Dissertations / Theses on the topic 'Guided wave ultrasonics'

To see the other types of publications on this topic, follow the link: Guided wave ultrasonics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Guided wave ultrasonics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Levine, Ross M. "Ultrasonic guided wave imaging via sparse reconstruction." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51829.

Full text
Abstract:
Structural health monitoring (SHM) is concerned with the continuous, long-term assessment of structural integrity. One commonly investigated SHM technique uses guided ultrasonic waves, which travel through the structure and interact with damage. Measured signals are then analyzed in software for detection, estimation, and characterization of damage. One common configuration for such a system uses a spatially-distributed array of fixed piezoelectric transducers, which is inexpensive and can cover large areas. Typically, one or more sets of prerecorded baseline signals are measured when the structure is in a known state, with imaging methods operating on differences between follow-up measurements and these baselines. Presented here is a new class of SHM spatially-distributed array algorithms that rely on sparse reconstruction. For this problem, damage over a region of interest (ROI) is considered to be sparse. Two different techniques are demonstrated here. The first, which relies on sparse reconstruction, uses an a priori assumption of scattering behavior to generate a redundant dictionary where each column corresponds to a pixel in the ROI. The second method extends this concept by using multidimensional models for each pixel, with each pixel corresponding to a "block" in the dictionary matrix; this method does not require advance knowledge of scattering behavior. Analysis and experimental results presented demonstrate the validity of the sparsity assumption. Experiments show that images generated with sparse methods are superior to those created with delay-and-sum methods; the techniques here are shown to be tolerant of propagation model mismatch. The block-sparse method described here also allows the extraction of scattering patterns, which can be used for damage characterization.
APA, Harvard, Vancouver, ISO, and other styles
2

Kogia, Maria. "High temperature electromagnetic acoustic transducer for guided wave testing." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/14491.

Full text
Abstract:
This research focuses on the theoretical analysis, development and experimental evaluation of a water cooled Electromagnetic Acoustic Transducer (EMAT) specifically designed for high-temperature Guided Wave Testing (GWT). Its novel design and detailed calculation of its optimum operating conditions resulted in its effectiveness at high temperatures for both short (500oC) and long-term inspection (250oC). All the steps followed for the theoretical and experimental investigation of the limitations of the existing technology and the development of a probe that can overcome these boundaries are presented. Finite Element Analysis (FEA) was performed for the optimization of the EMAT design and estimation of its ultrasonic and thermal properties at room and high temperatures over time. The wave mode purity profile of the Periodic Permanent Magnet (PPM) EMAT was theoretically studied as well as the effect of temperature rise on its ultrasonic performance. Thermal and Computational Fluid Dynamics (CFD) analysis was accomplished for the EMAT design optimization and calculation of its optimum operating conditions. The experimental validation of the theoretical study was also accomplished. The novel water cooled EMAT was developed and experimentally evaluated regarding its ultrasonic and thermal response at room and high temperatures. An empirical method for the enhancement of EMAT performance and its SNR was established. The wave mode purity characteristics of PPM EMAT were experimentally investigated via Laser vibrometry tests, which agreed with FEA results. The impedance analysis and ultrasonic evaluation of the EMAT at both room and high temperatures against various operating conditions were linked and compared to the results obtained from the ultrasonic, thermal and fluid FEA. In all cases, the experimental study is in good agreement with the theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
3

Fateri, Sina. "Advanced signal processing techniques for multimodal ultrasonic guided wave response." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/11657.

Full text
Abstract:
Ultrasonic technology is commonly used in the eld of Non-Destructive Testing (NDT) of metal structures such as steel, aluminium, etc. Compared to ultrasonic bulk waves that travel in infinite media with no boundary influence, Ultrasonic Guided Waves (UGWs) require a structural boundary for propagation such that they can be used to inspect and monitor long elements of a structure from a single position. The greatest challenges for any UGW system are the plethora of wave modes arising from the geometry of the structural element which propagate with a range of frequency dependent velocities and the interpretation of these combined signals reflected by discontinuities in the structural element. In this thesis, a technique is developed which facilitates the measurement of Time of Arrival (ToA) and group velocity dispersion curves of wave modes for one dimensional structures as far as wave propagation is concerned. A second technique is also presented which employs the dispersion curves to deliver enhanced range measurements in complex multimodal UGW responses. Ultimately, the aforementioned techniques are used as a part of the analysis of previously unreported signals arising from interactions of UGWs with piezoelectric transducers. The first signal processing technique is presented which used a combination of frequency-sweep measurement, sampling rate conversion and the Fourier transform. The technique is applied to synthesized and experimental data in order to identify different wave modes in complex UGW signals. It is demonstrated that the technique has the capability to derive the ToA and group velocity dispersion curve of the wave modes of interest. The second signal processing technique uses broad band excitation, dispersion compensation and cross-correlation. The technique is applied to synthesized and experimental data in order to identify different wave modes in complex UGW signals. It is demonstrated that the technique noticeably improves the Signal to Noise Ratio (SNR) of the UGW response using a priori knowledge of the dispersion curve. It is also able to derive accurate quantitative information about the ToA and the propagation distance. During the development of the aforementioned signal processing techniques, some unwanted wave-packets are identified in the UGW responses which are found to be induced by the coupling of a shear mode piezoelectric transducer at the free edge of the waveguide. Accordingly, the effect of the force on the piezoelectric transducers and the corresponding reflections and mode conversions are studied experimentally. The aforementioned signal processing techniques are also employed as a part of the study. A Finite Element Analysis (FEA) procedure is also presented which can potentially improve the theoretical predictions and converge to results found in experimental routines. The approach enhances the con dence in the FEA models compared to traditional approaches. The outcome of the research conducted in this thesis paves the way to enhance the reliability of UGW inspections by utilizing the signal processing techniques and studying the multimodal responses.
APA, Harvard, Vancouver, ISO, and other styles
4

Gandhi, Navneet. "Determination of dispersion curves for acoustoelastic lamb wave propagation." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37158.

Full text
Abstract:
The effect of stress on Lamb wave propagation is relevant to both nondestructive evaluation and structural health monitoring because of changes in received signals due to both the associated strain and the acoustoelastic effect. A homogeneous plate that is initially isotropic becomes anisotropic under biaxial stress, and dispersion of propagating waves becomes directionally dependent. The problem is similar to Lamb wave propagation in an anisotropic plate, except the fourth order tensor in the resulting wave equation does not have the same symmetry as that for the unstressed anisotropic plate, and the constitutive equation relating incremental stress to incremental strain is more complicated. Here we review the theory of acoustoelastic and develop theory for acoustoelastic Lamb wave propagation and show how dispersion curves shift anisotropically for an aluminum plate under biaxial tension. We also develop an approximate method using the effective elastic constants (EECs) and show that existing commercial tools to generate dispersion curves can be used under restricted conditions to describe wave propagation in biaxially stressed plates. Predictions of changes in phase velocity as a function of propagation direction using theory and the EEC method are compared to experimental results for a single wave mode.
APA, Harvard, Vancouver, ISO, and other styles
5

Brath, Alexander J. "Advanced techniques for ultrasonic imaging in the presence of material and geometrical complexity." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1510053440115292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Uhrig, Matthias Pascal. "Numerical simulation of nonlinear Rayleigh wave beams evaluating diffraction, attenuation and reflection effects in non-contact measurements." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54368.

Full text
Abstract:
Although several studies have proven the accuracy of using a non-contact, air-coupled receiver in nonlinear ultrasonic (NLU) Rayleigh wave measurements, inconsistent results have been observed when working with narrow specimens. The objectives of this research are first, to develop a 3D numerical finite element (FE) model which predicts nonlinear ultrasonic measurements and second, to apply the validated model on the narrow waveguide to determine causes of the previously observed experimental issues. The commercial FE-solver ABAQUS is used to perform these simulations. Constitutive law and excitation source properties are adjusted to match experiments conducted, considering inherent effects of the non-contact detection, such as frequency dependent pressure wave attenuation and signal averaging. Comparison of “infinite” and narrow width simulations outlines various influences which impair the nonlinear Rayleigh wave measurements. When the wave expansion is restricted, amplitudes of the fundamental and second harmonic components decrease more significantly and the Rayleigh wavefronts show an oscillating interaction with the boundary. Because of the air-coupled receiver’s finite width, it is sensitive to these edge effects which alter the observed signal. Thus, the narrow specimen adversely affects key factors needed for consistent measurement of material nonlinearity with an air-coupled, non-contact receiver.
APA, Harvard, Vancouver, ISO, and other styles
7

Luker, L. Dwight. "Investigation of a cylindrical nonacoustic-wavenumber calibration array." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/15885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pezant, Joannes Charles. "High temperature thickness monitoring using ultrasonic waves." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26577.

