.
APA, Harvard, Vancouver, ISO, and other styles
4

Hitrik, Michael, and Johannes Sjöstrand. "Non-Selfadjoint Perturbations of Selfadjoint Operators in Two Dimensions IIIa. One Branching Point." Canadian Journal of Mathematics 60, no. 3 (2008): 572–657. http://dx.doi.org/10.4153/cjm-2008-028-3.

Full text
Abstract:
AbstractThis is the third in a series of works devoted to spectral asymptotics for non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2, having a periodic classical flow. Assuming that the strength ॉ of the perturbation is in the range h2 ≪ ॉ ≪ h1/2 (and may sometimes reach even smaller values), we get an asymptotic description of the eigenvalues in rectangles [−1/C, 1/C] + iॉ[F0 − 1/C, F0 + 1/C], C ≫ 1, when ॉF0 is a saddle point value of the flow average of the leading perturbation.
APA, Harvard, Vancouver, ISO, and other styles
5

Rabinovich, V. S. "Local exponential estimates for h-pseudodifferential operators and tunneling for Schrödinger, Dirac, and square root Klein-Gordon operators." Russian Journal of Mathematical Physics 16, no. 2 (2009): 300–308. http://dx.doi.org/10.1134/s1061920809020149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rabinovich, V. "Exponential estimates of solutions of pseudodifferential equations on the lattice $${(h \mathbb{Z})^{n}}$$ : applications to the lattice Schrödinger and Dirac operators." Journal of Pseudo-Differential Operators and Applications 1, no. 2 (2010): 233–53. http://dx.doi.org/10.1007/s11868-010-0005-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Elong, Ouissam. "On the LP boundedness of h-Fourier integral operators with rough symbols." Mathematica Montisnigri 54 (2022): 25–39. http://dx.doi.org/10.20948/mathmontis-2022-54-3.

Full text
Abstract:
We prove LP boundedness of a class of semiclassical Fourier integral operators defined by smooth phase function and semiclassical rough symbols on the spatial variable 𝑥. We also consider a spacial case of ℎ -pseudodifferential operators.
APA, Harvard, Vancouver, ISO, and other styles
8

Orlov, A. Yu, and P. Winternitz. "P∞ Algebra of KP, Free Fermions and 2-Cocycle in the Lie Algebra of Pseudodifferential Operators." International Journal of Modern Physics B 11, no. 26n27 (1997): 3159–93. http://dx.doi.org/10.1142/s0217979297001532.

Full text
Abstract:
The symmetry algebra P∞=W∞⊕ H ⊕ I∞ of integrable systems is defined. As an example the classical Sophus Lie point symmetries of all higher KP equations are obtained. It is shown that one ("positive") half of the point symmetries belongs to the W∞ symmetries while the other ("negative") part belongs to the I∞ ones. The corresponding action on the τ-function is obtained. A new embedding of the Virasoro algebra into gl(∞) describes conformal transformations of the KP time variables. A free fermion algebra cocycle is described as a PDO Lie algebra cocycle.
APA, Harvard, Vancouver, ISO, and other styles
9

Rozendaal, Jan. "Rough Pseudodifferential Operators on Hardy Spaces for Fourier Integral Operators II." Journal of Fourier Analysis and Applications 28, no. 4 (2022). http://dx.doi.org/10.1007/s00041-022-09959-x.

Full text
Abstract:
AbstractWe obtain improved bounds for pseudodifferential operators with rough symbols on Hardy spaces for Fourier integral operators. The symbols $$a(x,\eta )$$ a ( x , η ) are elements of $$C^{r}_{*}S^{m}_{1,\delta }$$ C ∗ r S 1 , δ m classes that have limited regularity in the x variable. We show that the associated pseudodifferential operator a(x, D) maps between Sobolev spaces $${\mathcal {H}}^{s,p}_{FIO}({{\mathbb {R}}^{n}})$$ H FIO s , p ( R n ) and $${\mathcal {H}}^{t,p}_{FIO}({{\mathbb {R}}^{n}})$$ H FIO t , p ( R n ) over the Hardy space for Fourier integral operators $${\mathcal {H}}^{p}_{FIO}({{\mathbb {R}}^{n}})$$ H FIO p ( R n ) . Our main result is that for all $$r>0$$ r > 0 , $$m=0$$ m = 0 and $$\delta =1/2$$ δ = 1 / 2 , there exists an interval of p around 2 such that a(x, D) acts boundedly on $${\mathcal {H}}^{p}_{FIO}({{\mathbb {R}}^{n}})$$ H FIO p ( R n ) .
APA, Harvard, Vancouver, ISO, and other styles
10

"Partial parabolicity of the boundary-value problem for pseudodifferential equations in a layer." V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, no. 89 (2019). http://dx.doi.org/10.26565//2221-5646-2019-89-03.

Full text
Abstract:
A nonlocal boundary-value problem for evolutional pseudodifferential equations in an infinite layer is considered in this paper. The notion of the partially parabolic boundary-value problem is introduced when a solving function decreases exponentially only by the part of space variables. This concept generalizes the concept of a parabolic boundary value problem, which was previously studied by one of the authors of this paper (A. A. Makarov). Necessary and sufficient conditions for the pseudodifferential operator symbol are obtained in which partially parabolic boundary-value problems exist. It turned out that the real part of the symbol of a pseudodifferential operator should increase unboundedly powerfully in some of the spatial variables. In this case, a specific type of boundary conditions is indicated, which depend on a pseudodifferential equation and are also pseudodifferential operators. It is shown that for solutions of partially parabolic boundary-value problems, smoothness in some of the spatial variables increases. The disturbed (excitated) pseudodifferential equation with a symbol which depends on space and temporal variables is also investigated. It has been found for partially parabolic boundary-value problems what pseudodifferential operators are possible to be disturbed in the way that the input equation of this boundary-value problem would remain correct in Sobolev-Slobodetsky spaces. It is also shown that although the properties of increasing the smoothness of solutions in part of the variables for partially parabolic boundary value problems are similar to the property of solutions of partially hypoelliptic equations introduced by L. H\"{o}rmander, these examples show that the partial parabolic boundary value problem does not follow from partial hipoellipticity; and vice versa - an example of a partially parabolic boundary value problem for a differential equation that is not partially hypoelliptic is given.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography