To see the other types of publications on this topic, follow the link: Group IV metals.

Journal articles on the topic 'Group IV metals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Group IV metals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Groysman, Stanislav, Ekaterina Sergeeva, Israel Goldberg, and Moshe Kol. "Salophan Complexes of Group IV Metals." European Journal of Inorganic Chemistry 2005, no. 12 (June 2005): 2480–85. http://dx.doi.org/10.1002/ejic.200500243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Passerone, A., M. L. Muolo, and D. Passerone. "Wetting of Group IV diborides by liquid metals." Journal of Materials Science 41, no. 16 (July 18, 2006): 5088–98. http://dx.doi.org/10.1007/s10853-006-0442-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Verma, M. L., A. Verma, and R. P. S. Rathore. "Phase Transitions and Stability of Group IV BCC Metals." Acta Physica Polonica A 93, no. 3 (March 1998): 479–89. http://dx.doi.org/10.12693/aphyspola.93.479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McMahon, M. I., O. Degtyareva, and R. J. Nelmes. "Ba-IV-Type Incommensurate Crystal Structure in Group-V Metals." Physical Review Letters 85, no. 23 (December 4, 2000): 4896–99. http://dx.doi.org/10.1103/physrevlett.85.4896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wheeler, R. G., K. LaiHing, W. L. Wilson, and M. A. Duncan. "Growth patterns in binary clusters of Group IV and V metals." Journal of Chemical Physics 88, no. 4 (February 15, 1988): 2831–39. http://dx.doi.org/10.1063/1.454018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Egorov, F. F., O. V. Pshenichnaya, V. E. Matsera, and A. A. Mamonova. "Interaction of nitrides of group IV–V transition metals with chromium." Powder Metallurgy and Metal Ceramics 36, no. 3-4 (March 1997): 197–202. http://dx.doi.org/10.1007/bf02676090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leng, Ji-Dong, Andreas K. Kostopoulos, Liam H. Isherwood, Ana-Maria Ariciu, Floriana Tuna, Iñigo J. Vitórica-Yrezábal, Robin G. Pritchard, et al. "Chromium chains as polydentate fluoride ligands for actinides and group IV metals." Dalton Transactions 47, no. 18 (2018): 6361–69. http://dx.doi.org/10.1039/c8dt00803e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kovalev, D. Yu, A. E. Sytschev, I. D. Kovalev, A. I. Dekhtyar, and I. V. Moiseeva. "SHS hydrogenation of group IV metals as studied by time-resolved XRD." International Journal of Self-Propagating High-Temperature Synthesis 23, no. 4 (October 2014): 198–202. http://dx.doi.org/10.3103/s1061386214040062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kul'kova, S. E., and O. N. Muryzhnikova. "Electron and positron characteristics of dioxides of transition metals of group IV." Russian Physics Journal 36, no. 9 (September 1993): 894–99. http://dx.doi.org/10.1007/bf00559005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yamanaka, Shinsuke, and Masanobu Miyake. "Influence of interstitial elements on hydrogen solubility in the Group IV metals." Journal of Nuclear Materials 201 (May 1993): 134–41. http://dx.doi.org/10.1016/0022-3115(93)90168-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Osińska, J., E. Kłoczko, and Z. Gontarz. "Reactions of tellurates(IV) of some 2nd group metals with basic oxides." Journal of Thermal Analysis 43, no. 1 (January 1995): 227–30. http://dx.doi.org/10.1007/bf02635989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gai, Zheng, R. G. Zhao, Yi He, Hang Ji, Chuan Hu, and W. S. Yang. "Chemisorption of group-III metals on the (111) surface of group-IV semiconductors: In/Ge(111)." Physical Review B 53, no. 3 (January 15, 1996): 1539–47. http://dx.doi.org/10.1103/physrevb.53.1539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Khoruzhaya, V. G. "Interaction of transition metals of group IV with high-melting platinum metals in binary and ternary systems." Powder Metallurgy and Metal Ceramics 35, no. 7-8 (July 1996): 433–40. http://dx.doi.org/10.1007/bf01329236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Qu, Zhijie, and Joel N. Bregman. "Absorption Line Search through Three Local Group Dwarf Galaxy Halos." Astrophysical Journal 927, no. 2 (March 1, 2022): 228. http://dx.doi.org/10.3847/1538-4357/ac51df.

Full text
Abstract:
Abstract Dwarf galaxies are missing nearly all of their baryons and metals from the stellar disk, which are presumed to be in a bound halo or expelled beyond the virial radius. The virial temperature for galaxies with M h ∼ 109–1010 M ⊙ is similar to the collisional ionization equilibrium temperature for the C iv ion. We search for UV absorption from C iv in six sightlines toward three dwarf galaxies in the anti-M31 direction and at the periphery of the Local Group (D ≈ 1.3 Mpc; Sextans A, Sextans B, and NGC 3109). The C iv doublet is detected in only one of six sightlines, toward Sextans A, with log N ( C IV ) = 13.06 ± 0.08 . This is consistent with our gaseous halo models, where the halo gas mass is determined by the cooling rate, feedback, and the star formation rate; the inclusion of photoionization is an essential ingredient. This model can also reproduce the higher detection rate of O vi absorption in other dwarf samples (beyond the Local Group), with C iv only detectable within ∼0.5R vir.
APA, Harvard, Vancouver, ISO, and other styles
15

Neumann, Gerhard, and C. Tuijn. "Impurity Diffusion: Impurity Diffusion in the BCC ß-Phase of Group IV Metals." Solid State Phenomena 88 (November 2002): 167–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.88.167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Petry, W., A. Heiming, J. Trampenau, M. Alba, C. Herzig, H. R. Schober, and G. Vogl. "Phonon dispersion of the bcc phase of group-IV metals. I. bcc titanium." Physical Review B 43, no. 13 (May 1, 1991): 10933–47. http://dx.doi.org/10.1103/physrevb.43.10933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Trampenau, J., A. Heiming, W. Petry, M. Alba, C. Herzig, W. Miekeley, and H. R. Schober. "Phonon dispersion of the bcc phase of group-IV metals. III. bcc hafnium." Physical Review B 43, no. 13 (May 1, 1991): 10963–69. http://dx.doi.org/10.1103/physrevb.43.10963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Otrokov, M. M., V. V. Tugushev, A. Ernst, S. A. Ostanin, V. M. Kuznetsov, and E. V. Chulkov. "Magnetic ordering in digital alloys of group-IV semiconductors with 3d-transition metals." Journal of Experimental and Theoretical Physics 112, no. 4 (April 2011): 625–36. http://dx.doi.org/10.1134/s1063776111030137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sergienko, V. S. "Structural characteristics of peroxo complexes of group IV and V transition metals. Review." Crystallography Reports 49, no. 6 (November 2004): 907–29. http://dx.doi.org/10.1134/1.1828134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Oryshich, I. V., N. E. Poryadchenko, and N. P. Brodnikovskii. "High-temperature oxidation of intermetallics formed by group IV transition metals with chromium." Powder Metallurgy and Metal Ceramics 43, no. 9 (September 2004): 497–503. http://dx.doi.org/10.1007/s11106-004-0011-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Oryshich, I. V., N. E. Poryadchenko, and N. P. Brodnikovskii. "High-temperature oxidation of intermetallics formed by group IV transition metals with chromium." Powder Metallurgy and Metal Ceramics 43, no. 9-10 (September 2004): 497–503. http://dx.doi.org/10.1007/s11106-005-0012-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kumar, Dubey Raj, and Singh Avadhesh Pratap. "ChemInform Abstract: Synthetic Routes for Synthesis of Salicylaldiminate Derivatives of Group 4 Metals [Titanium(IV) and Zirconium(IV)]." ChemInform 46, no. 41 (September 24, 2015): no. http://dx.doi.org/10.1002/chin.201541239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Yujie, Francisco de Azambuja, and Tatjana N. Parac-Vogt. "The forgotten chemistry of group(IV) metals: A survey on the synthesis, structure, and properties of discrete Zr(IV), Hf(IV), and Ti(IV) oxo clusters." Coordination Chemistry Reviews 438 (July 2021): 213886. http://dx.doi.org/10.1016/j.ccr.2021.213886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ghorai, Amitava. "Dependence of Mono-Vacancy Formation Energy on the Parameter of Ashcroft's Potential." Defect and Diffusion Forum 278 (July 2008): 25–32. http://dx.doi.org/10.4028/www.scientific.net/ddf.278.25.

Full text
Abstract:
We show the calculation of the monovacancy formation energy ( v FH E1 ) for three different group-I monovalent fcc metals (Cu, Ag and Au) and two group-IV tetravalent fcc metals (Pb and Th) use a pseudopotential approach. Ashcroft's empty core model potential (AECMP) and nine different exchange and correlation functions (ECF) are used. The variation of v FH E1 with the parameter c r of AECMP for different ECF shows variations with the metals, and c r is observed to be greater than Bohr radius.
APA, Harvard, Vancouver, ISO, and other styles
25

Rudik, Irina S., Olesya N. Katasonova, Olga B. Mokhodoeva, Tatyana A. Maryutina, Boris Ya Spivakov, and Igor V. Ilyukhin. "SEPARATION OF P t (IV), P d (II) AND R h (III) FROM CHLORIDE SOLUTIONS BY MULTISTAGE SOLVENT EXTRACTION USING NITROGEN-CONTAINING EXTRACTANTS." Industrial laboratory. Diagnostics of materials 85, no. 4 (May 15, 2019): 5–10. http://dx.doi.org/10.26896/1028-6861-2019-85-4-5-10.

Full text
Abstract:
The possibility of Pd (II), Pt (IV), and Rh (III) separation from chloride solutions by solvent extraction in rotating coiled columns (RCC) is demonstrated. The reagents most frequently used in extraction of platinum metals were selected as extractants: trioctylamine (TOA), methyltrialkylammonium chloride (MTAA), tributylphosphate (TBP), N, N, N',N'-tetra-re-octyldiglyTOlamide (TODGA). The completeness of extraction of the platinum group metals from individual and mixed hydrochloric acidic and chloride solutions was studied depending on the nature and concentration of the extractant, acidity of the test solutions and other factors. Optimal conditions for the quantitative extraction of metals from model hydrochloric acidic and chloride solutions and subsequent selective separation at the stripping stage are specified. A scheme of multistaged extraction separation of Pd (II), Pt (IV), and Rh (III) from chloride solutions using a 0.05 M solution of MTAA in toluene as a stationary phase in RCC is proposed. The scheme includes extraction of Pd (II) and Pt (IV) ions from a chloride solution (0, 1 M HCl + 30 g/liter NT) into the organic phase with simultaneous separation of Rh(III) remaining in the aqueous phase, and sequential stripping of Pd (II) and Pt (IV) from the organic phase with a 0.01 M solution of thiourea in 0.1 M HCl and a 1 M solution of thiourea in 0.5 M HCl, respectively. The scheme was tested in separation of the platinum group metals from the technological solution of a given composition. The degree of metal extraction with a 0.05 M MTAA solution in toluene and sequential stripping with thiourea solutions is 99.5% for Rh (III), 99.9% for Pd (II), and 97.4% for Pt (IV). The separated water fractions of rhodium and platinum after leaving the column did not contain impurities of other platinum metals whereas the water fraction of palladium contained 0.5% Pt.
APA, Harvard, Vancouver, ISO, and other styles
26

Kazakevich, L. A., V. I. Kuznetsov, P. F. Lugakov, and A. R. Salmanov. "Radiation Defect Formation in Silicon Doped with Impurities of the Group IV Transition Metals." Defect and Diffusion Forum 103-105 (January 1993): 287–92. http://dx.doi.org/10.4028/www.scientific.net/ddf.103-105.287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kotlyarov, V. I., V. T. Beshkarev, V. E. Kartsev, V. V. Ivanov, A. A. Gasanov, E. A. Yuzhakova, A. V. Samokhin, et al. "Production of spherical powders on the basis of group IV metals for additive manufacturing." Inorganic Materials: Applied Research 8, no. 3 (May 2017): 452–58. http://dx.doi.org/10.1134/s2075113317030157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sherrow, Susan A., L. M. Toth, and G. M. Begun. "Raman spectroscopic studies of dioxouranium(2+) association with hydrolytic species of group IV metals." Inorganic Chemistry 25, no. 12 (June 1986): 1992–96. http://dx.doi.org/10.1021/ic00232a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Herzig, C., S. Divinski, and Y. Mishin. "Bulk and interface boundary diffusion in group IV hexagonal close-packed metals and alloys." Metallurgical and Materials Transactions A 33, no. 3 (March 2002): 765–75. http://dx.doi.org/10.1007/s11661-002-0143-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ushioda, Tsutomu, Malcolm L. H. Green, Jane Haggitt, and Xuefeng Yan. "Synthesis and catalytic properties of ansa-binuclear metallocenes of the Group IV transition metals." Journal of Organometallic Chemistry 518, no. 1-2 (July 1996): 155–66. http://dx.doi.org/10.1016/0022-328x(96)06198-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Braunschweig, Holger, Rainer Dörfler, Jan Mies, and Andreas Oechsner. "Sterically Demanding Hetero-Substituted [2]Borametallocenophanes of Group IV Metals: Synthesis, Structure and Reactivity." Chemistry - A European Journal 17, no. 43 (September 9, 2011): 12101–7. http://dx.doi.org/10.1002/chem.201101774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Journal, Baghdad Science. "Comparing Study of The Stability and spectral properties vibrations for some Tellurium (IV) compounds containing cycloctadienyl group by Quantum Mechanical Calculations." Baghdad Science Journal 10, no. 3 (September 1, 2013): 1041–49. http://dx.doi.org/10.21123/bsj.10.3.1041-1049.

Full text
Abstract:
Density Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.
APA, Harvard, Vancouver, ISO, and other styles
33

Matsumoto, Kazuya, Yuto Sezaki, Yuki Hata, and Mitsutoshi Jikei. "Selective Recovery of Platinum (IV) from HCl Solutions Using 2-Ethylhexylamine as a Precipitant." Separations 8, no. 4 (April 1, 2021): 40. http://dx.doi.org/10.3390/separations8040040.

Full text
Abstract:
The selective separation and recovery of specific platinum-group metals (PGMs) from metal mixtures is a significant challenge owing to the similarity of these metals in terms of chemical and physical properties. Among the typical PGMs (Pd, Pt, and Rh), the selective recovery of Pt prior to the recovery of Pd and Rh is in high demand. In this study, we attempted the selective precipitation of Pt(IV) from mixed-metal HCl solutions using 2-ethylhexylamine (2EHA) as a precipitant and achieved the selective precipitation of Pt(IV) from Pd(II) and Rh(III) over a wide range of HCl concentrations. Selective precipitation of Pt(IV) was also achieved from HCl solutions with high levels of base metals, such as Al, Cu, Fe, and Zn. High yields of undegraded 2EHA remaining in the HCl solution after Pt(IV) precipitation were recovered using hydrophobic porous resins. X-ray photoelectron spectroscopy and thermogravimetric measurements revealed that the Pt(IV)-containing precipitate was an ion-pair comprising one [PtCl6]2− and two ammonium cations of 2EHA. The steric hindrance and high hydrophilicity of 2EHA suppressed the formation of Rh(III)- and Pd(II)-containing precipitates, respectively, resulting in the selective precipitation of Pt(IV).
APA, Harvard, Vancouver, ISO, and other styles
34

Lugt, W. van der, and W. Geertsma. "Electron transport in liquid metals and alloys." Canadian Journal of Physics 65, no. 3 (March 1, 1987): 326–47. http://dx.doi.org/10.1139/p87-039.

Full text
Abstract:
This paper deals with a number of selected topics from the field of electric transport properties in liquid metals and alloys. First, some nearly free electron systems are considered; it appears that some problems associated with the properties of liquid Na–Cs alloys and of amalgams are still unsolved. Then, systems exhibiting strong compound formation, particularly alkali–nonalkali alloys with a large electronegativity difference between the components, are reviewed. A qualitative interpretation in terms of chemical-valence rules, based upon our knowledge of the solid state, is given. Next, recently developed theories dealing with transport properties in disordered media are critically discussed. Some models for the interpretation of the alkali – group IV alloys are presented. The basic ideas derived from these models are used also as guidelines for a more qualitative discussion of the alkali – group III and alkali – group V alloy systems.
APA, Harvard, Vancouver, ISO, and other styles
35

Batke, Sonja, Malte Sietzen, Hubert Wadepohl, and Joachim Ballmann. "A Tripodal Benzylene-Linked Trisamidophosphine Ligand Scaffold: Synthesis and Coordination Chemistry with Group(IV) Metals." Inorganic Chemistry 53, no. 8 (April 8, 2014): 4144–53. http://dx.doi.org/10.1021/ic500163c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Osawa, Naoki, Seong-Yun Kim, Tatsuya Ito, and Hao Wu. "Effect of adding dodecanol as modifier to N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide silica-based adsorbent on the adsorption behaviors of platinum-group metals and other metals from simulated high-level liquid waste." Radiochimica Acta 109, no. 12 (October 26, 2021): 867–76. http://dx.doi.org/10.1515/ract-2021-1060.

Full text
Abstract:
Abstract To adsorb and separate platinum-group metals efficiently from simulated high-level liquid waste, two adsorbents, N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide (THDTODA)/SiO2-P and (THDTODA + dodecanol)/SiO2-P, were prepared by impregnation of THDTODA with or without dodecanol into macroporous silica/styrene–divinylbenzene copolymer composite particles SiO2-P. The effect of the addition of dodecanol to THDTODA fixed silica-based adsorbents on the separation of platinum-group metals and other metals was evaluated by batch adsorption and chromatographic separation experiments. THDTODA/SiO2-P adsorbed Ru(III) and Rh(III) more than (THDTODA + dodecanol)/SiO2-P did in concentrated HNO3 solution. From the calculated thermodynamic parameters, dodecanol was considered to have little effect on the temperature dependence of the adsorptions of Ru(III), Zr(IV), Mo(VI), and Re(VII) onto the THDTODA adsorbents. Furthermore, in the results of column chromatography experiments, the effects of dodecanol addition on the separation properties were observed for Ru(III), Zr(IV), and Mo(VI), but little effect was observed for Pd(II) and Re(VII).
APA, Harvard, Vancouver, ISO, and other styles
37

Jantunen, Kimberly C., Brian L. Scott, and Jaqueline L. Kiplinger. "A comparative study of the reactivity of Zr(IV), Hf(IV) and Th(IV) metallocene complexes: Thorium is not a Group IV metal after all." Journal of Alloys and Compounds 444-445 (October 2007): 363–68. http://dx.doi.org/10.1016/j.jallcom.2007.03.138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wong, C. H., E. A. Buntov, A. F. Zatsepin, J. Lyu, R. Lortz, D. A. Zatsepin, and M. B. Guseva. "Room temperature p-orbital magnetism in carbon chains and the role of group IV, V, VI, and VII dopants." Nanoscale 10, no. 23 (2018): 11186–95. http://dx.doi.org/10.1039/c8nr02328j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Malyshev, V. V. "Protective Coatings of High-Melting Compounds of IV–VIA Group Metals Plated from Ionic Melts (Review)." Protection of Metals 40, no. 6 (November 2004): 525–40. http://dx.doi.org/10.1023/b:prom.0000049516.98440.92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ponyatovskii, E. G., and I. O. Bashkin. "New Phase Transitions in Hydrides of the I-A, III-A, and IV-A Group Metals*." Zeitschrift für Physikalische Chemie 146, no. 2 (January 1985): 137–57. http://dx.doi.org/10.1524/zpch.1985.146.2.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Stemshorn, Andrew K., and Yogesh K. Vohra. "Structural stability and compressibility of group IV transition metals-based bulk metallic glasses under high pressure." Journal of Applied Physics 106, no. 4 (August 15, 2009): 046101. http://dx.doi.org/10.1063/1.3204444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Asabina, Elena, Vladimir Pet'kov, Elena Gobechiya, and Urii Kabalov. "Crystal chemistry of complex orthophosphates with framework structure containing group IV d-transition metals and sodium." Solid State Sciences 10, no. 4 (April 2008): 377–81. http://dx.doi.org/10.1016/j.solidstatesciences.2007.12.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Adachi, Nozomu, Yoshikazu Todaka, Hiroshi Suzuki, and Minoru Umemoto. "Orientation relationship between α-phase and high-pressure ω-phase of pure group IV transition metals." Scripta Materialia 98 (March 2015): 1–4. http://dx.doi.org/10.1016/j.scriptamat.2014.10.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Rumpf, C., and W. Bensch. "Synthesis and Crystal Structure of New Ternary Chalcogenides of Group IV Metals: K2ZrS4, Rb2ZrS4, and Rb2HfS4." Zeitschrift für Naturforschung B 55, no. 8 (August 1, 2000): 695–98. http://dx.doi.org/10.1515/znb-2000-0805.

Full text
Abstract:
Abstract The new ternary one-dimensional chain compounds K2ZrS4 , Rb2ZrS4 and Rb2HfS4 were prepared at 350 °C by reacting A2S3 and S with elemental M (A = K, Rb; M = Zr, Hf). They are isostructural, crystallizing in the orthorhombic space group Pbca with Z = 8 . The M atoms are in a distorted octahedral environment of four S2− anions and one S22− unit. The structure consists of infinite anionic chains comprised of edge-sharing M S6 octahedra running parallel to the [001] direction separated by the alkali metal cations. The composition of the chain may be formulated as 1∞[MS4/ 2 (S2)2−]. The two crystallographically independent alkali cations are in eight-and ninefold coordination of S atoms.
APA, Harvard, Vancouver, ISO, and other styles
45

Zakharov, V. A., and Yu A. Ryndin. "Surface hydride complexes of group IV transition metals as active sites for polymerization and hydrogenation reactions." Journal of Molecular Catalysis 56, no. 1-3 (November 1989): 183–93. http://dx.doi.org/10.1016/0304-5102(89)80182-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Karsanov, I. V., E. P. Ivakhnenko, V. S. Khandkarova, A. Z. Rubezhov, O. Yu Okhlobystin, V. I. Minkin, A. I. Prokof'ev, and M. I. Kabachnik. "Reaction of 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl) phenoxazine with certain group II?IV metals." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 36, no. 1 (January 1987): 60–64. http://dx.doi.org/10.1007/bf00953846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Babitsyna, A. A., T. A. Emel’yanova, and V. A. Fedorov. "Glass formation in quaternary systems of group I-IV fluorides." Inorganic Materials 44, no. 12 (December 2008): 1378–85. http://dx.doi.org/10.1134/s0020168508120212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Levitskii, Yu T., and V. I. Palazhchenko. "Polytropy of group IV and VI dopants in bismuth crystals." Inorganic Materials 36, no. 7 (July 2000): 665–67. http://dx.doi.org/10.1007/bf02758417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Khaenko, B. V., V. V. Kukol', O. A. Gnitetskii, and S. V. Sirichenko. "The ordered structures of group IV transition metal monocarbides." Soviet Powder Metallurgy and Metal Ceramics 29, no. 6 (June 1990): 474–77. http://dx.doi.org/10.1007/bf00795347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

DOBROMYSLOV, A. V., and R. V. CHURBAEV. "SYNTHESIS OF NANOCRYSTALLINE AND AMORPHOUS ALLOYS FROM ELEMENTARY POWDERS BY INTENSIVE PLASTIC DEFORMATION UNDER HIGH PRESSURE." International Journal of Modern Physics B 24, no. 06n07 (March 20, 2010): 722–29. http://dx.doi.org/10.1142/s0217979210064344.

Full text
Abstract:
Transmission electron microscopy is used to study the structure and phase composition of binary zirconium alloys with Group I-VIII metals produced from metal powders via severe plastic torsional deformation under pressure. The metal contents in the initial mixture, the type of reacting metals, and the degree of deformation are found to affect substantially the structure and phase composition of the alloys synthesized. It is found that the tendency of binary zirconium-based alloys to form an amorphous state depends on the position of an alloying metal in the periodic table. An amorphous state is formed in alloys with Group II ( Zn ), III ( Al ), VIII ( Co , Ni ), and I ( Cu ) metals; it is not formed in alloys with Group IV ( Ti ), V (V, Nb ), and VI ( Mo ) metals of the periodic table. Compositions that are close to equiatomic alloys are more favorable for the formation of an amorphous state or the smallest nanograins. In the course of mechanical alloying, high-pressure phases and intermetallic compounds are found to form.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography