Dissertations / Theses on the topic 'Growth factors – Pathophysiology'

To see the other types of publications on this topic, follow the link: Growth factors – Pathophysiology.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Growth factors – Pathophysiology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Ping, and 劉苹. "Blood brain-derived neurotrophic factor (BDNF) expression in normal humans and schizophrenic patients." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31352121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McCulloch, Daniel R. "The expression of ADAM-9 and -10 in prostate cancer and their regulation by dihydrotestosterone, insulin-like growth Factor-1 and epidermal growth factor." Thesis, Queensland University of Technology, 2003. https://eprints.qut.edu.au/37161/7/37161_Digitised_Thesis.pdf.

Full text
Abstract:
Prostrate Cancer(PCa)is the most common cause of cancer death amongst Western males. PCa occurs in two distinct stages. In its early stage, growth and development is dependent primarily on male sex hormones (androgens) such as testosterone, although other growth factors have roles maintaining PCa cell survival in this stage. In the later stage of PCa development, growth and.maintenance is independent of androgen stimulation and growth factors including Insulin-like Growth Factor -1 (IGf.:·l) and Epidermal Growth Factor (EGF) are thought to have more crucial roles in cell survival and PCa progression. PCa, in its late stages, is highly aggressive and metastatic, that is, tumorigenic cells migrate from the primary site of the body (prostate) and travel via the systemic and lymphatic circulation, residing and colonising in the bone, lymph node, lung, and in more rare cases, the brain. Metastasis involves both cell migration and tissue degradation activities. The degradation of the extracellular matrix (ECM), the tissue surrounding the organ, is mediated in part by members of a family of 26 proteins called the Matrix Metalloproteases (MMPs), whilst ceil adhesion molecules, of which proteins known as Integrins are included, mediate ce11 migration. A family of proteins known as the ADAMs (A Disintegrin . And Metalloprotease domain) were a recently characterised family at the commencement of this study and now comprise 34 members. Because of their dual nature, possessing an active metaiioprotease domain, homologous to that of the MMPs, and an integrin-binding domain capable of regulating cell-cell and cell-ECM contacts, it was thought likely that members of the ADAMs family may have implications for the progression of aggressive cancers such as those ofthe prostate. This study focussed on two particular ADAMs -9 and -10. ADAM-9 has an active metalloprotease domain, which has been shown to degrade constituents of the ECM, including fibronectin, in vitro. It also has an integrin-binding capacity through association with key integrins involved in PCa progression, such as a6~1. ADAM-10 has no such integrin binding activities, but its bovine orthologue, MADM, is able to degrade coHagen type IV, a major component of basement membranes. It is likely human ADAM-10 has the same activity. It is also known to cleave Ll -a protein involved in cell anchorage activities - and collagen type XVII - which is a principal component of the hemidesmosomes of cellular tight junctions. The cleavage of these proteins enables the cell to be released from the surrounding environment and commence migratory activities, as required in metastasis. Previous studies in this laboratory showed the mRNA expression of the five ADAMs -9,- 10, -11, -15 and -17 in PCa cell lines, characteristic of androgen-dependent and androgen independent disease. These studies were furthered by the characterisation of AD AM-9, -10 and -17 mRNA regulation by Dihydrotestosterone (DHT) in the androgen-responsive cell line (LNCaP). ADAM-9 and -10 mRNA levels were elevated in response to DHT stimulation. Further to these observations, the expression of ADAM-9 and -10 was shown in primary prostate biopsies from patients with PCa. ADAM-1 0 was expressed in the cytoplasm and on the ceH membrane in epithelial and basal cells ofbenign prostate glands, but in high-grade PCa glands, ADAM-I 0 expression was localised to the nucleus and its expression levels appeared to be elevated when compared to low-grade PCa glands. These studies provided a strong background for the hypothesis that ADAM-9 and -10 have key roles in the development ofPCa and provided a basis for further studies.The aims of this study were to: 1) characterise the expression, localisation and levels, of ADAM-9 and -10 mRNA and protein in cell models representing characteristics of normal through androgen-dependent to androgen-independent PCa, as well as to expand the primary PCa biopsy data for ADAM-9 and ADAM-10 to encompass PCa bone metastases 2) establish an in vitro cell system, which could express elevated levels of ADAM-1 0 so that functional cell-based assays such as cell migration, invasion and attachment could be carried out, and 3) to extend the previous hormonal regulation data, to fully characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in the hormonal/growth factor responsive cell line LNCaP. For aim 1 (expression of ADAM-9 and -10 mRNA and protein), ADAM-9 and -10 mRNA were characterised by R T -PCR, while their protein products were analysed by Western blot. Both ADAM-9 and -10 mRNA and protein were expressed at readily detectable levels across progressively metastatic PCa cell lines model that represent characteristics of low-grade,. androgen-dependent (LNCaP and C4) to high-grade, androgen-independent (C4-2 and C4-2B) PCa. When the non-tumorigenic prostate cell line RWPE-1 was compared with the metastatic PCa cell line PC-3, differential expression patterns were seen by Western blot analysis. For ADAM-9, the active form was expressed at higher levels in RWPE-1, whilst subcellular fractionation showed that the active form of ADAM-9 was predominantly located in the cell nucleus. For ADAM-I 0, in both of the cell Jines, a nuclear specific isoform of the mature, catalytically active ADAM-I 0 was found. This isoforrn differed by -2 kDa in Mr (smaller) than the cytoplasmic specific isoform. Unprocessed ADAM-I 0 was readily detected in R WPE-1 cell lines but only occasionally detected in PC-3 cell lines. Immunocytochemistry using ADAM-9 and -10 specific antibodies confirmed nuclear, cytoplasmic and membrane expression of both ADAMs in these two cell lines. To examine the possibility of ADAM-9 and -10 being shed into the extracellular environment, membrane vesicles that are constitutively shed from the cell surface and contain membrane-associated proteins were collected from the media of the prostate cell lines RWPE-1, LNCaP and PC-3. ADAM-9 was readily detectable in RWPE- 1 and LNCaP cell membrane vesicles by Western blot analysis, but not in PC-3 cells, whilst the expression of ADAM-I 0 was detected in shed vesicles from each of these prostate cell lines. By Laser Capture Microdissection (LCM), secretory epithelial cells of primary prostate gland biopsies were isolated from benign and malignant glands. These secretory cells, by Western blot analysis, expressed similar Mr bands for ADAM-9 and -10 that were found in PCa cell lines in vitro, indicating that the nuclear specific isoforrn of ADAM-I 0 was present in PCa primary tumours and may represent the predominantly nuclear form of ADAM-I 0 expression, previously shown in high-grade PCa by immunohistochemistry (IHC). ADAM-9 and -10 were also examined by IHC in bone metastases taken from PCa patients at biopsy. Both ADAMs could be detected at levels similar to those shown for Prostate Specific Antigen (PSA) in these biopsies. Furthermore, both ADAM-9 and -10 were predominantly membrane- bound with occasional nuclear expression. For aim 2, to establish a cell system that over-expressed levels of ADAM-10, two fulllength ADAM-I 0 mammalian expression vectors were constructed; ADAM-I 0 was cloned into pcDNA3.1, which contains a CMV promoter, and into pMEP4, containing an inducible metallothionine promoter, whose activity is stimulated by the addition of CdC}z. The efficiency of these two constructs was tested by way of transient transfection in the PCa cell line PC-3, whilst the pcDNA3.1 construct was also tested in the RWPE-1 prostate cell line. Resultant Western blot analysis for all transient transfection assays showed that levels of ADAM-I 0 were not significantly elevated in any case, when compared to levels of the housekeeping gene ~-Tubulin, despite testing various levels of vector DNA, and, for pMEP4, the induction of the transfected cell system with different degrees of stimulation with CdCh to activate the metallothionine promoter post-transfection. Another study in this laboratory found similar results when the same full length ADAM-10 sequence was cloned into a Green Fluorescent Protein (GFP) expressing vector, as no fluorescence was observed by means of transient tran sfection in the same, and other, PCa cell lines. It was hypothesised that the Kozak sequence included in the full-length construct (human ADAMI 0 naturally occurring sequence) is not strong enough to initiate translation in an artificial system, in cells, which, as described in Aim 1, are already expressing readily detectable levels of endogenous ADAM-10. As a result, time constraints prevented any further progress with Aim 2 and functional studies including cell attachment, invasion and migration were unable to be explored. For Aim 3, to characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in LNCaP cells, the levels of ADAM-9 and -10 mRNA were not stimulated by DHT or IGF-I alone, despite our previous observations that initially characterised ADAM-9 and -10 mRNA as being responsive to DHT. However, IGF-1 in synergy with DHT did significantly elevate mRNA levels ofboth ADAMs. In the case of ADAM-9 and -10 protein, the same trends of stimulation as found at the rnRNA level were shown by Western blot analysis when ADAM-9 and -10 signal intensity was normalised with the housekeeping protein ~-Tubulin. For EGF treatment, both ADAM-9 and -10 mRNA and protein levels were significantly elevated, and further investigation vm found this to be the case for each of these ADAMs proteins in the nuclear fractions of LNCaP cells. These studies are the first to describe extensively, the expression and hormonal/growth factor regulation of two members of the ADAMs family ( -9 and -1 0) in PCa. These observations imply that the expression of ADAM-9 and -10 have varied roles in PCa whilst it develops from androgen-sensitive (early stage disease), through to an androgeninsensitive (late-stage), metastatic disease. Further studies are now required to investigate the several key areas of focus that this research has revealed, including: • Investigation of the cellular mechanisms that are involved in actively transporting the ADAMs to the cell's nuclear compartment and the ADAMs functional roles in the cell nucleus. • The construction of a full-length human ADAM-10 mammalian expression construct with the introduction of a new Kozak sequence, that elevates ADAM-I 0 expression in an in vitro cell system are required, so that functional assays such as cell invasion, migration and attachment may be carried out to fmd the functional consequences of ADAM expression on cellular behaviour. • The regulation studies also need to be extended by confirming the preliminary observations that the nuclear levels of ADAMs may also be elevated by hormones and growth factors such as DHT, IGF-1 and EGF, as well as the regulation of levels of plasma membrany vesicle associated ADAM expression. Given the data presented in this study, it is likely the ADAMs have differential roles throughout the development of PCa due to their differential cellular localisation and synergistic growth-factor regulation. These observations, along with those further studies outlined above, are necessary in identifying these specific components ofPCa metastasis to which the ADAMs may contribute.
APA, Harvard, Vancouver, ISO, and other styles
3

Robertson, Sarah A. "Granulocyte-macrophage colony stimulating factor (GM-CSF) : a paracrine regulator in the pre-implantation mouse uterus." Title page, abstract and contents only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phr6515.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheluvappa, Rajkumar. "Pathophysiology of Liver Sinusoidal Endothelial Cells." University of Sydney, 2008. http://hdl.handle.net/2123/2802.

Full text
Abstract:
Doctor of Philosophy(PhD)
Owing to its strategic position in the liver sinusoid, pathologic and morphologic alterations of the Liver Sinusoidal Endothelial Cell (LSEC) have far-reaching repercussions for the whole liver and systemic metabolism. LSECs are perforated with fenestrations, which are pores that facilitate the transfer of lipoproteins and macromolecules between blood and hepatocytes. Loss of LSEC porosity is termed defenestration, which can result from loss of fenestrations and/ or decreases in fenestration diameter. Gram negative bacterial endotoxin (Lipopolysaccharide, LPS) has marked effects on LSEC morphology, including induction LSEC defenestration. Sepsis is associated with hyperlipidemia, and proposed mechanisms include inhibition of tissue lipoprotein lipase and increased triglyceride production by the liver. The LSEC has an increasingly recognized role in hyperlipidemia. Conditions associated with reduced numbers of fenestrations such as ageing and bacterial infections are associated with impaired lipoprotein and chylomicron remnant uptake by the liver and consequent hyperlipidemia. Given the role of the LSEC in liver allograft rejection and hyperlipidemia, changes in the LSEC induced by LPS may have significant clinical implications. In this thesis, the following major hypotheses are explored: 1. The Pseudomonas aeruginosa toxin pyocyanin induces defenestration of the LSEC both in vitro and in vivo 2. The effects of pyocyanin on the LSEC are mediated by oxidative stress 3. Defenestration induced by old age and poloxamer 407 causes intrahepatocytic hypoxia and upregulation of hypoxia-related responses 4. Defenestration of the LSEC seen in old age can be exacerbated by diabetes mellitus and prevented or ameliorated by caloric restriction commencing early in life
APA, Harvard, Vancouver, ISO, and other styles
5

Berger, Sarah E. "The Effects of Endoglin and Placental Growth Factor on the Pathophysiology of Preeclampsia." Walsh University Honors Theses / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=walshhonors1524229362157203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Edwards, Sarah. "Investigating the role of a novel ER molecular chaperone : Creld2 in the physiology and pathophysiology of endochondral bone growth." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/investigating-the-role-of-a-novel-er-molecular-chaperone-creld2-in-the-physiology-and-pathophysiology-of-endochondral-bone-growth(6fd49909-beec-42d1-a546-8b2411616e59).html.

Full text
Abstract:
Cysteine rich with EGF-like domains 2 (Creld2) is a novel endoplasmic reticulum (ER) resident molecular chaperone that has been recently implicated in the ER stress signalling response (ERSS) and the unfolded protein response (UPR). Global transcriptomic data derived from in vivo mouse models of rare chondrodysplasias; Multiple Epiphyseal Dysplasia (MED Matn3 p.V194D) and Metaphyseal chondrodysplasia type Schmid (MCDS Col10a1 p.N617K), identified a significant upregulation in Creld2 expression in mutant chondrocytes. These chondrodysplasias share a common disease signature consisting of aberrant folding of a matrix component often as a result of inappropriate alignment of intramolecular disulphide bonds. This in turn culminates in toxic protein aggregation, intracellular retention mutant polypeptides and a classical ER stress response. The aim of this study was to further analyse the function of Creld2 in cartilage development and chondrodysplasias in which endochondral bone growth is perturbed. Protein disulphide isomerases (PDIAs) were amongst the most up-regulated genes in the MED and MCDS mouse models, consistent with the prolonged exposure of normally 'buried' cysteine residues. This led to the hypothesis that Creld2 was functioning as a novel PDI-like oxidoreductase to assist in the correct folding and maturation of aggregated misfolded polypeptide chains through REDOX regulated thiol disulphide exchange. A series of Creld2-CXXA substrate trapping mutants were generated in order to determine whether Creld2 possessed inherent isomerase activity. Here potential substrates interacting with Creld2 were 'trapped' as mixed disulphide intermediates, then isolated by immunoprecipitation and identified by mass spectrometry analysis. It was demonstrated that Creld2 possessed a catalytic active CXXC motif in its N-terminus that enabled the molecular chaperone to participate in REDOX regulated thiol disulphide exchange with at least 20 potential substrates including; laminin (alpha3,β3,γ2), thrombospondin 1, integrin alpha3 and type VI collagen. There was also numerous co-chaperones and foldases thought to be part of a specialised protein-protein interactome (PPI) for folding nascent polypeptides translocating the ER lumen. Moreover, co-immunoprecipitation experiments supported a protein-protein interaction between Creld2 and mutant matrilin-3, thereby inferring a potential chondro-protective role in resolving non-native disulphide bonded aggregates in MED. An established biochemical approach was employed to test the hypothesis that all MATN3-MED disease causing mutations have a generic cellular response to the β-sheet V194D mutation, consisting of intracellular retention, protein aggregation and ER stress induction. Several missense mutations were selected for analyses which encompassed a spectrum of disease severity and included examples of both β-sheet and alpha helical mutations. It was possible to define a reliable and reproducible assay for categorising MATN3 missense mutations into pathological or benign based on these basic parameters. This study was extended further to determine whether there were common pathological mechanisms behind MED and Bethlem myopathy (BM) caused by missense mutations in von Willebrand Factor A domain (vWF-A) containing proteins (matrilin-3 and type VI collagen respectively). We chose to compare and contrast the effects of an archetypal MATN3-MED causing mutation (R121W) with the equivalent COL6A2-BM causing mutation (R876H). These mutations compromised protein folding and maturation, resulting in the familiar disease profile of intracellular retention, protein aggregation and an ER stress response in an artificial overexpression system. However, the mutant C2 domain was efficiently targeted for degradation whilst mutant matrilin-3 vWF-A domain appeared to be resistant to these molecular processes.Molecular genetics was employed to study the role of Creld2 in vivo. Creld2-/- null mice (both global and conditional) were generated to directly examine the role of Creld2 in endochondral bone growth. Global knock-out mice were viable with no overt phenotype at birth. However, female Creld2-/- null mice showed a significant reduction in body weight and tibia bone length at 3 weeks of age. A cartilage specific knock-out was generated to determine whether these skeletal abnormalities were attributed to a systemic or a direct effect on cartilage development. [Creld2Flox/Flox Col2Cre (+)] demonstrated a severe chondrodysplasia with significantly reduced body weight and long bone growth compared to control littermates. Morphological and histochemical analysis of mutant growth plates revealed gross disorganisation of the chondrocyte columns with extensive regions of hypocellularity. These pathological features were confirmed to be the result of reduced chondrocyte proliferation and increased/spatially dysregulated apoptosis throughout all zones of differentiation. Taken together, these data provide evidence that Creld2 possesses isomerase activity and exhibits distinct substrate specificity. Furthermore, Creld2 has a fundamental role in post-natal cartilage development and chondrocyte differentiation in the growth plate.
APA, Harvard, Vancouver, ISO, and other styles
7