Full text
Abstract:
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Michaels, Jennifer; Committee Member: Jacobs, Laurence; Committee Member: Michaels, Thomas. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
9

Vogt, Thomas Karl. "Determination of material properties using guided waves." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bingham, Jill Paisley. "Ultrasonic guided wave interpretation for structural health inspections." W&M ScholarWorks, 2008. https://scholarworks.wm.edu/etd/1539623538.

Full text
Abstract:
Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications.;This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path.;For further understanding of how the guided wave modes propagate through the real structures, we have developed parallel processing, 3D elastic wave simulations using the finite integration technique (EFIT). This full field, numeric simulation technique easily examines models too complex for analytical solutions. We have developed the algorithm to handle built up 3D structures as well as layers with different material properties and surface detail. The simulations produce informative visualizations of the guided wave modes in the structures as well as the output from sensors placed in the simulation space to mimic the placement from experiment. Using the previously developed mode extraction algorithms we were then able to compare our 3D EFIT data to their experimental counterparts with consistency.
APA, Harvard, Vancouver, ISO, and other styles
11

Pavlakovic, Brian Nicholas. "Leaky guided ultrasonic waves in NDT." Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/7907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Spratt, William. "Design and Testing of an Ultrasonic Torsional Wave Sensing Platform." Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/SprattW2009.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bartoli, Ivan. "Structural health monitoring by ultrasonic guided waves." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3283893.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed December 3, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 311-325).
APA, Harvard, Vancouver, ISO, and other styles
14

Ghandourah, E. I. I. "Large plate monitoring using guided ultrasonic waves." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1463979/.

Full text
Abstract:
Areas of stress concentration around welded structures are likely to lead to fatigue cracks and corrosion pitting during the life time of technical machinery. Performing periodical non-destructive testing of the critical area is crucial for the maintenance of structural integrity and the prevention of unforeseen shutdowns of the system. Low frequency guided ultrasonic waves can propagate along thin structures and allow for the efficient testing of large components. Structural damage can be localized using a distributed array of guided ultrasonic wave sensors. Guided waves might be employed to overcome the accessibility problem for stiffened plate structures where access to some parts of the inspected structure is not possible. The transmission and reflection of the A0 Lamb wave mode for a variation of the stiffener geometry and excitation frequency was investigated numerically and verified experimentally. The dispersive behaviour of the guided waves has been studied to ascertain a frequency thickness product that provides limited pulse distortion. The limitations of the plate geometry as well as the excitation and monitoring locations were discussed. The radial spreading of the incident, transmitted and reflected waves from a stiffener has been investigated. The efficient quantification of the transmitted and reflected waves from the stiffener for a wide range of angles has been obtained from a single Finite Element model containing two parallel lines of nodes in front of and past the stiffener. The research outcomes have shown the dependency of the scattered wave on the incident angle and stiffener dimensions. Reasonably good A0 wave mode transmission was obtained from the oblique wave propagation (up to an angle of 45o) across realistic stiffener geometries. The choice of an optimum excitation frequency, which can ensure maximum transmission across the stiffener for specific plate geometry, was recommended. The ability for defect detection in inaccessible areas has been investigated numerically and validated experimentally. The possibility of detecting and characterizing the reflection of a guided wave pulse (A0 mode) from a through-thickness notch located behind the stiffener has been discussed. Two different approaches, based on the access to the sides of the stiffener on the plate, were employed. The limitations of the detectable defect size and location behind the stiffener have been investigated. The energy of the transmitted wave across the stiffener was adequate to detect simulated damage behind the stiffener. The evaluation has shown that defect detection in inaccessible areas behind stiffeners is achievable if the signal-to-noise ratio is high enough. In experimental measurements the noise level was of similar magnitude to the observed reflections at the defect. Thus, there is necessity to enhance the signal-to-noise ratio in experimental measurements.
APA, Harvard, Vancouver, ISO, and other styles
15

Vallet, Quentin. "Predicting bone strength with ultrasonic guided waves." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066626.

Full text
Abstract:
Cette thèse s'inscrit dans le cadre du développement d'une sonde ultrasonore afin d'obtenir des nouveaux biomarqueurs de l'os cortical et améliorer la prédiction du risque de fracture. Notre approche se base sur la mesure des ondes guidées ultrasonores dans l'os cortical. La technique de transmission axiale bidirectionelle a été utilisée pour mesurer les modes guidées se propageant dans l'enveloppe corticale des os longs (i.e., le radius). Les propriétés matérielles et structurelles liées à la résistance osseuse ont été obtenues à partir des courbes de dispersion en utilisant un schéma d'inversion. Ainsi, un problème inverse totalement automatique, basé sur une optimisation par algorithmes génétiques et un modèle 2D de plaque libre transverse isotrope, a été développé. Cette procédure d'inversion a d'abord été testée sur des matériaux contrôlés avec des propriétés connues. Puis, la faisabilité d'obtenir des propriétés corticales sur des radii ex vivo a été montrée. Ces estimations ont été validées par comparaison avec des valeurs de référence obtenues avec des techniques indépendantes telles que la micro-tomodensitométrie par rayons X (épaisseur, porosité) et la spectroscopie par résonance ultrasonore (élasticité). Un bon accord a été trouvé entre les valeurs de référence et les estimations d'épaisseur, de porosité et d'élasticité. Enfin, la méthode a été étendue à des mesures in vivo. La validité du modèle en présence de tissus mous a d'abord été démontrée. Puis, les propriétés osseuses ont été obtenues sur des sujets sains. Un bon accord a été trouvé entre l'épaisseur estimée et les valeurs de référence obtenues par tomodensitométrie périphérique haute résolution
We aimed at developing new ultrasound-based biomarkers of cortical bone to enhance fracture risk prediction in osteoporosis. Our approach was based on the original concept of measuring ultrasonic guided waves in cortical bone. The bi-directional axial transmission technique was used to measure the guided modes propagating in the cortical envelope of long bones (i.e., the radius). Strength-related structural and material properties of bone were recovered from the dispersion curves through an inversion scheme. To this goal, a fully automatic inverse problem based on genetic algorithms optimization, using a 2-D transverse isotropic free plate waveguide model was developed. The proposed inverse procedure was first tested on laboratory-controlled measurements performed on academic samples with known properties. Then, the feasibility of estimating cortical properties of ex vivo radius specimens was assessed. The inferred bone properties were validated by face-to-face comparison with reference values determined by a set of independent state-of-the art technologies, including X-ray micro-computed tomography (thickness, porosity) and resonance ultrasound spectroscopy (stiffness). A good agreement was found between reference values and estimates of thickness, porosity and stiffness. Lastly, the method was extended to in vivo measurements, first, by ensuring the validity of the waveguide model in presence of soft tissues to demonstrate the feasibility of measuring experimental dispersion curves in vivo and infer from them bone properties. Estimated cortical thickness values were consistent with actual values derived from high resolution peripheral computed tomography
APA, Harvard, Vancouver, ISO, and other styles
16

Deere, Matthew. "Guided wave evaluation of pipes using the first and second order torsional wave mode." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15307.

Full text
Abstract:
Guided wave inspection is a form of ultrasonic testing used for non-destructive testing (NDT). Guided waves are capable of propagating long distances bounded by the geometries of the specimen, such as pipes and plates. The technique is commercially used to detect defects in pipelines and is capable of a full volumetric screening many metres (often up to around 100m) from one location. Fundamental axisymmetric wave modes are used to inspect pipelines and are used to quantify defects and features. However, as the technology has progressed, a demand for improving defect sensitivity, spatial resolution and developing the technology into new fields has been recognised. Operating at medium range frequencies is one possibility that could provide the increase in defect sensitivity and spatial resolution required that may not be achieved at low range frequencies. The use of higher order wave modes could also provide additional information useful for defect sizing. Guided wave inspection is a complex ultrasonic technique due to the many wave modes that exist and testing at medium range frequencies requires some challenges to be overcome. The research presented here investigates the potential of using the second order torsional wave mode at medium range frequencies and provides a new sizing technique that for some applications is likely to offer advancement in guided wave inspection and monitoring. The approach firstly included the design and implementation of a setup for analysing the complex signal responses in order to access the higher order torsional wave mode T(0,2) for defect sizing. An efficient method of using FEA has been presented using segmented models to provide the capability of analysing defects with small increment changes that could not be achieved using a full 3D model of the pipe. Using a pipe segment to virtually represent the full pipe also allowed small changes in defect size to be investigated, which would otherwise be extremely difficult to accurately machine experimentally. The FEA modelling technique is also based on broadband signals in comparison to the conventional approach of using narrowband signals and is capable of obtaining a wide frequency spectrum from one model, which significantly reduces the number of models needed to conduct a frequency analysis. Following on from this work, a high density transducer array was developed and compared against a conventional transducer array used in guided wave inspection for the purpose of medium range frequency inspection, which can also be applied to conventional low range frequency inspection. Finally, a new defect sizing method using T(0,2) is presented, which is capable of predicting the depth using peak amplitude responses from spectral analysis and by comparing this to the cut-off frequency of the remaining wall thickness of the defect. The technique has the potential to improve defect sizing, defect sensitivity, increase spatial resolution, and increase the performance of medium range inspection.
APA, Harvard, Vancouver, ISO, and other styles
17

Mograne, Mohamed Abderrahmane. "Viscosimétrie ultrasonore ultra large bande." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS089/document.

