Academic literature on the topic 'Groupes homogènes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Groupes homogènes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Groupes homogènes"
Touazi, Mustapha, Najat Bhiry, Jean-Pierre Laborde, and Farid Achour. "Régionalisation des débits moyens mensuels en Algérie du nord." Revue des sciences de l’eau 24, no. 2 (October 4, 2011): 177–91. http://dx.doi.org/10.7202/1006110ar.
Full textHatchuel, Armand, Jean-Claude Moisdon, and Hugues Molet. "Budget global hospitalier et groupes homogènes de malades." Politiques et management public 3, no. 4 (1985): 99–114. http://dx.doi.org/10.3406/pomap.1985.1872.
Full textCantarella, Giovanna. "Culture de groupe et facteurs thérapeutiques dans les groupes féminins." Revue de psychothérapie psychanalytique de groupe 26, no. 1 (1996): 107–12. http://dx.doi.org/10.3406/rppg.1996.1327.
Full textSghari, Amira, Wafi Chtourou, and Sarra Ghattas. "Decoding gen Z employee profiles: revealing work values." Recherches en Sciences de Gestion N° 159, no. 6 (February 26, 2024): 267–94. http://dx.doi.org/10.3917/resg.159.0267.
Full textBerger, Thierry. "Groupes d'automorphismes des codes de Reed–Muller projectifs et homogènes." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 331, no. 11 (December 2000): 935–38. http://dx.doi.org/10.1016/s0764-4442(00)01746-8.
Full textPerrier, Lionel, and Thierry Philip. "Réforme de la tarification à l'activité et opportunisme des établissements de santé." Revue d'économie politique Vol. 114, no. 3 (June 1, 2004): 0. http://dx.doi.org/10.3917/redp.143.0417.
Full textBrown, Dennis. "Context, content and process : interrelationships between small and large groups in a transcultural workshop." Revue de psychothérapie psychanalytique de groupe 9, no. 1 (1987): 51–64. http://dx.doi.org/10.3406/rppg.1987.971.
Full textMacuda, Małgorzata. "Groupes homogénes de malades - vers une efficacité économique : analyse des produits et charges d'exploitation." La Revue Internationale des Économistes de Langue Française 3, no. 1 (June 30, 2018): 114–29. http://dx.doi.org/10.18559/rielf.2018.1.10.
Full textBorovoi, Mikhail, Cyril Demarche, and David Harari. "Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes." Annales scientifiques de l'École normale supérieure 46, no. 4 (2013): 651–92. http://dx.doi.org/10.24033/asens.2198.
Full textBoudemaghe, T., and I. Belhadj. "Méthode d’évaluation de la complexité des racines de Groupes homogènes de malades." Revue d'Épidémiologie et de Santé Publique 66 (May 2018): S141. http://dx.doi.org/10.1016/j.respe.2018.03.354.
Full textDissertations / Theses on the topic "Groupes homogènes"
Bilge, Dogan. "Groupes d’automorphismes des structures homogènes." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10112/document.
Full textA countable first-Order structure is called homogneous when each isomorphism between twofinitely generated substructures extends to an automorphism of the whole structure. This is equivalentto an amalgamation property of finitely generated substructures, and countable homogeneousstructures are also called Fraïssé limits, in connection to the work of Roland Fraïssé on theorder of rational numbers. The present thesis concerns automorphism groups of homogeneousstructures, with the following central question: is it the case that the automorphism group of a homogeneousstructure is universal for the class of automorphism groups of its substructures? Weanswer positively this question for homogeneous structures in a relational langage and with thefree amalgamation property, by using a construction rather similar to a construction of Katetov andUspenskij in the case of the Urysohn space.With similar techniques, we obtain any countable substructureas the set of fixed points of an automorphism of a given finite order. Besides, this allowsus to study the complexity of the isomorphism relation between countable substructures, and toshow that it Borel reduces to the conjugacy relation in the automorphism group. We continue withelements of finite order, assuming further that finite substructures satisfy a strong version of theHrushovski-Lascar-Herwig extension property, and topological arguments then allow us to showthat in the automorphism group any element is the product of four conjugates of certain elementsof finite order. We also show similar results for the isometry group of the Urysohn space, or itsbounded version, the Urysohn sphere, by using the fact that they are well approximated by rationalmetric spaces. Finally, concerning the question of the universality of the automorphism groupof a Fraïssé limit, we consider the finer question to know whether any countable substructure embedsin a rigid way, that is, in such a way that each of its automorphisms extends in a uniqueautomorphism of the Fraïssé limit. First, we introduce a construction of such rigid embeddings inthe case of homogeneous graphs. Then, we modify this construction in various classes of orientedgraphs and of homogeneous relational structures, ultimately to make it work in a very generalcontext of structures in a finite relational langage and with the free amalgamation property
Guilloux, Antonin. "Equirepartition dans les espaces homogènes." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00372220.
Full textGuilloux, Antonin. "Equirépartition dans les espaces homogènes." Paris 11, 2007. http://www.theses.fr/2007PA112003.
Full textFlorence, Mathieu. "Points rationnels sur les espaces homogènes." Paris 11, 2005. http://www.theses.fr/2005PA112101.
Full textThis thesis presents two results concerning homogeneous spaces of algebraic groups. In the first part, we consider the following question, recently asked by Burt Totaro:Let k be a field, G a linear algebraic k-group, and X a quasi-projective variety, endowed with the structure of a homogeneous space of G. Assume there exists a zero-cycle of degree d>0 on X; that is to say, there exists a family of closed points of X, having the property that the gcd of thedegrees (over k) of their residue fields divides d. Can we say that X has a rational point in a separable field extension of k, of degree dividing d ?We show that, in general, the answer is negative. In particular, we produce a counter-example X when k is a number field. The space X is geometrically rational, and a smooth k-compactification of X cannot have a k-rational point. This suggests to considerthe following general question: let X be a homogeneous space of an algebraic group (over a field k), such that X admits a k-compactification having a k-rational point. Then, does X itself possess a rational point ? In the second part of this thesis, we show the answer is positive,in full generality. Roughly speaking, we use cohomological tools to reduce the problem to the case of torsors under semi-simple groups, which is settled by the theory of Bruhat and Tits
Abbaci, Mohamed. "Espaces homogènes de Poisson." Lyon 1, 1986. http://www.theses.fr/1986LYO11705.
Full textBousquet, Gilles. "Plongements homogènes de SL2 (C) modulo un sous-groupe fini." Dijon, 2000. http://www.theses.fr/2000DIJOS059.
Full textMaccan, Matilde. "Sous-schémas en groupes paraboliques et variétés homogènes en petites caractéristiques." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. https://ged.univ-rennes1.fr/nuxeo/site/esupversions/2e27fe72-c9e0-4d56-8e49-14fc84686d6c.
Full textThis thesis brings to an end the classification of parabolic subgroup schemes of semisimple groups over an algebraically closed field, focusing on characteristic two and three. First, we present the classification under the assumption that the reduced part of these subgroups is maximal; then we proceed to the general case. We arrive at an almost uniform description: with the exception of a group of type G₂ in characteristic two, any parabolic subgroup scheme is obtained by multiplying reduced parabolic subgroups by kernels of purely inseparable isogenies, then taking the intersection. In conclusion, we discuss some geometric implications of this classification
Evseeva, Elena. "Représentations du groupe pseudo-orthogonal dans les espaces des formes différentielles homogènes." Thesis, Reims, 2016. http://www.theses.fr/2016REIMS035/document.
Full textIn this thesis we study representations of the Lorentz group acting on sectionsof the cotangent bundle over the isotropic cone. Using Fourier and Poisson transforms we construct explicitly all the symmetry breaking operators that appear in branching laws of tensor products of such representations
Lucchini, Arteche Giancarlo. "Groupe de Brauer des espaces homogènes à stabilisateur non connexe et applications arithmétiques." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112207/document.
Full textThis thesis studies the unramified Brauer group of homogeneous spaces with non connected stabilizer and its arithmetic applcations. In particular, we develop different formulas of algebraic and/or arithmetic nature allowing an explicit calculation, both over a finite field and over a field of characteristic 0, of the algebraic part of the unramified Brauer group of a homogeneous space G\G' under a semisimple simply connected linear group G' with finite stabilizer G. We also give examples of the calculations that can be done with these formulas. For achieving this goal, we prove beforehand (using a theorem of Gabber on alterations) a result describing the prime-to-p torsion part of the unramified Brauer group of a smooth and geometrically integral variety V over a global field of characteristic p or over a finite field by evaluating the elements of Br(V) at its local points. The formulas for finite stabilizers are later generalised to the case where the stabilizer G is any linear algebraic group using a reduction of the Galois cohomology of the group G to that of a certain finite subquotient.Finally, for a global field K and a finite solvable K-group G, we show under certain hypotheses concerning the extension splitting G that the homogeneous space V:=G\G' with G' a semi-simple simply connected K-group has the weak approximation property (the hypotheses ensuring the triviality of the unramified algebraic Brauer group). We use then a more precise version of this result to prove the Hasse principle forhomogeneous spaces X under a semi-simple simply connected K-group G' with finite solvable geometric stabilizer, under certain hypotheses concerning the K-kernel (or K-lien) defined by X
Chauvin, Franck. "Identification des sous-groupes répondeurs." Lyon 1, 1993. http://www.theses.fr/1993LYO1T075.
Full textBooks on the topic "Groupes homogènes"
Kolié, Ouo-Ouo Jean-Philippe. Identification des groupes homogènes de maraîchers et l'évaluation de leurs performances économiques au Burkina Faso. Montpellier: CIHEAM-IAMM, 2009.
Find full textBobot, Jean-Louis. Contribution à l'étude comparée de l'animation et de l'expression cinématographiques dans des groupes sociaux homogènes ou pluriculturels. Lille: A.N.R.T, Université de Lille III, 1993.
Find full textChristine, Hockett, and Moist Gerri, eds. Diagnostics infirmiers et plans de soins : guide pratique de diagnostics infirmiers. Montréal, Qué: Lidec, 1990.
Find full text1941-, Lohr Kathleen N., United States. Dept. of Health and Human Services, and Rand Health Insurance Experiment, eds. Use of medical care in the Rand Health Insurance Experiment: Diagnosis- and service-specific analysis in a randomized controlled trial. Santa Monica, CA: Rand, 1986.
Find full textJ, Hardesty Monica, ed. Negotiating the crisis: DRGs and the transformation of hospitals. Hillsdale, NJ: L. Erlbaum Associates, 1992.
Find full textMimura, M. Topology of lie groups, I and II. Providence, R.I: American Mathematical Society, 1991.
Find full textLa gestion contemporaine des soins infirmiers à l'heure des DRG. Montréal, Qué: AHQ, 1993.
Find full textHardesty, Monica, and Patricia Geist. Negotiating the Crisis: Drgs and the Transformation of Hospitals. Taylor & Francis Group, 2011.
Find full textHardesty, Monica, and Patricia Geist. Negotiating the Crisis: Drgs and the Transformation of Hospitals. Taylor & Francis Group, 2014.
Find full textHardesty, Monica, and Patricia Geist. Negotiating the Crisis: Drgs and the Transformation of Hospitals. Taylor & Francis Group, 2014.
Find full textBook chapters on the topic "Groupes homogènes"
Choucroun, Francis M. "Groupes d’automorphismes et frontières d’arbres: le cas homogène." In Trees, 109–21. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9037-3_8.
Full textPuaud, Simon, and Matthieu Lebon. "Les matières colorantes rouges et noires et les matières minérales dures de couleur verte." In Klimonas, 393–97. Paris: CNRS Éditions, 2024. http://dx.doi.org/10.4000/129kt.
Full text"Chapitre VI. Déformations d’espaces homogènes." In Groupes quantiques, 119–42. EDP Sciences, 1995. http://dx.doi.org/10.1051/978-2-7598-0273-9.c007.
Full textMATSUSHIMA, YOZÔ. "ESPACES HOMOGÈNES DE STEIN DES GROUPES DE LIE COMPLEXES." In Collected Papers of Y Matsushima, 237–50. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814360067_0022.
Full textMATSUSHIMA, YOZÔ. "ESPACES HOMOGÈNES DE STEIN DES GROUPES DE LIE COMPLEXES, II." In Collected Papers of Y Matsushima, 263–74. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814360067_0024.
Full text"VII États cohérents et représentations de carré intégrable de groupes localement compacts et d’espaces homogènes associés." In Analyse continue par ondelettes, 139–78. EDP Sciences, 1995. http://dx.doi.org/10.1051/978-2-7598-0264-7.c008.
Full textJULIEN, H., A. ALLONNEAU, O. BON, and H. LEFORT. "Aspects actuels du triage, du combat à la catastrophe, essai de synthèse." In Médecine et Armées Vol. 46 No.3, 197–206. Editions des archives contemporaines, 2018. http://dx.doi.org/10.17184/eac.7334.
Full text"Expérience Du Voyage En Groupe Homogène." In Femmes et tourisme de l'entre-soi, 49–61. Presses de l'Université du Québec, 2022. http://dx.doi.org/10.1515/9782760556584-009.
Full textMATSUSHIMA, YOZÔ. "SUR LES ESPACES HOMOGÈNES KÄHLÉRIENS D'UN GROUPE DE LIE RÉDUCTIF." In Collected Papers of Y Matsushima, 164–71. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814360067_0017.
Full textMOATTY, Annabelle. "Reconstruire après une catastrophe : enjeux et ressources." In Gestion des crises territoriales, 117–37. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9080.ch5.
Full textConference papers on the topic "Groupes homogènes"
de Cidrac, L., L. Radoï, R. Pecorari, and T. Nguyen. "Tumeur à cellules géantes : à propos d’un cas récidivant et agressif à localisation mandibulaire." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603021.
Full textSonesson, Göran. "Rhetoric from the standpoint of the Lifeworld." In Le Groupe μ : quarante ans de rhétorique – trente-trois ans de sémiotique visuelle. Limoges: Université de Limoges, 2010. http://dx.doi.org/10.25965/as.3106.
Full text