Bauschulte, Johannes Hermann Gerd [Verfasser]. "Der Effekt von Lysophosphatidsäure auf die Nerve Growth Factor- und Tropomyosin-Related Kinase A-Rezeptor-Signaltransduktion : Implikationen für die Pathophysiologie der traumatischen Querschnittlähmung / Johannes Hermann Gerd Bauschulte." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1021939919/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clemow, David Bice. "Elevated nerve growth factor in peripheral pathophysiology /." 1998. http://wwwlib.umi.com/dissertations/fullcit/9824304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aziz, A., N. J. Haywood, P. A. Cordell, J. Smith, N. Y. Yuldasheva, A. Sengupta, N. Ali, et al. "Insulinlike growth factor – binding protein-1 improves vascular endothelial repair in male mice in the setting of insulin resistance." 2017. http://hdl.handle.net/10454/14841.

Full text
Abstract:
Yes
Insulin resistance is associated with impaired endothelial regeneration in response to mechanical injury. We recently demonstrated that insulinlike growth factor–binding protein-1 (IGFBP1) ameliorated insulin resistance and increased nitric oxide generation in the endothelium. In this study, we hypothesized that IGFBP1 would improve endothelial regeneration and restore endothelial reparative functions in the setting of insulin resistance. In male mice heterozygous for deletion of insulin receptors, endothelial regeneration after femoral artery wire injury was enhanced by transgenic expression of human IGFBP1 (hIGFBP1). This was not explained by altered abundance of circulating myeloid angiogenic cells. Incubation of human endothelial cells with hIGFBP1 increased integrin expression and enhanced their ability to adhere to and repopulate denuded human saphenous vein ex vivo. In vitro, induction of insulin resistance by tumor necrosis factor α (TNFα) significantly inhibited endothelial cell migration and proliferation. Coincubation with hIGFBP1 restored endothelial migratory and proliferative capacity. At the molecular level, hIGFBP1 induced phosphorylation of focal adhesion kinase, activated RhoA and modulated TNFα-induced actin fiber anisotropy. Collectively, the effects of hIGFBP1 on endothelial cell responses and acceleration of endothelial regeneration in mice indicate that manipulating IGFBP1 could be exploited as a putative strategy to improve endothelial repair in the setting of insulin resistance.
Funded by a British Heart Foundation Clinical Research Training Fellowship for A.A. R.M.C. holds a British Heart Foundation Intermediate Clinical Research Fellowship. M.T.K. holds a British Heart Foundation Chair in Cardiology. S.B.W. holds a European Research Council Starting Grant.
APA, Harvard, Vancouver, ISO, and other styles
10

Sherer, Todd Benjamin. "Calcium signaling and nerve growth factor production in pathophysiology /." 1999. http://wwwlib.umi.com/dissertations/fullcit/9930062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rhodes, Steven David. "Dissecting the cellular and molecular mechanisms mediating neurofibromatosis type 1 related bone defects." Thesis, 2014. http://hdl.handle.net/1805/3793.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Skeletal manifestations including short stature, osteoporosis, kyphoscoliosis, and tibial dysplasia cumulatively affect approximately 70% of patients with neurofibromatosis type 1 (NF1). Tibial pseudarthrosis, the chronic non-union of a spontaneous fracture, is a debilitating skeletal malady affecting young children with NF1. These non-healing fractures respond poorly to treatment and often require amputation of the affected limb due to limited understanding of the causative mechanisms. To better understand the cellular and molecular pathogenesis of these osseous defects, we have established a new mouse model which recapitulates a spectrum of skeletal pathologies frequently observed in patients with NF1. Nf1flox/-;Col2.3Cre mice, harboring Nf1 nullizygous osteoblasts on a Nf1+/- background, exhibit multiple osseous defects which are closely reminiscent of those found in NF1 patients, including runting (short stature), bone mass deficits, spinal deformities, and tibial fracture non-union. Through adoptive bone marrow transfer studies, we have demonstrated that the Nf1 haploinsufficient hematopoietic system pivotally mediates the pathogenesis of bone loss and fracture non-union in Nf1flox/-;Col2.3Cre mice. By genetic ablation of a single Nf1 allele in early myeloid development, under the control of LysMCre, we have further delineated that Nf1 haploinsufficient myeloid progenitors and osteoclasts are the culprit lineages mediating accelerated bone loss. Interestingly, conditional Nf1 haploinsufficiency in mature osteoclasts, induced by CtskCre, was insufficient to trigger enhanced lytic activity. These data provide direct genetic evidence for Nf1’s temporal significance as a gatekeeper of the osteoclast progenitor pool in primitive myelopoiesis. On the molecular level, we found that transforming growth factor-beta1 (TGF-β1), a primary mediator in the spatiotemporal coupling of bone remodeling, is pathologically overexpressed by five- to six- fold in both NF1 patients and in mice. Nf1 deficient osteoblasts, the principal source of TGF-β1 in the bone matrix, overexpress TGF-β1 in a gene dosage dependent fashion. Moreover, p21Ras dependent hyperactivation of the Smad pathway accentuates responses to pathological TGF-β1 signals in Nf1 deficient bone cells. As a proof of concept, we demonstrate that pharmacologic TβRI kinase inhibition can rescue bone mass defects and prevent tibial fracture non-union in Nf1flox/-;Col2.3Cre mice, suggesting that targeting TGF-β1 signaling in myeloid lineages may provide therapeutic benefit for treating NF1 skeletal defects.
APA, Harvard, Vancouver, ISO, and other styles
12

Adler, Jacob J. "The inhibition of mammary epithelial cell growth by the long isoform of Angiomotin." Thesis, 2014. http://hdl.handle.net/1805/4600.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Mammary ductal epithelial cell growth is controlled by microenvironmental signals in serum under both normal physiological settings and during breast cancer progression. Importantly, the effects of several of these microenvironmental signals are mediated by the activities of the tumor suppressor protein kinases of the Hippo pathway. Canonically, Hippo protein kinases inhibit cellular growth through the phosphorylation and inactivation of the oncogenic transcriptional co-activator Yes-Associated Protein (YAP). This study defines an alternative mechanism whereby Hippo protein kinases induce growth arrest via the phosphorylation of the long isoform of Angiomotin (Amot130). Specifically, serum starvation is found to activate the Hippo protein kinase, Large Tumor Suppressor (LATS), which phosphorylates the adapter protein Amot130 at serine-175. Importantly, wild-type Amot130 potently inhibits mammary epithelial cell growth, unlike the Amot130 serine-175 to alanine mutant, which cannot be phosphorylated at this residue. The growth-arrested phenotype of Amot130 is likely a result of its mechanistic response to LATS signaling. Specifically, LATS activity promotes the association of Amot130 with the ubiquitin ligase Atrophin-1 Interacting Protein 4 (AIP4). As a consequence, the Amot130-AIP4 complex amplifies LATS tumor suppressive signaling by stabilizing LATS protein steady state levels via preventing AIP4-targeted degradation of LATS. Additionally, AIP4 binding to Amot130 leads to the ubiquitination and stabilization of Amot130. In turn, the Amot130-AIP4 complex signals the ubiquitination and degradation of YAP. This inhibition of YAP activity by Amot130 requires both AIP4 and the ability of Amot130 to be phosphorylated by LATS. Together, these findings significantly modify the current view that the phosphorylation of YAP by Hippo protein kinases is sufficient for YAP inhibition and cellular growth arrest. Based upon these results, the inhibition of cellular growth in the absence of serum more accurately involves the stabilization of Amot130 and LATS, which together inhibit YAP activity and mammary epithelial cell growth.
APA, Harvard, Vancouver, ISO, and other styles
13

Sunic, Damir. "The role of IGFBPs in the regulation of chondrocyte metabolism in vitro / by Damir Sunic." 1997. http://hdl.handle.net/2440/19192.

Full text
Abstract:
Errata tipped inside back end paper.
Bibliography: leaves 150-190.
vi, 190 leaves : ill. (chiefly col.) ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Insulin-like growth factors (IGFs) and inflammatory cytokines (e.g. IL-1) affect cartilage metabolism in opposite ways. The actions of IGFs in biological systems are modulated by locally produced IGF binding proteins (IGFBPs). This thesis investigated the effects of the IGFs and inflammatory cytokines on IGFBPs produced by chondrocytes and the subsequent interplay of these factors on proteoglycan production in vitro. To do this, a primary culture of ovine articular chondrocytes was used as an in vitro experimental model system. It was concluded that the IGFBP-5-mediated decrease in proteoglycan synthesis could be a relevant in vivo mechanism by which IL-1 exerts its catabolic effect and disturbs the balance between the synthesis and degradation of cartilage matrix macromolecules in pathological conditions.
Thesis (Ph.D.)--University of Adelaide, Dept. of Medicine, 1998?
APA, Harvard, Vancouver, ISO, and other styles
14

Templin, Andrew Thomas. "Mechanisms of translational regulation in the pancreatic β cell stress response." Thesis, 2014. http://hdl.handle.net/1805/6162.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
The islet beta cell is unique in its ability to synthesize and secrete insulin for use in the body. A number of factors including proinflammatory cytokines, free fatty acids, and islet amyloid are known to cause beta cell stress. These factors lead to lipotoxic, inflammatory, and ER stress in the beta cell, contributing to beta cell dysfunction and death, and diabetes. While transcriptional responses to beta cell stress are well appreciated, relatively little is known regarding translational responses in the stressed beta cell. To study translation, I established conditions in vitro with MIN6 cells and mouse islets that mimicked UPR conditions seen in diabetes. Cell extracts were then subjected to polyribosome profiling to monitor changes to mRNA occupancy by ribosomes. Chronic exposure of beta cells to proinflammatory cytokines (IL-1 beta, TNF-alpha, IFN-gamma), or to the saturated free fatty acid palmitate, led to changes in global beta cell translation consistent with attenuation of translation initiation, which is a hallmark of ER stress. In addition to changes in global translation, I observed transcript specific regulation of ribosomal occupancy in beta cells. Similar to other privileged mRNAs (Atf4, Chop), Pdx1 mRNA remained partitioned in actively translating polyribosomes during the UPR, whereas the mRNA encoding a proinsulin processing enzyme (Cpe) partitioned into inactively translating monoribosomes. Bicistronic luciferase reporter analyses revealed that the distal portion of the 5’ untranslated region of mouse Pdx1 (between bp –105 to –280) contained elements that promoted translation under both normal and UPR conditions. In contrast to regulation of translation initiation, deoxyhypusine synthase (DHS) and eukaryotic translation initiation factor 5A (eIF5A) are required for efficient translation elongation of specific stress relevant messages in the beta cell including Nos2. Further, p38 signaling appears to promote translational elongation via DHS in the islet beta cell. Together, these data represent new insights into stress induced translational regulation in the beta cell. Mechanisms of differential mRNA translation in response to beta cell stress may play a key role in maintenance of islet beta cell function in the setting of diabetes.
APA, Harvard, Vancouver, ISO, and other styles
15

Ramanan, Vijay K. "Pathways to dementia: genetic predictors of cognitive and brain imaging endophenotypes in Alzheimer's disease." Thesis, 2014. http://hdl.handle.net/1805/3797.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Alzheimer's disease (AD) is a national priority, with nearly six million Americans affected at an annual cost of $200 billion and no available cure. A better understanding of the mechanisms underlying AD is crucial to combat its high and rising incidence and burdens. Most cases of AD are thought to have a complex etiology with numerous genetic and environmental factors influencing susceptibility. Recent genome-wide association studies (GWAS) have confirmed roles for several hypothesized genes and have discovered novel loci associated with disease risk. However, most GWAS-implicated genetic variants have displayed modest individual effects on disease risk and together leave substantial heritability and pathophysiology unexplained. As a result, new paradigms focusing on biological pathways have emerged, drawing on the hypothesis that complex diseases may be influenced by collective effects of multiple variants – of a variety of effect sizes, directions, and frequencies – within key biological pathways. A variety of tools have been developed for pathway-based statistical analysis of GWAS data, but consensus approaches have not been systematically determined. We critically review strategies for genetic pathway analysis, synthesizing extant concepts and methodologies to guide application and future development. We then apply pathway-based approaches to complement GWAS of key AD-related endophenotypes, focusing on two early, hallmark features of disease, episodic memory impairment and brain deposition of amyloid-β. Using GWAS and pathway analysis, we confirmed the association of APOE (apolipoprotein E) and discovered additional genetic modulators of memory functioning and amyloid-β deposition in AD, including pathways related to long-term potentiation, cell adhesion, inflammation, and NOTCH signaling. We also identified genetic associations to amyloid-β deposition that have classically been understood to mediate learning and memory, including the BCHE gene and signaling through the epidermal growth factor receptor. These findings validate the use of pathway analysis in complex diseases and illuminate novel genetic mechanisms of AD, including several pathways at the intersection of disease-related pathology and cognitive decline which represent targets for future studies. The complexity of the AD genetic architecture also suggests that biomarker and treatment strategies may require simultaneous targeting of multiple pathways to effectively combat disease onset and progression.
APA, Harvard, Vancouver, ISO, and other styles
16

von, Fintel Hendrik. "Einfluss von Transforming Growth Factor - beta 1 (TGF-β1) und Hypoxie auf die Expression von Sulfattransportern (SAT-1 und NaSi-1) in den humanen renalen Zelllinien TK173 und TK188." Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-0006-B219-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography