Academic literature on the topic 'Ground shaking scenarios'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ground shaking scenarios.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ground shaking scenarios"

1

Wirth, Erin A., Alex Grant, Nasser A. Marafi, and Arthur D. Frankel. "Ensemble ShakeMaps for Magnitude 9 Earthquakes on the Cascadia Subduction Zone." Seismological Research Letters 92, no. 1 (November 18, 2020): 199–211. http://dx.doi.org/10.1785/0220200240.

Full text
Abstract:
Abstract We develop ensemble ShakeMaps for various magnitude 9 (M 9) earthquakes on the Cascadia megathrust. Ground-shaking estimates are based on 30 M 9 Cascadia earthquake scenarios, which were selected using a logic-tree approach that varied the hypocenter location, down-dip rupture limit, slip distribution, and location of strong-motion-generating subevents. In a previous work, Frankel et al. (2018) used a hybrid approach (i.e., 3D deterministic simulations for frequencies <1 Hz and stochastic synthetics for frequencies >1 Hz) and uniform site amplification factors to create broadband seismograms from this set of 30 earthquake scenarios. Here, we expand on this work by computing site-specific amplification factors for the Pacific Northwest and applying these factors to the ground-motion estimates derived from Frankel et al. (2018). In addition, we use empirical ground-motion models (GMMs) to expand the ground-shaking estimates beyond the original model extent of Frankel et al. (2018) to cover all of Washington State, Oregon, northern California, and southern British Columbia to facilitate the use of these ensemble ShakeMaps in region-wide risk assessments and scenario planning exercises. Using this updated set of 30 M 9 Cascadia earthquake scenarios, we present ensemble ShakeMaps for the median, 2nd, 16th, 84th, and 98th percentile ground-motion intensity measures. Whereas traditional scenario ShakeMaps are based on a single hypothetical earthquake rupture, our ensemble ShakeMaps take advantage of a logic-tree approach to estimating ground motions from multiple earthquake rupture scenarios. In addition, 3D earthquake simulations capture important features such as strong ground-motion amplification in the Pacific Northwest’s sedimentary basins, which are not well represented in the empirical GMMs that compose traditional scenario ShakeMaps. Overall, our results highlight the importance of strong-motion-generating subevents for coastal sites, as well as the amplification of long-period ground shaking in deep sedimentary basins, compared with previous scenario ShakeMaps for Cascadia.
APA, Harvard, Vancouver, ISO, and other styles
2

Scandella, L., C. G. Lai, D. Spallarossa, and M. Corigliano. "Ground shaking scenarios at the town of Vicoforte, Italy." Soil Dynamics and Earthquake Engineering 31, no. 5-6 (May 2011): 757–72. http://dx.doi.org/10.1016/j.soildyn.2010.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghofrani, Hadi, Gail M. Atkinson, Luc Chouinard, Philippe Rosset, and Kristy F. Tiampo. "Scenario shakemaps for Montreal." Canadian Journal of Civil Engineering 42, no. 7 (July 2015): 463–76. http://dx.doi.org/10.1139/cjce-2014-0496.

Full text
Abstract:
Montreal has significant seismic risk due to the combination of moderate seismicity, high population density, and vulnerable infrastructure. An important tool in damage and risk assessment is a scenario shakemap, which shows the expected ground shaking intensity distribution patterns. In this study, we use regional ground motion and site response evaluations to generate scenario shakemaps for Montreal. The impact of event location on expected ground motions and intensities was tested by considering the occurrence of a scenario (a given magnitude event) at various locations, where the scenarios are defined based on an analysis of the most likely future event locations. Variability in near surface geology plays an important role in earthquake ground shaking; we use microzonation information from Montreal to assess the expected site amplification effects. The results of this study may be used as input to seismic risk studies for Montreal.
APA, Harvard, Vancouver, ISO, and other styles
4

Van Dissen, R. J., J. J. Taber, W. R. Stephenson, S. Sritheran, S. A. L. Read, G. H. McVerry, G. D. Dellow, and P. R. Barker. "Earthquake ground shaking hazard assessment for the Lower Hutt and Porirua areas, New Zealand." Bulletin of the New Zealand Society for Earthquake Engineering 25, no. 4 (December 31, 1992): 286–302. http://dx.doi.org/10.5459/bnzsee.25.4.286-302.

Full text
Abstract:
Geographic variations in strong ground shaking expected during damaging earthquakes impacting on the Lower Hutt and Porirua areas are identified and quantified. Four ground shaking hazard zones have been mapped in the Lower Hutt area, and three in Porirua, based on geological, weak motion, and strong motion inputs. These hazard zones are graded from 1 to 5. In general, Zone 5 areas are subject to the greatest hazard, and Zone 1 areas the least. In Lower Hutt, zones 3 and 4 are not differentiated and are referred to as Zone 3-4. The five-fold classification is used to indicate the range of relative response. Zone 1 areas are underlain by bedrock. Zone 2 areas are typically underlain by compact alluvial and fan gravel. Zone 3-4 is underlain, to a depth of 20 m, by interfingered layers of flexible (soft) sediment (fine sand, silt, clay, peat), and compact gravel and sand. Zone 5 is directly underlain by more than 10 m of flexible sediment with shear wave velocities in the order of 200 m/s or less. The response of each zone is assessed for two earthquake scenarios. Scenario 1 is for a moderate to large, shallow, distant earthquake that results in regional Modified Mercalli intensity V-VI shaking on bedrock. Scenario 2 is for a large, local, but rarer, Wellington fault earthquake. The response characterisation for each zone comprises: expected Modified Mercalli intensity; peak horizontal ground acceleration; duration of strong shaking; and amplification of ground motion with respect to bedrock, expressed as a Fourier spectral ratio, including the frequency range over which the most pronounced amplification occurs. In brief, high to very high ground motion amplifications are expected in Zone 5, relative to Zone 1, during a scenario 1 earthquake. Peak Fourier spectral ratios of 10-20 are expected in Zone 5, relative to Zone 1, and a difference of up to three, possibly four, MM intensity units is expected between the two zones. During a scenario 2 event, it is anticipated that the level of shaking throughout the Lower Hutt and Porirua region will increase markedly, relative to scenario 1, and the average difference in shaking between each zone will decrease.
APA, Harvard, Vancouver, ISO, and other styles
5

Smerzini, C., K. Pitilakis, and K. Hashemi. "3D NUMERICAL MODELLING OF THE SEISMIC RESPONSE OF THE THESSALONIKI URBAN AREA: THE CASE OF THE 1978 VOLVI EARTHQUAKE." Bulletin of the Geological Society of Greece 50, no. 3 (July 27, 2017): 1433. http://dx.doi.org/10.12681/bgsg.11857.

Full text
Abstract:
This study aims at showing the numerical modelling of earthquake ground motion in the Thessaloniki urban area, using a 3D spectral element approach. The availability of detailed geotechnical/geophysical data together with the seismological information regarding the relevant fault sources allowed us to construct a large-scale 3D numerical model suitable for generating physics based ground shaking scenarios within the city of Thessaloniki up to maximum frequencies of about 2 Hz. Results of the numerical simulation of the destructive MW6.5 1978 Volvi earthquake are addressed, showing that realistic estimates can be obtained. