Contents
Academic literature on the topic 'Groupe de symétrie de Lie des EDS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Groupe de symétrie de Lie des EDS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Groupe de symétrie de Lie des EDS"
Ouknine, Anas. "Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Full textThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Al, Sayed Nazir. "Modèles LES invariants par groupes de symétries en écoulements turbulents anisothermes." Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00605655.
Full textOstellari, Patrick. "Estimations globales du noyau de la chaleur." Phd thesis, Université Henri Poincaré - Nancy I, 2003. http://tel.archives-ouvertes.fr/tel-00004080.
Full textVerge-Rebêlo, Raphaël. "L'ensemble des EDO d'ordres 2 et 3 invariantes sous SL(2,R) et leur discrétisation préservant les symétries." Thèse, 2007. http://hdl.handle.net/1866/8029.
Full textPicard, Philippe. "Sur les solutions invariantes et conditionnellement invariantes des équations de la magnétohydrodynamique." Thèse, 2003. http://hdl.handle.net/1866/14755.
Full textLamothe, Vincent. "Analyse de groupe d’un modèle de la plasticité idéale planaire et sur les solutions en termes d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre." Thèse, 2013. http://hdl.handle.net/1866/10343.
Full textThe objects under consideration in this thesis are systems of first-order quasilinear equations. In the first part of the thesis, a study is made of an ideal plasticity model from the point of view of the classical Lie point symmetry group. Planar flows are investigated in both the stationary and non-stationary cases. Two new vector fields are obtained. They complete the Lie algebra of the stationary case, and the subalgebras are classified into conjugacy classes under the action of the group. In the non-stationary case, a classification of the Lie algebras admissible under the chosen force is performed. For each type of force, the vector fields are presented. For monogenic forces, the algebra is of the highest possible dimension. Its classification into conjugacy classes is made. The symmetry reduction method is used to obtain explicit and implicit solutions of several types. Some of them can be expressed in terms of one or two arbitrary functions of one variable. Others can be expressed in terms of Jacobi elliptic functions. Many solutions are interpreted physically in order to determine the shape of realistic extrusion dies. In the second part of the thesis, we examine solutions expressed in terms of Riemann invariants for first-order quasilinear systems. The generalized method of characteristics, along with a method based on conditional symmetries for Riemann invariants are extended so as to be applicable to systems in their elliptic regions. The applicability of the methods is illustrated by examples such as non-stationary ideal plasticity for an irrotational flow as well as fluid mechanics equations. A new approach is developed, based on the introduction of rotation matrices which satisfy certain algebraic conditions. It is directly applicable to non-homogeneous and non-autonomous systems. Its efficiency is illustrated by examples which include a system governing the non-linear superposition of waves and particles. The general solution is constructed in explicit form.
Rebelo, Raphaël. "Invariant discretizations of partial differential equations." Thèse, 2015. http://hdl.handle.net/1866/13724.
Full textAn algorithm discretizing partial differential equations (PDEs) while preserving their Lie symmetries is provided. This is made possible by the use of discrete partial derivatives transforming as their continuous counterparts under the action of local Lie groups. In applications, many PDEs are invariant under the action of Lie point symmetries of infinite dimension designated as Lie pseudo-groups. To extend the invariant discretization method to such equations, a discretization of pseudo-groups is proposed. The pseudo-group action discretization transforms the continuous point symmetries into generalized symmetries in the discrete space. Invariant schemes are then created for a number of PDEs. In all cases, numerical tests demonstrate that invariant schemes are better approximations of their continuous equivalents than standard finite differences.
Books on the topic "Groupe de symétrie de Lie des EDS"
Greiner, Walter. Quantum mechanics, symmetrics. Berlin: Springer-Verlag, 1989.
Find full textMüller, Berndt, and Walter Greiner. Theoretical Physics - Text and Exercise Books: Volume 2: Quantum Mechanics. Symmetries. Springer, 1991.
Find full textBook chapters on the topic "Groupe de symétrie de Lie des EDS"
"Chapitre 7. Un groupe de Lie : le groupe orthogonal O(3)." In Groupes de symétrie en physique, 55–64. EDP Sciences, 2022. http://dx.doi.org/10.1051/978-2-7598-2765-7.c009.
Full text