Books on the topic 'Group actions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Group actions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Adalbert, Kerber, ed. Applied finite group actions. 2nd ed. Berlin: Springer, 1999.
Find full text1943-, Schultz Reinhard, American Mathematical Society, Institute of Mathematical Statistics, and Society for Industrial and Applied Mathematics., eds. Group actions on manifolds. Providence, R.I: American Mathematical Society, 1985.
Find full textSchultz, Reinhard, ed. Group Actions on Manifolds. Providence, Rhode Island: American Mathematical Society, 1985. http://dx.doi.org/10.1090/conm/036.
Full textMontgomery, Susan, ed. Group Actions on Rings. Providence, Rhode Island: American Mathematical Society, 1985. http://dx.doi.org/10.1090/conm/043.
Full textKerber, Adalbert. Applied Finite Group Actions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-11167-3.
Full textKerber, Adalbert. Applied Finite Group Actions. 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
Find full textAdem, Alejandro, Jon Carlson, Stewart Priddy, and Peter Webb, eds. Group Representations: Cohomology, Group Actions and Topology. Providence, Rhode Island: American Mathematical Society, 1997. http://dx.doi.org/10.1090/pspum/063.
Full textKerber, Adalbert. Algebraic combinatorics via finite group actions. Mannheim: B.I. Wissenschaftsverlag, 1991.
Find full textDynamical systems and group actions. Providence, R.I: American Mathematical Society, 2012.
Find full textGeometry, rigidity, and group actions. Chicago: The University of Chicago Press, 2011.
Find full textTempelman, Arkady. Ergodic Theorems for Group Actions. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-017-1460-0.
Full textBowen, Lewis, Rostislav Grigorchuk, and Yaroslav Vorobets, eds. Dynamical Systems and Group Actions. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/conm/567.
Full textKechris, A. S. Global aspects of ergodic group actions. Providence, R.I: American Mathematical Society, 2010.
Find full textAkhiezer, Dmitri N. Lie group actions in complex analysis. Wiesbaden: Vieweg, 1995.
Find full textDabrowski, Ludwik. Group actions on spinors: Lecture notes. Napoli: Bibliopolis, 1988.
Find full text1961-, Sjamaar Reyer, ed. Convexity properties of Hamiltonian group actions. Providence, R.I: Americam Mathematical Society, 2005.
Find full textAkhiezer, Dmitri N. Lie Group Actions in Complex Analysis. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-80267-5.
Full textGlobal aspects of ergodic group actions. Providence, R.I: American Mathematical Society, 2010.
Find full textDwivedi, Shubham, Jonathan Herman, Lisa C. Jeffrey, and Theo van den Hurk. Hamiltonian Group Actions and Equivariant Cohomology. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27227-2.
Full textSchweitzer, Paul A., Steven Hurder, Nathan Moreira dos Santos, and José Luis Arraut, eds. Differential Topology, Foliations, and Group Actions. Providence, Rhode Island: American Mathematical Society, 1994. http://dx.doi.org/10.1090/conm/161.
Full textWorkshop on Topology (1992 Pontifícia Universidade Católica, Rio de Janeiro, Brazil). Differential topology, foliations, and group actions. Providence, R.I: American Mathematical Society, 1994.
Find full text1953-, Pinchover Yehuda, ed. Manifolds with group actions and elliptic operators. Providence, R.I: American Mathematical Society, 1994.
Find full text1964-, Karshon Yael, and Ginzburg Viktor L. 1962-, eds. Moment maps, cobordisms, and Hamiltonian group actions. Providence, R.I: American Mathematical Society, 2002.
Find full textDani, S. G., and Anish Ghosh, eds. Geometric and Ergodic Aspects of Group Actions. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0683-3.
Full textLiao, Ming. Invariant Markov Processes Under Lie Group Actions. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6.
Full textKim, Sang-hyun, Thomas Koberda, and Mahan Mj. Flexibility of Group Actions on the Circle. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02855-8.
Full textChiossi, Simon G., Anna Fino, Emilio Musso, Fabio Podestà, and Luigi Vezzoni, eds. Special Metrics and Group Actions in Geometry. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67519-0.
Full textViorel, Nițica, ed. Rigidity in higher rank Abelian group actions. Cambridge, UK: Cambridge University Press, 2011.
Find full textDerivations, dissipations, and group actions on C*-algebras. Berlin: Springer-Verlag, 1986.
Find full text1946-, Kechris A. S., ed. The descriptive set theory of Polish group actions. New York: Cambridge University Press, 1996.
Find full textMislin, Guido, and Alain Valette. Proper Group Actions and the Baum-Connes Conjecture. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8089-3.
Full textBratteli, Ola. Derivations, Dissipations and Group Actions on C*-algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0098817.
Full textWorld class actions: A guide to group and representative actions around the globe. Oxford [UK]: Oxford University Press, 2013.
Find full textFrom Medieval group litigation to the modern class action. New Haven: Yale University Press, 1987.
Find full textAlejandro, Adem, ed. Group representations: Cohomology, group actions, and topology : Summer Research Institute on Cohomology, Representations, and Actions of Finite Groups, July 7-27, 1996, University of Washington, Seattle. Providence, R.I: American Mathematical Society, 1998.
Find full textKobayashi, Toshiyuki. On discontinuous group actions on non-Riemannian homogeneous spaces. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2006.
Find full textTempelman, Arkady. Ergodic Theorems for Group Actions: Informational and Thermodynamical Aspects. Dordrecht: Springer Netherlands, 1992.
Find full textTempelʹman, A. A. Ergodic theorems for group actions: Informational and thermodynamical aspects. Dordrecht: Kluwer Academic Pub., 1992.
Find full textMilner, Robin. Action structures for the (pi)-calculus. Edinburgh: LFCS, Dept. of Computer Science, University of Edinburgh, 1993.
Find full textGroup, Global Legal. The international comparative legal guide to class & group actions 2013. 5th ed. London, UK: Global Legal Group, 2012.
Find full textWisbauer, Robert. Modules and algebras: Bimodule structure and group actions on algebras. Harlow: Longman, 1996.
Find full text1934-, Rothenberg Melvin, ed. Equivariant surgery and classification of finite group actions on manifolds. Providence, R.I., USA: American Mathematical Society, 1988.
Find full textDay, Martyn. Multi-party actions: A practitioners' guide to pursuing group claims. London: Legal Action Group, 1995.
Find full text1966-, Sageev Michah, and Whyte Kevin 1970-, eds. Quasi-actions on trees II: Finite depth Bass-Serre trees. Providence, R.I: American Mathematical Society, 2011.
Find full textLindblom, Per Henrik. Group actions and the role of the courts: A European perspective. The Hague, Netherlands: Kluwer Law International, 1997.
Find full textYamanouchi, Takehiko. Analysis of (quantum) group actions on operator algebras: Tanki kyōdō kenkyū. [Kyoto]: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2003.
Find full textPhillips, N. Christopher. Equivariant K-theory and freeness of group actions on C*-algebras. Berlin: Springer-Verlag, 1987.
Find full textRosinger, Elemér E. Parametric Lie Group Actions on Global Generalised Solutions of Nonlinear PDEs. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9076-1.
Full textPhillips, N. Christopher. Equivariant K-Theory and Freeness of Group Actions on C*-Algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078657.
Full textMatthias, Mayer, ed. Ergodic theory and topological dynamics of group actions on homogeneous spaces. Cambridge, U.K: Cambridge University Press, 2000.
Find full text