Full text
Abstract:
Cette thèse a pour objectif d’instrumenter un contenant familier dans le domaine du biomédical et de la chimie (un tube à essai) avec des éléments piézoélectriques à ondes longitudinales (L) et d’implémenter, en les optimisant, diverses méthodes ultrasonores pour mesurer les viscosités rapidement, sans changer de banc de mesure et cela de quelques Hz à plusieurs dizaines de mégahertz au voisinage de la température ambiante. Grâce au système mis en place il est possible en quelques minutes de déterminer le comportement rhéologique du liquide, étudié en mesurant sa viscosité de cisaillement. Par ailleurs, la gamme de viscosité atteinte est extrêmement large puisque les mesures sont possibles de quelques dizaines de mPa.s à plusieurs centaines de Pa.s. Enfin, au-delà de résultats quantitatifs en terme de viscosité, le banc de mesure peut être aussi utilisé pour suivre de façon qualitative des cinétiques de réaction (polymérisation par exemple)
The main goal of this thesis is to set specific piezoelectric elements emitting longitudinal waves (L) on a well-known container in the field of biomedical and chemistry (a test tube) and to implement with some optimizations various ultrasonic methods to measure viscosities quickly, without changing the measurement bench. The measurement has to be done from a few Hz to several tens of megahertz around room temperature. Up to now it is possible to determine in a few minutes the rheological behavior of the liquid studied thanks to the evaluation of its shear viscosity. Furthermore, the viscosity range reached is extremely wide: the measurements are possible from a few tens of mPa.s to several hundred Pa.s. Finally, beyond quantitative results in terms of viscosity, the measurement bench can also be used to qualitatively monitor reactions (polymerization for example)
APA, Harvard, Vancouver, ISO, and other styles
18

Valle, Christine. "Guided circumferential waves in annular structures." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zlatev, Zahari. "Ultrasonic guided wave propagation in pipes coated with viscoelastic materials." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/12753.

Full text
Abstract:
This work studies guided wave propagation in pipes coated with thick highly viscoelastic coating materials. The main motivation for this study is the problems associated with Long Range Ultrasonic Testing (LRUT) of coated pipelines. The results reported in the literature show that the proper determination of the optimum LRUT parameters depends strongly on the bulk acoustic properties of the coating materials. The bulk acoustic properties of coating materials reported in the literature show that they could vary significantly depending on the coating material age, temperature and bonding level. The methods for acoustic characterisation of coating materials reported by other researchers, have been studied and it was found that they do not take into account the temperature changes and bonding level variation. In this work, the bulk acoustic properties of two highly viscoelastic bitumen based coating materials are investigated. The conventional methods for acoustic characterisation are studied and a new method for independent measurement of bulk shear properties of bitumen is developed. The bulk acoustic properties of bitumen based coating materials are also studied by two new characterisation methods. The first method derives the bulk coating material properties from experimental data on guided wave reflection coefficients. The second method derives the coating material bulk properties from experimentally measured guided wave attenuation data. It is demonstrated that these new methods deliver much more accurate values for the bulk acoustic properties when compared to the data measured by conventional methods. The second method is used to study the temperature effect on the bulk acoustic properties and it is demonstrated that temperature has a significant effect. The validity of the acoustic properties for the two bitumen materials is investigated through comparison between numerical predictions and experimental data measured for guided wave reflection coefficients and attenuation of the torsional T(0,1) and longitudinal L(0,2) guided wave modes. Good agreement is achieved in the frequency range between 20 kHz and 100 kHz, which is typical for LRUT of pipes.
APA, Harvard, Vancouver, ISO, and other styles
20

Marty, Pierre Noel. "Modeling of ultrasonic guided wave field generated by piezoelectric transducers." Thesis, Imperial College London, 2002. http://hdl.handle.net/10044/1/7222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Thornicroft, Keith. "Ultrasonic guided wave testing of pipelines using a broadband excitation." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/14001.

Full text
Abstract:
Guided Wave Testing (GWT) is a relatively new development in non-destructive testing. Conventional Ultrasonic Testing (UT) methods are operated at high frequencies (MHz) and are capable of detecting very small (down to micrometre-scale) flaws within a range of millimetres from a transducer. GWT, however, is carried out at lower frequencies (kHz) and is capable of highlighting the position of volumetric structural detail and discontinuities, such as gross corrosion at a minimum of 9% of the cross-sectional area, tens of metres from a test location. Conventional ultrasonic testing relies on the transmission of bulk waves whereas GWT employs so-called ultrasonic guided waves (UGW). To simplify UGW inspections, several tests are conducted sequentially at a range of different excitation frequencies. The frequency bandwidth of each of these tests needs to be controlled to avoid complexities caused by the frequency dependent nature of the propagation of guided waves. This gives rise to the current GWT inspection procedure, where a number of different narrowband tests are conducted at several distinct frequencies. It is also found that different test circumstances (such as pipe coating or defect type) are inspected more easily with certain excitation frequencies than with others - and the optimum frequency can not always be predicted ahead of time. Thus, where time allows it is often beneficial to carry out a frequency sweep, whereby a large range of excitation frequencies are incrementally generated - for example, from 20 to 80kHz in 1kHz steps. This research proposes a novel approach to the existing pipeline inspection procedure by utilising the information contained within a broadband response. The overarching proposition given by this research is that the current collection procedure be entirely rewritten. This thesis will present ideas related to every area of the inspection procedure beginning with the tuning of excitation signals and concluding with recommendations on how tooling and excitation configuration can be modified to further optimise the technique for broadband excitation.
APA, Harvard, Vancouver, ISO, and other styles
22

Willey, Carson Landis. "Ultrasonic Guided Wave Tomography for Wall Thickness Mapping in Pipes." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1460729589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Autrusson, Thibaut Bernard. "Nonlinear ultrasonic guided waves for quantitative life prediction of structures with complex geometries." Thesis, Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37103.

Full text
Abstract:
Material damage such as dislocations and microcracks are characteristic of early stages of fatigue. Accumulation of these nascent cracks leads to non-linear elastic response of the material. These non-linearities can be detected from harmonic generation for propagating elastic waves. The long term goal of this study is to investigate the non-linear elastic propagation in parts with complex geometry. Cellular Automata is introduced as a new simulation method, in order to develop new analysis on quadratic non-linearities. An existing linear code was progressively modified to take into account a different constitutive law. Also the boundary conditions need to be reviewed to ensure free stress with the non-linear behavior. The propagation of the longitudinal wave is investigated in detail. Numerical accuracy is validated from comparison with a closed, for both linear and non-linear code. The reflection of the non-linear P-wave gives confirmation for the correct treatment of the boundary condition. Finally the capabilities of the Cellular Automata code are underlined for reflection of Lamb waves for various boundary conditions.
APA, Harvard, Vancouver, ISO, and other styles
24

Belanger, Pierre. "Feasibility of thickness mapping using ultrasonic guided waves." Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/5503.

Full text
Abstract:
Detection and sizing of corrosion in pipelines and pressure vessels over large, partially accessible areas is of growing interest in the petrochemical and nuclear industries. Traditionally, conventional ultrasonic thickness gauging and eddy current techniques have been used to precisely measure the thickness in structures. These techniques only allow the measurement of the local thickness under the probe. Consequently obtaining the remnant thickness of a specimen over a large area requires the probe to be scanned, which is a long and tedious process. Moreover, with these techniques, the scanning may become impossible when the area of inspection is inaccessible. There is therefore a need for a rapid, accurate, long range inspection technique to measure the remaining thickness in corrosion patches. Low frequency guided waves are now routinely used to screen large area of pipes and other structures for cracks and corrosion. Their detection and location capability is very good, but the standard screening technique only gives a rough estimate of the remaining wall thickness. Guided waves have multiple properties which can be used for thickness mapping over large partially accessible areas e.g. dispersion and cutoff frequency thickness product of the high order modes. The present work aims to demonstrate the potential of guided waves for thickness mapping over large partially accessible areas. It starts with a general introduction on ultrasonic guided waves and a literature review of the different techniques for the evaluation of thickness with guided waves. The severity of the errors introduced in time-of-flight tomography for thickness reconstruction by breaking the assumption of the ray theory are investigated. As these errors are significant, the possibility of using the cutoff property of the high order modes is investigated in a frequency range where the ray theory is valid. It is found that the attenuation due to the scattering of the waves in corrosion is too large for this technique to work. Finally the use of low frequency guided wave for diffraction tomography is examined. Finite element simulations of a 64 element circular array on a plate show that when the scattering mechanism of the object to be reconstructed satisfies the Born approximation the reconstruction of the thickness is accurate. However the practical implementation is more challenging when the incident field is not known. Experimental results demonstrate that ultimately the scattering from the array of transducer is a major source of error in the tomographic reconstruction, but when there is no scattering from the array of transducers the reconstructions are very similar to the finite element simulations.
APA, Harvard, Vancouver, ISO, and other styles
25

Buys, B. J. "Rock bolt condition monitoring using ultrasonic guided waves." Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-06222009-135318/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chan, Chi Kit. "An ultrasonic self-localized automated guided vehicle system /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?IELM%202006%20CHAN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Zongbao. "Crack detection in annular components by ultrasonic guided waves." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Krishna, Aditya. "Topological Imaging of Tubular Structures using Ultrasonic guided waves." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0111.

Full text
Abstract:
Les structures tubulaires sont largement utilisées dans diverses industries telles que l’aérospatiale, le pétrole et le gaz, le nucléaire, etc. Le Contrôle Non Destructive (CND) de ces structures joue un rôle crucial au cours de leur cycle de vie. Afin de tester de grandes structures avec une accessibilité limitée, la méthode de CND utilisant des ondes guidées a été développée comme une solution viable. En raison de la nature de ces ondes, elles sont capables de se propager sur de grandes distances sans perdre une grande partie de leur énergie. Cependant, elles sont complexes puisque leur vitesse dépend de la fréquence, c'est-à-dire qu'elles sont dispersives. Classiquement, l’étude de ce type d’ondes nécessite des simulations par éléments finis coûteuses. Cette thèse propose une alternative à de telles simulations avec une méthode rapide et robuste pour simuler la propagation d'ondes guidées dans des structures tubulaires.Partant de ces calculs, pour localiser des défauts, l'objectif de ce travail est d'obtenir des images topologiques 3D de structures tubulaires isotropes multicouches par propagation de ces ondes guidées ultrasonores. Un modèle mathématique est proposé où l'équation d'onde est convertie en une équation différentielle ordinaire par rapport au rayon «r» en utilisant les transformées de Fourier et de Laplace pour les variables spatiales et temporelles respectivement. La solution en ondes partielles, exprimée comme une combinaison des fonctions de Bessel, permet la création d'un algorithme semi-analytique rapide et robuste pour calculer la fonction de Green de structures tubulaires. Un modèle approché en présence de défauts numériques est ensuite développé. La réponse des défauts est considérée comme la réponse cumulative des sources secondaires, visant à annuler le champ de contraintes incident et diffracté présent en son sein. Ensuite, le modèle numérique est validé par des mesures expérimentales.Enfin, la technique de l'imagerie topologique est introduite. Cette méthode d'imagerie est basée sur la corrélation entre les champs ultrasonores sans et avec défaut. La polyvalence et la flexibilité de l'outil numérique en conjonction avec cette méthode d'imagerie sont ensuite démontrées avec succès en localisant et imageant une multitude de défauts numériques et expérimentaux avec des dimensions aussi faibles que 1/40e de la longueur d'onde
Tubular structures are widely used in a variety of industries such as Aerospace, Oil and Gas, Nuclear, etc. Non Destructive Evaluation (NDE) of these structures plays a crucial role during it’s life cycle. In order to test large structures with limited accessibility, guided wave testing was developed as a viable solution. Due to the nature of these waves, they are able to propagate over large distances without losing much of their energy. However, they are also complex in that their velocity is frequency dependent i.e. they are dispersive. Conventionally, guided wave testing require costly finite element simulations. This thesis offers an alternative to such simulations with a quick and robust method to simulate guided wave propagation in tubular structures.Based on these calculations, the aim of this work is to obtain the 3d topological image of multilayered isotropic tubular structures using ultrasonic guided waves to locate defects. A mathematical model has been proposed where the wave equation is converted to an ordinary differential equation with respect to radius 'r' using the Fourier and Laplace transforms for the spatial and temporal variables respectively. The partial wave solution, expressed as a combination of Bessel’s functions, allows for the creation of a fast robust semi-analytical algorithm to compute the Green function in tubular structures. A model to approximate numerical defects is then developed. The defect response is considered as the cumulative response of secondary sources, aiming to negate the incident and diffracted stress field present within it. Next, the numerical model is validated with experimental measurements.Finally, the technique of Topological Imaging is introduced. This method of imaging is based on the idea of performing a correlation between two wave fields for defect localization. The versatility and flexibility of the numerical tool in conjunction with the method of imaging is then successfully demonstrated by localising and imaging a multitude of numerical and experimental defects with dimensions as low as 1=40th of the wavelength
APA, Harvard, Vancouver, ISO, and other styles
29

Advani, Siddharth Kishin Rose Joseph L. Zhang Qiming. "An ultrasonic guided wave inspection system for hard to access civil structures." [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4435/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Seifried, Robert. "Propagation of guided waves in adhesive bonded components." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Haig, Alexander George. "The use of macro fiber composite transducers for ultrasonic guided wave based inspection." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/12840.

Full text
Abstract:
Sound can propagate for long distances with a low loss of intensity in objects whose geometry acts as a guide for the sound waves; a phenomenon that can be utilised for long range testing of structures. The guided sound waves can be used to conduct materials evaluation or to detect flaws, which can be done for a relatively large region of coverage from a relatively small region of access. In particular this technology can be used to inspect or monitor large engineering structures whose structural integrity is critical for safety and the environment, such as wind turbine towers, ship hulls, and pipelines. The use of guided waves for structural inspection is complicated by the existence of many wave modes. In this thesis, the Macro Fiber Composite (MFC) is characterised for its frequency, wavelength, wave mode and direction dependent sensitivity. These devices are flexible, light and thin, and, here have been shown to have wave mode sensitivity characteristics that are favourable for some applications. The MFC is a piezoelectric actuator that can be used to excite and sense in-plane vibrations at a structures surface. The surface area of an MFC is significantly large with respect to typical wavelengths used in ultrasonic guided wave applications, which combined with their in-plane extensional nature gives rise to a significantly wave mode, frequency and direction dependent sensitivity. This can limit their application, but can also potentially be exploited for greater wave mode control. A method for simulating the output from hypothesised transducer behaviour is shown and validated for the MFC. This allows their behaviour to be predicted for new structures. It is shown that their frequency response can depend on the waveguide and can vary with direction, which can lead to wave mode transmission and reception characteristics that may be advantageous for some methods of application and detrimental to others. A novel method of adapting a flexible transducer, such as the MFC, has been developed and its characterisation is given. It is shown that through the use of a decoupling membrane, an MFC can be caused to have very different wave mode sensitivity characteristics whilst retaining their light and flexible nature. These altered characteristics are favourable for applications where shear horizontal wave modes are required. Both fully coupled MFC transducers and the adapted MFC transducers are considered for application to pipeline testing. Fully coupled MFC transducers are used for inspection using longitudinal waves, whilst the adapted MFC transducers are used with torsional waves. These arrays are compared to a current commercial tool.
APA, Harvard, Vancouver, ISO, and other styles
32

Putkis, Osvaldas. "Ultrasonic guided wave structural health monitoring and its application to anisotropic composite material." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.680355.

