Academic literature on the topic 'Group homomorphism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Group homomorphism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Group homomorphism"
DAY, MATTHEW B. "EXTENSIONS OF JOHNSON'S AND MORITA'S HOMOMORPHISMS THAT MAP TO FINITELY GENERATED ABELIAN GROUPS." Journal of Topology and Analysis 05, no. 01 (March 2013): 57–85. http://dx.doi.org/10.1142/s1793525313500027.
Full textKepert, Andrew G. "The Range of Group Algebra Homomorphisms." Canadian Mathematical Bulletin 40, no. 2 (June 1, 1997): 183–92. http://dx.doi.org/10.4153/cmb-1997-022-6.
Full textCABRER, LEONARDO, and DANIELE MUNDICI. "RATIONAL POLYHEDRA AND PROJECTIVE LATTICE-ORDERED ABELIAN GROUPS WITH ORDER UNIT." Communications in Contemporary Mathematics 14, no. 03 (June 2012): 1250017. http://dx.doi.org/10.1142/s0219199712500174.
Full textMORDESON, J. N., and P. S. NAIR. "FUZZY MEALY MACHINES: HOMOMORPHISMS, ADMISSIBLE RELATIONS AND MINIMAL MACHINES." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 04, no. 01 (February 1996): 27–43. http://dx.doi.org/10.1142/s0218488596000032.
Full textReyes, Edgar N. "Homomorphisms of ergodic group actions and conjugacy of skew product actions." International Journal of Mathematics and Mathematical Sciences 19, no. 4 (1996): 781–88. http://dx.doi.org/10.1155/s0161171296001081.
Full textBRZDȨK, JANUSZ. "CONTINUITY OF MEASURABLE HOMOMORPHISMS." Bulletin of the Australian Mathematical Society 78, no. 1 (August 2008): 171–76. http://dx.doi.org/10.1017/s0004972708000610.
Full textSelvachandran, Ganeshsree, and Abdul Razak Salleh. "On Normalistic Vague Soft Groups and Normalistic Vague Soft Group Homomorphism." Advances in Fuzzy Systems 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/592813.
Full textHirshon, Ron, and David Meier. "Groups with a quotient that contains the original group as a direct factor." Bulletin of the Australian Mathematical Society 45, no. 3 (June 1992): 513–20. http://dx.doi.org/10.1017/s0004972700030422.
Full textCHILDERS, LEAH R. "SIMPLY INTERSECTING PAIR MAPS IN THE MAPPING CLASS GROUP." Journal of Knot Theory and Its Ramifications 21, no. 11 (August 27, 2012): 1250107. http://dx.doi.org/10.1142/s0218216512501076.
Full textSunderrajan, K., M. Suresh, and R. Muthuraj. "Homomorphism and Anti Homomorphism on Multi L-Fuzzy Quotient Group of a Group." International Journal of Mathematics Trends and Technology 23, no. 1 (July 25, 2015): 33–39. http://dx.doi.org/10.14445/22315373/ijmtt-v23p505.
Full textDissertations / Theses on the topic "Group homomorphism"
Slye, Jeffrey. "UNDERGRADUATE MATHEMATICS STUDENTS’ CONNECTIONS BETWEEN THEIR GROUP HOMOMORPHISM AND LINEAR TRANSFORMATION CONCEPT IMAGES." UKnowledge, 2019. https://uknowledge.uky.edu/math_etds/65.
Full textHohlweg, Christophe. "Properties of the Solomon homomorphism of a finite Coxeter group and minimal elements in two-sided cells of the symmetric group." Université Louis Pasteur (Strasbourg) (1971-2008), 2003. http://www.theses.fr/2003STR13246.
Full textCaprace, Pierre-Emmanuel. ""Abstract" homomorphisms of split Kac-Moody groups." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210962.
Full textLe problème d'isomorphismes qu'on étudie s'avère être un cas particulier d'un problème plus général, qui consiste à caractériser les homomorphismes de groupes algébriques vers les groupes de Kac-Moody, dont l'image est bornée. Ce problème peut à son tour s'énoncer comme un problème de rigidité pour les actions de groupes algébriques sur les immeubles, via l'action naturelle d'un groupe de Kac-Moody sur une paire d'immeubles jumelés. Les résultats partiels, relatifs à ce problème de rigidité, que nous obtenons, nous permettent d'apporter une solution complète au problème d'isomorphismes pour les groupes de Kac-Moody déployés.
En particulier, on obtient un résultat de dévissage pour les automorphismes de ces objets. Celui-ci fournit à son tour une description complète de la structure du groupe d'automorphismes d'un groupe de Kac-Moody déployé sur un corps de caractéristique~$0$.
Nos arguments permettent également de traiter de façon analogue certaines formes anisotropes de groupes de Kac-Moody complexes, appelées formes unitaires. On montre en particulier que la topologie Hausdorff naturelle que portent ces formes est un invariant de leur structure de groupe abstrait. Ceci généralise un résultat bien connu de H. Freudenthal pour les groupes de Lie compacts.
Enfin, l'on s'intéresse aux homomorphismes de groupes de Kac-Moody à image fini-dimensionnelle, et l'on démontre la non-existence de tels homomorphismes à noyau central, lorsque le domaine est un groupe de Kac-Moody de type indéfini sur un corps infini. Ceci réduit un problème ouvert, dit problème de linéarité pour les groupes de Kac-Moody, au cas de corps de base finis.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Nazzal, Lamies Joureus. "Homomorphic images of semi-direct products." CSUSB ScholarWorks, 2004. https://scholarworks.lib.csusb.edu/etd-project/2770.
Full textTorres, Giese Enrique. "Spaces of homomorphisms and group cohomology." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/224.
Full textVera, Arboleda Anderson Arley. "Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD009/document.
Full textLet Σ be a compact oriented surface with one boundary component and let M denote the mapping class group of Σ. By considering the action of M on the fundamental group of Σ it is possible to define different filtrations of M together with some homomorphisms on each term of the filtrations. The aim of this thesis is twofold. First, we study two filtrations of M : the « Johnson-Levine filtration » introduced by Levine and « the alternative Johsnon filtration » introduced recently by Habiro and Massuyeau. The definition of both filtrations involve a handlebody bounded by Σ. We refer to these filtrations as ≪ Johnson-type filtrations » and the corresponding homomorphisms have referred to as « Johnson-type homomorphisms » by their analogy with the original Johnson filtration and the usual Johnson homomorphisms. We provide a comparison of the Johnson filtration with the Johnson-Levine filtration at the level of the monoid of homology cobordisms of Σ. We also provide a comparison of the alternative Johnson filtration with the Johnson-Levine filtration and the Johnson filtration at the level of the mapping class group. Secondly, we study the relationship between the « Johnson-type homomorphisms » and the functorial extension of the universal perturbative invariant of 3-manifolds (the Le-Murakami-Ohtsuki invariant or LMO invariant). This functorial extension is calling the LMO functor and it takes values in a category of diagrams. We prove that the « Johnson-type homomorphisms » is in the tree reduction of the LMO functor. In particular, this provides a new reading grid of the tree reduction of the LMO functor
Baccari, Angelica. "Simple Groups, Progenitors, and Related Topics." CSUSB ScholarWorks, 2018. https://scholarworks.lib.csusb.edu/etd/736.
Full textKent, Curtis Andrew. "Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2452.pdf.
Full textFarber, Lee. "Symmetric generation of finite homomorphic images?" CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2901.
Full textPeim, M. D. "On the K-theory and homotopy groups of #OMEGA# #SIGMA#BU." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257661.
Full textBooks on the topic "Group homomorphism"
1955-, Moy Allen, and Conference Board of the Mathematical Sciences., eds. Harish-Chandra homomorphisms for p-adic groups. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1985.
Find full text"Abstract'' homomorphisms of split Kac-Moody groups. Providence, R.I: American Mathematical Society, 2009.
Find full textMcDuff, Dusa, and Dietmar Salamon. The group of symplectomorphisms. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198794899.003.0011.
Full textFarb, Benson, and Dan Margalit. Dehn Twists. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691147949.003.0004.
Full textFarb, Benson, and Dan Margalit. The Symplectic Representation and the Torelli Group. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691147949.003.0007.
Full textBoudou, Alain, and Yves Romain. On Product Measures Associated with Stationary Processes. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.15.
Full textBook chapters on the topic "Group homomorphism"
Raskhodnikova, Sofya, and Ronitt Rubinfeld. "Linearity and Group Homomorphism Testing/Testing Hadamard Codes." In Encyclopedia of Algorithms, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27848-8_202-2.
Full textNuida, Koji. "Towards Constructing Fully Homomorphic Encryption without Ciphertext Noise from Group Theory." In International Symposium on Mathematics, Quantum Theory, and Cryptography, 57–78. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_8.
Full textValenza, Robert J. "Groups and Group Homomorphisms." In Linear Algebra, 18–36. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0901-0_2.
Full textHibbard, Allen C., and Kenneth M. Levasseur. "Group Homomorphisms." In Exploring Abstract Algebra With Mathematica®, 101–10. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1530-1_13.
Full textBirken, Philipp. "Group Homomorphisms." In Student Solutions Manual, 50–54. 10th ed. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003182306-11.
Full textFuchs, László. "Homomorphism Groups." In Springer Monographs in Mathematics, 213–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19422-6_7.
Full textGreen, James Alexander. "Homomorphisms." In Sets and groups, 87–109. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-011-6095-7_7.
Full textSan Martin, Luiz A. B. "Homomorphisms and Coverings." In Lie Groups, 145–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61824-7_7.
Full textRotman, Joseph J. "Groups and Homomorphisms." In Graduate Texts in Mathematics, 1–19. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4176-8_1.
Full textJohnson, Kenneth W. "K-Characters and n-Homomorphisms." In Group Matrices, Group Determinants and Representation Theory, 271–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28300-1_8.
Full textConference papers on the topic "Group homomorphism"
Khots, Boris, and Dmitriy Khots. "The spin-1 equivalent homomorphism of group SU(2) to group SO(3) from observer’s mathematics point of view." In Spintronics XIV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2021. http://dx.doi.org/10.1117/12.2591817.
Full textXu, Chuan-Yu. "Homomorphism of Intuitionistic Fuzzy Groups." In Sixth International Conference on Machine Learning Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icmlc.2007.4370322.
Full textShpilka, Amir, and Avi Wigderson. "Derandomizing homomorphism testing in general groups." In the thirty-sixth annual ACM symposium. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1007352.1007421.
Full textColón, Diego. "Cartan’s Connection, Fiber Bundles and Quaternions in Kinematics and Dynamics Calculations." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46758.
Full textXiufeng, Chang, Hai Jinke, and Huang Xurong. "Some properties on the homomorphism of groups." In The 2nd Information Technology and Mechatronics Engineering Conference (ITOEC 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/itoec-16.2016.43.
Full textDinur, Irit, Elena Grigorescu, Swastik Kopparty, and Madhu Sudan. "Decodability of group homomorphisms beyond the johnson bound." In the 40th annual ACM symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1374376.1374418.
Full textLi, Hua, and Edwin K. P. Chong. "On Connections between Group Homomorphisms and the Ingleton Inequality." In 2007 IEEE International Symposium on Information Theory. IEEE, 2007. http://dx.doi.org/10.1109/isit.2007.4557514.
Full textLi, Peili, and Haixia Xu. "Homomorphic Signatures for Correct Computation of Group Elements." In 2013 Fourth International Conference on Emerging Intelligent Data and Web Technologies (EIDWT). IEEE, 2013. http://dx.doi.org/10.1109/eidwt.2013.16.
Full textKITANO, Teruaki, and Masaaki SUZUKI. "ON THE EXISTENCE OF A SURJECTIVE HOMOMORPHISM BETWEEN KNOT GROUPS." In Intelligence of Low Dimensional Topology 2006 - The International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770967_0022.
Full textPOLÁK, L. "LITERAL VARIETIES AND PSEUDOVARIETIES OF HOMOMORPHISMS ONTO ABELIAN GROUPS." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708700_0018.
Full text