Dragulete, Oana. "Quelques applications des symétries en géométrie différentielle et systèmes dynamiques." Phd thesis, 2007. http://tel.archives-ouvertes.fr/tel-00275462.
Abstract:
Mes recherches se situent à l'interface de la géométrie Riemannienne et des géométries de contact et symplectique et portent sur la construction des métriques Kähler ou Sasakie-Einstein, sur l'étude des systèmes Hamiltonians conformes, la géométrie des fibrés cosphériques et les groupoïdes de Lie propres. Le thème principal de cette thèse est l'étude des applications des symétries Lie en géométrie différentielle et systèmes dynamiques. Le premier chapitre de cette thèse étudie la réduction singulière des symétries du fibré cosphérique, les propriétés conservatives des systèmes de contact et leurs réduction. Le fibré cosphérique d'une variété différentiable $M$ (dénoté par $S^*(M)$) est le quotient de son fibré cotangent sans la section nulle par rapport à l'action par multiplication de $\RR^+$ qui couvre l'identité sur $M$. C'est une variété de contact qui détient en géométrie de contact la position analogue du fibré cotangent en géométrie symplectique. En utilisant une métrique Riemannienne sur $M$, on peut identifier $S^*(M)$ avec son fibré tangent unitaire et son champ de Reeb avec le champ géodésique de $M$. Si $M$ est munie de l'action propre d'un groupe de Lie $G$, le relèvement de cette action à $S^*(M)$ respecte la structure de contact et admet une application moment équivariante $J$. Nous étudions les propriétés topologiques et géométriques de l'espace réduit à moment zéro de $S^*(M)$, i.e. $\left(S^*(M)\right)_0 :=J^{-1}(0)/G$. Ainsi, nous généralisons les résultats de \cite{dragulete--ornea--ratiu} au cas singulier. Appliquant la théorie générale de réduction de contact, théorie dévéloppée par Lerman et Willett dans \cite{lerman--willett} et \cite{willett}, on obtient des espaces qui perdent toute information sur la structure interne du fibré cosphérique. En plus, la projection du fibré cosphérique sur sa base descend à une surjection continue de $\left(S^*(M)\right)_0$ à $M/G$, mais qui n'est pas un morphisme d'espaces stratifiés si on munit l'espace réduit avec sa stratification de contact et l'espace de base avec la stratification standarde de type orbitale définie par l'action du groupe de Lie. Compte tenu des théorèmes de réduction du fibré cotangent (cas régulier et singulier) et du fibré cosphérique ( cas régulier), on s'attend à ce que les strates de contact aient une structure fibrée additionnelle. Pour résoudre ces problèmes, nous introduisons une nouvelle stratification de $\left(S^*(M)\right)_0$, nommée la \emph{stratification C-L} (les deux majuscules symbolisent la nature coisotrope ou Legendréenne de leurs strates). Elle est compatible avec la stratification de contact de $\left(S^*(M)\right)_0$ et la stratification de type orbital de $M/G$. Aussi, elle est plus fine que la stratification de contact et rend la projection de $\left(S^*(M)\right)_0$ sur $M/G$ un morphism d'espaces stratifiés. Chaque strate C-L est un fibré sur une strate de type orbital de $M/G$ et elle peut être vue comme une union de strates C-L, une d'entre elles étant ouverte et dense dans la strate de contact correspondante et difféomorphe à un fibré cosphérique. Ainsi, nous avons identifié les strates maximales munies de structure de fibrés cosférique. Les autres strates sont des sous-variétés coisotropes ou Legendre dans les composantes de contact qui les contiennent. Par conséquant nous faison une analyse géométrique et topologique complète de l'espace réduit. Nous analysons aussi le comportement de la projection sur $\left(S^*(M)\right)_0$ du flot de Reeb (flot géodésique). L'ensemble de champs de vecteurs de contact (les analogues des champs de vecteurs Hamiltonians en géométrie symplectique) forment le "groupe de Lie" de l'algèbre des transformations de contact. Dans le premier chapitre nous présentons aussi la réduction des systèmes de contact (qui, localement, sont en correspondence bijective avec les équations non-autonomes de Hamilton-Jacobi) et les systèmes Hamiltonians dépendants de temps. Dans le deuxième chapitre nous étudions les propriétés géométriques des quotients de variétés Sasaki et Kähler. Nous construisons une procédure de réduction pour les variétés symplectiques et Kähler (munies de symétries générées par un groupe de Lie) qui utilise les préimages rayon de l'application moment. Précisémmant, au lieu de considérer comme dans la réduction de Marsden-Weinstein (ponctuelle) la préimage d'une valeur moment $\mu$, nous utilisons la préimage de $\RR^+\mu$, le rayon positif de $\mu$. Nous avons trois motivations pour développer cette construction. Une est géométrique: la construction des espaces réduits de variétés Kähler correspondant á un moment non nulle qui soient canoniques dans le sense que la structure Kähler réduite est la projection de la structure Kähler initiale. La réduction ponctuelle (Marsden-Weinstein) donnée par $M_\mu:=J^{-1}(\mu)/G_\mu$ où $\mu$ est une valeur de l'application moment $J$ et $G_\mu$ est le sous-groupe d'isotropie de $\mu$ par rapport à l'action coadjointe de $G$ n'est pas toujours bien définie dans le cas Kähler (si $G\neq G_\mu$). Le problème est causé par le fait que la structure complexe de $M$ ne préserve pas la distribution horizontale de la submersion Riemannienne qui projète $J^{-1}(\mu)$ sur $M_\mu$. La solution proposée dans la litterature utilise l'espace réduit à moment zéro de la difference symplectique de $M$ avec l'orbite coadjointe de $\mu$ munie d'une forme Kähler-Einstein unique (construite par exemple dans \cite{besse}, Chapitre $8$) et différente de la forme de Kostant-Kirillov-Souriau. L'unicité de la forme sur l'orbite coadjointe garantit un espace réduit bien défini. Par contre, ne plus utiliser la forme de Kostant-Kirillov-Souriau entraîne le fait que l'espace réduit n'est plus canonique. L'espace réduit rayon que nous construisons est canonique et peut être défini pour tout moment. Il est le quotient de $J^{-1}(\RR^+\mu)$ par rapport à un certain sous-groupe normal de $G_\mu$. La deuxième raison est une application à l'étude des systèmes Hamiltonians conformes (voir \cite{mclachlan--perlmutter}). Ce sont des systèmes mécaniques non-autonomes, avec friction dont les courves intégrales préservent, dans le cas des symétries, les préimages rayons de l'application moment. Nous extendons la notion de champ Hamiltonian conforme, en montrant qu'on peut ainsi inclure dans cet étude de nouveaux systèmes mécaniques. également, nous présentons la réduction de systèmes Hamiltonians conformes. La troisième raison consiste à trouver des conditions necéssaires et suffisantes pour que les espaces réduits (rayons) des variétés Kähler (Sasakian)-Einstein soient aussi Kähler (Sasakian)-Einstein. Nous nous occupons de cela dans le deuxième chapitre de la thèse, dans \cite{dragulete--ornea} et dans \cite{dragulete--doi} où nous utilisons des techniques de A. Futaki. Ainsi, nous pouvons construire de nouvelles structures de Sasaki-Einstein. Comme exemples de réductions rayon symplectic (Kähler) et contact (Sasaki) nous traitons le cas des fibrés cotangent et cosphérique. Nous montrons qu'ils sont des espaces universels pour la réduction rayon. Des exemples d'actions toriques sur des sphères sont aussi décrits. Le troisième chapitre de cette thèse traite l'étude de l'espace des orbites d'un groupoïde propre. Dans \cite{weinstein--unu}, \cite{weinstein--doi} A. Weinstein a partiellement résolu le problème de la linéarisation des groupoïdes propres. En \cite{zung}, N. T. Zung l'a achevé en démontrant un théorème de type Bochner pour les groupoïdes propres. Nous prouvons un théorème de stratification de l'espace d'orbites d'un groupoïde propre en utilisant des idées de la théorie des foliations et le théorème de "slice" (linéarisation) de Weinstein et Zung. Nous montrons explicitement que le feuilletage orbital d'un groupoïde propre est un feuilletage Riemannien singulier dans le sense de Molino. Pour cela nous avons deux motivations. D'un côté nous voulons montrer qu'il y ait une équivalence entre groupoïdes propres et "orbispaces" (des espaces qui sont localement des quotiens par rapport à l'action d'un groupe de Lie compact) et d'un autre nous voulons étudier la réduction des actions infinitésimales (actions d'algèbres de Lie) qui ne sont pas intégrables à l'action d'un groupe de Lie. Ces actions et leur intégrabilité ont été étudiées, entre autres, par Palais (\cite{palais}), Michor, Alekseevsky.