Full text
Abstract:
Composite materials, such as Carbon Fibre Reinforced Polymer (CFRP), are strong, lightweight and corrosion-resistant and therefore are increasingly used across industries such as automotive, aerospace, wind energy and pressure vessel. However, they are currently over-engineered in order to withstand typical damage that might occur during their life cycle so that they can maintain the required strength. This is particularly disadvantageous in aerospace industry, where strength to mass ratio is very important. Therefore, Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) techniques have to be developed for inspection and monitoring of composite materials in order to increase the confidence of using them and allow building lighter structures. This thesis investigates possibilities of using ultrasonic guided waves for damage monitoring in CFRP and other composite structures in general. Guided waves can travel long distances along the plate-like structures, potentially offering rapid large area monitoring with a relatively low sensor density or monitoring from a remote location. Composite materials. unlike most metals, are anisotropic and attenuative, leading to a more complex guided wave propagation. Therefore. ultrasonic guided wave propagation in highly anisotropic and attenuative composite plates was investigated, theoretically and experimentally, and concepts such as Minimum Resolvable Distance (MRD) and amplitude sensitivity maps were applied for performance evaluation of guided wave modes for NDE/SHM applications on such materials. These concepts help determining the optimum guided wave mode, operational frequencies and sensor positioning for particular NDE/SHM applications. In this thesis, it is demonstrated how the knowledge of guided wave propagation characteristics in CFRP materials can be used in the informed design process of SHM systems. Prototype SHM systems were built and appropriate damage detection strategies were implemented for detection of stringer disbond and impact damage in CFRP plates. As a side project, possibilities of using energy velocity measurements of guided waves for estimation of elastic constants were explored with promising results for highly anisotropic CFRP plates. Elastic constants can be used for prediction of guided wave propagation or evaluation of manufacturing quality of the materiaL As SHM systems continuously monitor structures with permanently installed sensor networks, they are exposed to varying environmental conditions. Changing environmental conditions can have a significant impact on guided wave propagation and the monitoring system itself that can in turn jeopardize damage detection capabilities. Therefore, the effect of environmental valiations, such as temperature changes, has to be understood and damage detection strategies that can cope with environmental variations have to be developed. Response of a particular guided-wave-based SHM system deployed on CFRP plates to temperature variations was studied. Amplitude and spectral changes of recorded guided wave signals were observed that were determined to be dominated by the response of transduction system (transducers and adhesive). Anisotropic guided wave velocity changes with changing temperature were observed. Velocity valiation has implications to the baseline subtraction performance, which is a widely adopted damage detection technique in guided wave SHM. A relatively simple model, which relates CFRP material properties to temperature was established, which enabled calculation of velocity-temperature response and prediction of the baseline subtraction performance. A novel algorithm for a practical SHM that addresses the issues associated with acquisition of a baseline set, required for compensation of environmental effects, was developed. It lifts the requirement of acquiring baselines corresponding to different environmental conditions on a damage-free structure before the monitoring phase can be started. It makes the baseline acquisition an evolutionary process integrated in the monitoring phase. Finally, the performance of an SHM system developed at "QinetiQ pic" for monitoring an aircraft component was investigated and an appropriate damage detection strategy was established.
APA, Harvard, Vancouver, ISO, and other styles
33

Mueller, Martin Fritz. "Analytical investigation of internally resonant second harmonic lamb waves in nonlinear elastic isotropic plates." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31827.

Full text
Abstract:
Thesis (M. S.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Laurence J. Jacobs; Committee Member: Jianmin Qu; Committee Member: Jin-Yeon Kim. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
34

Leonard, Kevin Raymond. "Ultrasonic guided wave tomography of pipes: A development of new techniques for the nondestructive evaluation of cylindrical geometries and guided wave multi-mode analysis." W&M ScholarWorks, 2004. https://scholarworks.wm.edu/etd/1539616737.

Full text
Abstract:
This dissertation concentrates on the development of two new tomographic techniques that enable wide-area inspection of pipe-like structures. By envisioning a pipe as a plate wrapped around upon itself, the previous Lamb Wave Tomography (LWT) techniques are adapted to cylindrical structures. Helical Ultrasound Tomography (HUT) uses Lamb-like guided wave modes transmitted and received by two circumferential arrays in a single crosshole geometry. Meridional Ultrasound Tomography (MUT) creates the same crosshole geometry with a linear array of transducers along the axis of the cylinder. However, even though these new scanning geometries are similar to plates, additional complexities arise because they are cylindrical structures. First, because it is a single crosshole geometry, the wave vector coverage is poorer than in the full LWT system. Second, since waves can travel in both directions around the circumference of the pipe, modes can also constructively and destructively interfere with each other. These complexities necessitate improved signal processing algorithms to produce accurate and unambiguous tomographic reconstructions. Consequently, this work also describes a new algorithm for improving the extraction of multi-mode arrivals from guided wave signals. Previous work has relied solely on the first arriving mode for the time-of-flight measurements. In order to improve the LWT, HUT and MUT systems reconstructions, improved signal processing methods are needed to extract information about the arrival times of the later arriving modes. Because each mode has different through-thickness displacement values, they are sensitive to different types of flaws, and the information gained from the multi-mode analysis improves understanding of the structural integrity of the inspected material. Both tomographic frequency compounding and mode sorting algorithms are introduced. It is also shown that each of these methods improve the reconstructed images both qualitatively and quantitatively.
APA, Harvard, Vancouver, ISO, and other styles
35

Ma, Jian. "On-line measurements of contents inside pipes using guided ultrasonic waves." Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/8168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Serey, Valentin. "Sélectivité modale d'ondes ultrasonores dans des guides d'ondes de section finie à l'aide d'éléments piézoélectriques intégrés pour le SHM." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0403/document.

Full text
Abstract:
Les systèmes SHM (Structural Health Monitoring) basés sur la propagation d’ondes ultrasonores guidées sont utilisés pour des structures de grandes dimensions, par exemple dans les secteurs de l’aéronautique ou du génie civil. Les ondes de Lamb ou SH sont généralement employées car elles se propagent sur de longues distances dans des structures planes tout en sondant l’épaisseur des pièces. Cependant, des modes moins conventionnels se propagent dans les guides d’ondes de section droite finie, tels que les barreaux, les rails ou les tuyaux. Le nombre de modes peut être très élevé dans ce type de guide, et il est important de bien sélectionner un mode particulier.Les méthodes actuelles de sélectivité modale, basées sur l’emploi de plusieurs émetteurs,considèrent habituellement des éléments PZT identiques (même sensibilité, même réponse en fréquence...) et ne prennent pas en compte les conditions réelles de montage et leurs éventuelles imperfections (couplage variable entre traducteurs, mauvais alignement, différence de réponse de l’électronique...). Ce travail présente une méthodologie générale pour la sélectivité modale dans des guides à section droite finie, à l’aide de plusieurs éléments piézoélectriques disposés à leur surface. Cette sélectivité est basée sur la mesure expérimentale préalable, à l’aide d’un vibromètre laser 3D, des amplitudes des modes générés par chaque élément excité individuellement.Une procédure d’optimisation permet d’inverser le problème afin de maximiser l’amplitude du mode désiré, alors obtenue en excitant simultanément tous les émetteurs. Le problème à inverser requiert la connaissance des courbes de dispersion ainsi que des déformées modales des modes,obtenues en utilisant la méthode SAFE 2D. La méthodologie est testée à travers des simulations numériques et des mesures expérimentales sur un barreau d’aluminium de section rectangulaire instrumenté avec huit éléments PZT à sa surface. L’efficacité de la méthode pour générer différents modes purs, mais aussi pour détecter et localiser des défauts calibrés, est démontrée sur le barreau d’aluminium. Son fort potentiel pour des applications de SHM de structures plus complexes est étudié, tels qu’un rail ou un assemblage collé de matériaux composites
SHM systems (Structural Health Monitoring) based on ultrasonic guided waves propagation are used for large structures, e.g. in Aerospace or Civil Engineering. Lamb or SH waves are usually employed as they propagate over long distances in plate-like structures while probing the entire thickness. However less conventional modes propagate in wave guides with finite crosssection,such as bars, rails or pipes. The number of modes can be very high even at low frequencyin this type of guide, and it is important to carefully select a specific mode. Current methods for modal selectivity, based on the use of several emitters, usually consider identical PZT elements(same sensitivity, same frequency response, etc.) and do not account for real experimental conditions and possible differences (variable coupling between transducers, flawed alignment,variable electronic response, etc.). This work presents a global methodology for modal selectivity in waveguides with finite cross-section, using several piezoelectric elements attached to their surface. This selectivity is based on experimental measurements, with a 3D laser vibrometer,of the amplitudes of the modes generated by each emitter. An optimization process allows to inverse the problem in order to maximize the amplitude of the desired mode, then generated by exciting all the emitters at once. This process requires knowing dispersion curves as well as the displacements of the various modes, calculated with SAFE 2D method. The methodology is tested through numerical simulations and experiments on an aluminium rectangular bar instrumented with 8 PZT elements on top. The method efficiency to generate different pure modes,and to detect and locate calibrated defects, is demonstrated for the aluminium bar. Its potential for SHM application of more complex structures is studied, like a rail or an adhesively bonded composite structure
APA, Harvard, Vancouver, ISO, and other styles
37

Liu, Chang. "Singular Value Decomposition Applied to Damage Diagnosis for Ultrasonic Guided Wave Structural Health Monitoring." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/402.

Full text
Abstract:
A structural health monitoring (SHM) system takes frequent monitoring records from permanently installed transducers on structures, and uses the information to identify potential structural degradation and to proactively maintain the structures. Guided wave testing is an attractive technique for structural health monitoring of large structures, because guided waves can propagate long distance and are sensitive to subtle and hidden damage. In guided wave SHM systems, ultrasonic records are often affected by environmental and operational variations, which produce undesired changes and cause false results. Moreover, although continuous monitoring produces sufficient information regarding structural integrity, we lack a data processing tool to extract, store, and utilize the damage-sensitive information to leverage the accuracy and robustness of damage detection and localization. In this dissertation, we develop a data-driven framework based on singular value decomposition that processes guided wave monitoring records to separate damage-related information from effects of environmental and operational variations. The method decomposes sequential monitoring records to reveal trends of different variations, and identifies the singular vector associated with damage development. Combined with delay-and-sum localization method, we can robustly localize the damage using the right singular vectors, which resemble the scatter signal and are robust to environmental and operational variations. The SVD framework is then refined, by adaptively updating the singular vectors with each arriving ultrasonic record , to achieve online damage detection and localization. The SVD damage diagnosis methodology is applied experimentally to detect and localize damage in plate and pipe structures, both in laboratory tests and in field tests.
APA, Harvard, Vancouver, ISO, and other styles
38

Lefevre, Fabien. "Caractérisation de structures du type plaque par ondes guidées générées et détectées par laser." Valenciennes, 2010. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/24980ba6-f06c-4c75-988a-16e1228d2e42.

Full text
Abstract:
La réalisation de couches minces déposées sur substrats est très recherchée dans de nombreuses applications. C'est le cas par exemple des pièces nickelées destinées à des dispositifs à hautes performances techniques, où une couche anti-corrosion est déposée a n d'améliorer leur imperméabilité. L'utilisation de ces structures du type couche sur substrat étant grandissante, on comprend dès lors l'importance de disposer de moyens non destructifs permettant de les contrôler et de les caractériser. Dans ce travail, l'objectif a été de mettre à pro t les ondes acoustiques guidées pour le contrôle et la caractérisation de structures du type plaque. Pour la génération et la détection de ces ondes guidées, la technique laser-ultrasons a été privilégiée. C'est une méthode large bande et sans contact permettant d'éviter l'utilisation d'un milieu de couplage ou tout contact direct avec la structure et pouvant s'adapter à des géométries complexes. Pour tirer pro t au maximum de l'utilisation de cette technique, des réseaux de neurones lui ont été associés a n de résoudre le problème inverse posé par les ondes de plaque. Une méthode de caractérisation originale, e cace et polyvalente a ainsi été mise en oeuvre, permettant de déterminer les propriétés géométriques et/ou mécaniques de plaques simples ou de structures à couches. Des structures composées de silicium ont plus particulièrement été étudiées par le biais de cette méthode. Des simulations éléments nis, ainsi que des études sur certains défauts présents dans les couches minces, comme l'adhérence, sont présentées
The deposition of thin layers on substrates is more and more required in many applications. For example, to reach high technical performance, bumpers or other parts are nickeled to improve their impermeability and resistance. Another example in microelectronics is the realization of transistors found in LCDs where they are associated with each pixel. The use of these layer/substrate structures is growing, so the importance of having non-destructive techniques to monitor and characterize them is well understood. The point in using ultrasonic waves for non-destructive testing and evaluation of various materials and structures is well known. In this work, the aim was to use guided waves to monitor and to characterize plaque-like structures. The main advantage of using these modes lies in their ability to test very large areas and inaccessible structures. For the generation and detection of guided waves, the laser ultrasonics technique was preferred. It is a broadband and non contact method which doesn't imply the use of coupling medium and which can be adapted to complex geometries. To take full advantage of this technique, it has been combined with neural networks in order to solve the inverse problem posed by the propagation of guided waves. As a result, an original, e cient and polyvalent characterization method has been obtained, which allowed us to determine the geometric properties and / or the elastic parameters of di erent plate-like structures. Structures made of silicon have been studied with this method. Finite element simulations and studies concerning the in uence of defects, including adhesion, on the waves propagation are also presented
APA, Harvard, Vancouver, ISO, and other styles
39

Leleux, Alban. "Contrôle non destructif de composites par ondes ultrasonores guidées, générées et détectées par multiéléments." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14623/document.

Full text
Abstract:
Une technique de Contrôle Non Destructif (CND) a été développée, permettant la génération et la détection d’ondes de Lamb guidées le long de grandes plaques constituées de différents matériaux (métal, polymère ou composite renforcé par des fibres). Basée sur l’emploi de nombreux éléments étroitement couplés à la plaque, cette technique d’inspection diffère du Structural Health Monitoring (SHM) classique car tous les éléments émetteurs ou récepteurs sont regroupés dans une zone très localisée, définie par la surface active d’une sonde multiélément matricielle, et ne sont pas fixés de manière permanente et distribuée au sein, ou en surface, de la structure testée. De plus, le principe (connu) du déphasage entre éléments est appliqué à la sonde pour la génération et la réception d’un mode de Lamb pur dans (ou provenant) de multiples directions le long de la plaque. Les lois de retards appliquées à ces éléments, aussi bien lorsque la sonde fonctionne en mode émission qu’en mode réception, prennent en compte la nature dispersive de l’onde de Lamb. Enfin, un traitement de signal spécifique est appliqué pour compenser la dispersion subie par les ondes guidées au cours de leur propagation le long de la pièce testée. Un prototype expérimental et sa modélisation par éléments finis sont présentés, ainsi que les mesures et les résultats simulés de ses performances en termes de sélectivité modale et de directivité angulaire. Concernant les applications de CND, la construction d’images, représentatives de toutes les parties de la pièce testée qui diffractent le mode guidé (bord de pièce, défauts, trous, raidisseurs, etc.), a permis de démontrer le potentiel (et quelques limites) de cette technique vis-à-vis d’une inspection rapide de grandes structures, y compris de zones éloignées de la sonde ou encore de zones difficiles d’accès
A technique of Non-Destructive Testing (NDT) was developed for the generation and detection of Lamb waves propagating along large plates made of different materials (metal, polymer or fibre-reinforced composite). Based on the use of many elements closely coupled to the plate, this inspection technique differs from the classic Structural Health Monitoring (SHM) because all the transmitters or receivers are grouped in a very localized area, defined by the active surface of a phased array matrix probe, and are not permanently attached and distributed within or on the surface of the test structure. In addition, the principle (known) of the phase shift between the elements is applied to the probe for generating and receiving a pure Lamb mode in (or from) multiple directions along the plate. The delay laws applied to these elements, in transmit mode or receive mode, take into account the dispersive nature of the Lamb wave. Finally, a specific signal processing is applied to compensate the dispersion suffered by the guided waves during their propagation along the test piece. An experimental prototype and its finite element modeling are presented, as well as measurements and simulation results of its performances in terms of modal selectivity and angular directivity. For NDT applications, the construction of images, representing all parts of the test piece, which diffract the guided mode (edges, defects, holes, stiffeners, etc.), has demonstrated the potential (and some limits) of this technique for a quick inspection of large structures, including areas remote from the probe or areas difficult to access
APA, Harvard, Vancouver, ISO, and other styles
40

Koston, E. "Fatigue crack monitoring in multi-layered aircraft structures using guided ultrasonic waves." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/516138/.

Full text
Abstract:
The detection of fatigue cracks at fasteners in the sub layers of multi-layered aircraft structures can be problematic using conventional nondestructive testing methods. In this thesis the sensitivity of low frequency guided ultrasonic waves to detect these defects is studied. Guided ultrasonic waves typically have energy distributed through the thickness of such structures and allow for defect detection in all sub-layers, but have wavelengths larger than commonly used in bulk wave ultrasonic testing. The model aerospace multi-layered structure investigated consists of two aluminium plate strips adhesively bonded using a paste adhesive with a fastener hole. Guided waves were excited by placing piezoelectric (PZT) transducers on the surface of the structure. Experimentally the wave propagation and scattering was measured using a laser interferometer. The wave propagation was studied numerically using Semi-Analytical Finite-Element (SAFE) calculations and 3D Finite Element (FE) simulations. Thickness and width mode shapes of the guided waves were identified from the SAFE simulations. By placing PZT discs across the width of the structure the excited exural wave modes could be controlled to an extent. The thickness mode shapes of these waves are similar to those in a large multi-layered plate structure. 3D FE simulations predict a similar amplitude change due to a defect in these structures. Fatigue crack growth monitoring on tensile specimens was realized, measuring the amplitude at a single point. The measured changes in the amplitude of the ultrasonic signal due to a defect agree well with 3D FE simulations. These investigations found that using low frequency guided ultrasonic waves defects through the thickness of a hidden sub layer can be detected from measurements on the undamaged, accessible layer.
APA, Harvard, Vancouver, ISO, and other styles
41

Ahmed, Mustofa N. "A Study of Guided Ultrasonic Wave Propagation Characteristics in Thin Aluminum Plate for Damage Detection." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1387732124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Khelfa, Haithem. "Identification des propriétés d'élasticité et d'amortissement d'une fibre isolée anisotrope par ultrasons laser : ouverture au cas des fibres naturelles." Thesis, Le Mans, 2015. http://www.theses.fr/2015LEMA1016/document.

Full text
Abstract:
Ce travail de thèse porte sur l’étude des propriétés d’élasticité et d’amortissement des fibres micrométriques qui sont utilisées comme des renforts dans les matériaux composites. Des fibres artificielles, homogènes et circulaires, ont fait l’objet d’une étude expérimentale par l’application de la technique des ultrasons laser (USL) couplée à une identification modale basée sur une modélisation des modes des vibrations par éléments finis (FEM). Dans le cas d’une fibre végétale, l’application de la méthode LU requiert la connaissance préalable de la géométrie 3D de la fibre unitaire dans la zone de mesure. Pour déterminer cette géométrie, nous avons développé un dispositif de micro-tomographie par projection optique (OPT) in-situ de la fibre en utilisant la technique de l’holographie numérique. Le manuscrit de thèse est organisé autour de quatre chapitres. Le premier chapitre dresse un état de l’art des fibres micrométriques et des méthodes les plus courantes utilisées pour caractériser leurs propriétés mécaniques. Le second chapitre est dédié à l’aspect théorique de la propagation des ondes acoustiques guidées dans une structure cylindrique (cylindre plein, tubes, section arbitraire). Pour prédire la propagation des ondes acoustiques guidées dans ces structures, un ensemble de méthodes sont présentées. Le troisième chapitre se consacre à l’étude expérimentale des propriétés élastiques et du comportement vibratoire des fibres micrométriques en utilisant la technique USL. Le dernier chapitre du manuscrit présente le principe de la méthode OPT basée sur la microscopie holographie numérique, effectuée in-situ sur la zone USL de la section de la fibre, qui sera utilisée dans le cas d’une fibre unitaire de lin pour connaître sa vraie forme 3D
This thesis focuses on the study of elastic and damping properties of micrometric fibers that are used for the reinforcementof composite materials. Homogeneous and circular artificial fibers were studied experimentaly by the application of the laser ultrasonics (LU) technique, which was coupled to modal identification based on the simulation of the vibration modes using finite element modeling. In the case of plant fibers, the application of the LU method requires prior knowledge of the 3D geometry of the single fiber in the measurement area. In order to determine the geometry of the fiber, we have developed anin-situ optical projection micro-tomography (OPT) device using the digital holography technique. This PhD thesis is organized around four chapters. The first chapter provides a state of the art of the micrometric fibers and the most common methods used to characterize their mechanical properties. The second chapter is elevated to numerical methods of calculation of the propagation of guided acoustic waves in cylindrical structures (solid cylinder, pipes, arbitrary cross-section). In order to predict the propagation of guided acoustic waves in such structures, several methods are presented. The third chapter is devoted to the experimental study of elastic properties and vibrational behavior of micrometric fibers using laser ultrasonics technique (LU). The last chapter of the manuscript presents the principle of the OPT method based on digital holography microscopy, performed in situ on the LU measurement area of the fiber, which will be used tocollect the actual 3D shape of a single flax fiber
APA, Harvard, Vancouver, ISO, and other styles
43

Baltazar-Lopez, Martin Eduardo. "Applications of TAP-NDE technique to non-contact ultrasonic inspection in tubulars." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/1614.

Full text
Abstract:
The possibility and feasibility of experimental detection of localized defects in tubes using laser-induced ultrasonic wave approach through Thermo Acousto Photonic Non Destructive Evaluation (TAP-NDE) and Signal processing through wavelet transform is examined in this research. Guided waves in cylindrical surfaces provide solutions for detection of different defects in the material. Several experiments were conducted to this respect. Wave propagation in both axial and circumferential directions was studied. The dispersive wave propagation of ultrasonic waves in hollow cylinders has been investigated experimentally, primarily for use in non-contact and nondestructive inspections of pipes and tubes. The laser ultrasonic waves propagated in cylindrical waveguides are particularly attractive because of their unique characteristics in the applications of nondestructive evaluation (NDE). Contrary to studies making use of only axially symmetric guided waves in hollow cylinders, here are analyzed also nonaxisymmetric waves. The analysis of data is made by using the Gabor wavelet transform. The capability of modeling the guided wave dispersion in hollow cylinders is used in developing guided wave experimental techniques for flaw detection. Good agreement was obtained when comparing the dispersion spectra between theory and experimentation. Measurement of group velocities of guided waves, which are obtained directly from the wavelet transform coefficients, can be used to determine allocation and sizing of flaws.
APA, Harvard, Vancouver, ISO, and other styles
44

Koreck, Juergen. "Computational characterization of adhesive bond properties using guided waves in bonded plates." Thesis, Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-08252006-064856/.

Full text
Abstract:
Thesis (M. S.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2007.
Jacobs, Laurence, Committee Chair ; Qu, Jianmin, Committee Member ; Valle, Christine, Committee Co-Chair.
APA, Harvard, Vancouver, ISO, and other styles
45

Yucel, Mehmet Kerim. "Signal processing methods for defect detection in multi-wire helical waveguides using ultrasonic guided waves." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/11219.

Full text
Abstract:
Non-Destructive Testing of industrial components carries vital importance, both financially and safety-wise. Among all Non-Destructive techniques, Long Range Ultrasonic Testing utilizing the guided wave phenomena is a young technology proven to be commercially valid. Owing to its well-documented analytical models, Ultrasonic Guided Waves has been successfully applied to cylindrical and plate-like structures. Its applications to complex structures such as multi-wire cables are fairly immature, mainly due to the high complexity of wave propagation. Research performed by the author approaches the long range inspection of overhead transmission line cables using ultrasonic guided waves. Existing studies focusing on guided wave application on power cables are extremely limited in inspection range, which dramatically degrades its chances of commercialization. This thesis consists of three main chapters, all of which approaches different problems associated with the inspection of power cables. In the first chapter, a thorough analysis of wave propagation in ACSR (most widely used power cable) cables is conducted. It is shown that high frequency guided waves, by concentrating the energy on the surface layers, can travel much further in the form of fundamental longitudinal wave mode, than previous studies have shown. Defect detection studies proved the system’s capability of detecting defects which introduce either increase or decrease in cross sectional area of the cable. Results of the chapter indicate the detectability of defects as small as 4.5% of the cross sectional area through a 26.5 meter long cable without any post-processing. In the second chapter, several algorithms are proposed to increase the inspection range and signal quality. Well-documented wavelet-denoising algorithm is optimized for power cables and up to 24% signal-to-noise ratio improvement is achieved. By introducing an attenuation correction framework, a theoretical inspection range of 75 meters is presented. A new framework combining dispersion compensation and attenuation correction is proposed and verified, which shows an inspection range of 130 meters and SNR improvement up to 8 dBs. Last chapter addresses the accurate localization of structural defects. Having proven the optimum excitation and related wave propagation in ACSR cables, a system having a more complex wave propagation characteristics is studied. A new algorithm combining pulse compression using Maximal Length Sequences and dispersion compensation is applied to multi-modal signals obtained from a solid aluminum rod. The algorithm proved to be able to improve signal quality and extract an accurate location for defects. Maximal Length Sequences are compared to chirp signals in terms of SNR improvement and localization, which produced favourable results for MLS in terms of localization and for chirp in terms of SNR improvement.
APA, Harvard, Vancouver, ISO, and other styles
46

Rodrigues, Marques Hugo. "Omnidirectional and unidirectional SH0 mode transducer arrays for guided wave evaluation of plate-like structures." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/14021.

Full text
Abstract:
Structures made of plate-like components are common in a variety of industries where the impacts of structural failures are severe. In many cases these structures are surrounded and only partially accessible, such as storage tanks and bridges, making them difficult to inspect frequently. The application of ultrasonic Guided Waves (GWs) in the evaluation and monitoring of relatively large plate-like structures is evermore a feasible option with the continuous development of transducer arrays. The use of transducer arrays is however complex due to directional control and the existence of many GW modes. Aimed at the evaluation of plate-like structures, in this research two piezoelectric transducer arrays respectively capable of omnidirectional and unidirectional control of the fundamental GW shear mode in plates (SH0) with above 20 dB mode purity are successfully designed, produced and validated. Omnidirectionality facilitates full structural evaluation coverage and can lead to defect mapping of large volumes with relatively few transducers. A unidirectional beam with relatively high mode purity facilitates evaluation of specific structural locations. Preference to the SH0 mode was given because of its non-dispersive and in-plane propagation properties making it more suitable than other GW modes to propagation in structures surrounded by fluid material. To enable the array development, a number of monolithic piezoelectric thickness-shear transducers of varied area were characterised with respect to GW mode directionality, amplitude and SH0 mode purity. The characterisation of each thickness-shear transducer allows for optimised superposition manipulation for specific applications. A single characterised shear transducer was selected for use in the development of omnidirectional and unidirectional SH0 mode transducer arrays. To aid development a linear superposition analysis model was produced and used to predict for a circular array design the optimum parameters for omnidirectional SH0 mode transmission with significant mode purity. A range of parameter combinations were evaluated and their predicted influence on array performance was characterised. The same method was employed to optimise a dual row linear array design for the unidirectional transducer array. All results were validated by FE models and later with empirical data. Both developed transducer arrays were characterised with respect to GW mode directionality, magnitude and SH0 mode purity. Both their detection sensitivity to pertinent defects and structures was validated, demonstrating relevance to Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) applications.
APA, Harvard, Vancouver, ISO, and other styles
47

Stévenin, Mathilde. "Rayonnement des ondes ultrasonores guidées dans une structure mince et finie, métallique ou composite, en vue de son contrôle non-destructif." Thesis, Valenciennes, 2016. http://www.theses.fr/2016VALE0037/document.

Full text
Abstract:
Différents modèles sont développés de façon à constituer des outils génériques pour la simulation de méthodes de contrôle non-destructif par ondes élastiques guidées de plaques métalliques ou composites. Diverses méthodes de contrôle de ces structures existent ou sont à l’étude. La plupart font appel à des sources ultrasonores de taille finie ; toutes sont confrontées aux phénomènes de réflexion résultant de la taille finie des objets contrôlés. Les modèles développés traitent des phénomènes de diffraction associés aux sources et de réflexion sur un bord de plaques. Comme l’interprétation des signaux mesurés lors de contrôle par ondes guidées fait souvent appel à la notion de modes guidés, les modèles sont eux-mêmes modaux. Les cas de plaques isotropes (métalliques) et anisotropes (composites multicouches) sont considérés ; une approche générale suivant l’approximation de la phase stationnaire permet de traiter tous les cas d’intérêt. Pour les premiers, la validité d’une approximation de type Fraunhofer permet de traiter très efficacement les champs directs et réfléchis rayonnés par une source. Pour les derniers, une attention particulière est portée sur le traitement des caustiques. La méthode de la phase stationnaire étant difficile à généraliser, un modèle de pinceau, de nature plus géométrique, est proposé présentant un haut degré de généricité. Il met en cascade des termes de propagation en milieu isotrope ou anisotrope et d’interaction avec une frontière. L’équivalence de la méthode de la phase stationnaire au modèle de pinceau est démontrée pour le rayonnement et la réflexion dans une plaque isotrope, cas faisant l’objet d’une validation expérimentale
Different models are developed to provide generic tools for simulating nondestructive methods relying on elastic guided waves applied to metallic or composite plates. Various inspection methods of these structures exist or are under study. Most of them make use of ultrasonic sources of finite size; all are sensitive to reflection phenomena resulting from the finite size of the monitored objects. The developed models deal with transducer diffraction effects and edge reflection. As the interpretation of signals measured in guided wave inspection often uses the concept of modes, the models themselves are explicitly modal. The case of isotropic plates (metal) and anisotropic (multilayer composites) are considered; a general approach under the stationary phase approximation allows us to consider all the cases of interest. For the first, the validity of a Fraunhofer-like approximation leads to a very efficient computation of the direct and reflected fields radiated by a source. For the second, special attention is paid to the treatment of caustics. The stationary phase approximation being difficult to generalize, a model (so-called “pencil model”) of more geometrical nature is proposed with a high degree of genericity. It chains terms of isotropic or anisotropic propagation and terms of interaction with a boundary. The equivalence of the stationary phase approximation and the pencil model is demonstrated in the case of the radiation and reflection in an isotropic plate, for which an experimental validation is proceeded
APA, Harvard, Vancouver, ISO, and other styles
48

McLean, Jeffrey John. "Interdigital Capacitive Micromachined Ultrasonic Transducers for Microfluidic Applications." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7625.

Full text
Abstract:
The goal of this research was to develop acoustic sensors and actuators for microfluidic applications. To this end, capacitive micromachined ultrasonic transducers (cMUTs) were developed which generate guided acoustic waves in fluid half-spaces and microchannels. An interdigital transducer structure and a phased excitation scheme were used to selectively excite guided acoustic modes which propagate in a single lateral direction. Analytical models were developed to predict the geometric dispersion of the acoustic modes and to determine the sensitivity of the modes to changes in material and geometric parameters. Coupled field finite element models were also developed to predict the effect of membrane spacing and phasing on mode generation and directionality. After designing the transducers, a surface micromachining process was developed which has a low processing temperature of 250C and has the potential for monolithically integrating cMUTs with CMOS electronics. The fabrication process makes extensive use of PECVD silicon nitride depositions for membrane formation and sealing. The fabricated interdigital cMUTs were placed in microfluidic channels and demonstrated to sense changes in fluid sound speed and flow rate using Scholte waves and other guided acoustic modes. The minimum detectable change in sound speed was 0.25m/s, and the minimum detectable change in flow rate was 1mL/min. The unique nature of the Scholte wave allowed for the measurement of fluid properties of a semi-infinite fluid using two transducers on a single substrate. Changes in water temperature, and thus sound speed, were measured and the minimum detectable change in temperature was found to be 0.1C. For fluid pumping, interdigital cMUTs were integrated into microchannels and excited with phase-shifted, continuous wave signals. Highly directional guided waves were generated which in turn generated acoustic streaming forces in the fluid. The acoustic streaming forces caused the fluid to be pumped in a single, electronically-controlled direction. For a power consumption of 43mW, a flow rate of 410nL/min was generated against a pressure of 3.4Pa; the thermodynamic efficiency was approximately 5x10-8%. Although the efficiency and pressure head are low, these transducers can be useful for precisely manipulating small amounts of fluid around microfluidic networks.
APA, Harvard, Vancouver, ISO, and other styles
49

Harley, Joel B. "Data-Driven, Sparsity-Based Matched Field Processing for Structural Health Monitoring." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/392.

Full text
Abstract:
This dissertation develops a robust, data-driven localization methodology based on the integration of matched field processing with compressed sensing ℓ1 recovery techniques and scale transform signal processing. The localization methodology is applied to an ultrasonic guided wave structural health monitoring system for detecting, locating, and imaging damage in civil infrastructures. In these systems, the channels are characterized by complex, multi-modal, and frequency dispersive wave propagation, which severely distort propagating signals. Acquiring the characteristics of these propagation mediums from data represents a difficult inverse problem for which, in general, no readily available solution exists. In this dissertation, we build data-driven models of these complex mediums by integrating experimental guided wave measurements with theoretical wave propagation models and ℓ1 sparse recovery methods from compressed sensing. The data-driven models are combined with matched field processing, a localization framework extensively studied for underwater acoustics, to localize targets in complex, guided wave environments. The data-driven matched field processing methodology is then refined, through the use of the scale transform, to achieve robustness to environmental variations that distort guided waves. Data-driven matched field processing is experimentally applied to an ultrasound structural health monitoring system to detect and locate damage in aluminum plate structures.
APA, Harvard, Vancouver, ISO, and other styles
50

Duroux, Adelaide A. "Estimation of guided waves from cross-correlations of diffuse wavefields for passive structural health monitoring." Thesis, Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33896.

Full text
Abstract:
Recent theoretical and experimental studies in a wide range of applications (ultrasonics, underwater acoustics, seismicoe) have demonstrated that Green's functions (impulse responses) can be extracted from cross-correlation of diffuse fields using only passive sensors. The technique, whose validity is supported by a physical argument based on time-reversal invariance, effectively uses a correlation process between the point source and points located in the focal zone. Indeed, the coherent noise source distributions can be considered as a timereversal mirror and the cross-correlation operations gives the field measured at one receiver after refocusing on the other receiver. Passive-only reconstruction of coherent Lamb waves (80-200 kHz) in an aluminum plate and thickness comparable to aircraft fuselage and wing panels will be presented. In particular, the influence of the noise source characteristics (location, frequency spectrum) on the signal-to-noise ratio the emerging coherent waveform will be investigated using a scanning laser Doppler velocimeter. This study suggests the potential for a structural health monitoring method for aircraft panels based on passive ultrasound imaging reconstructed from diffuse fields.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography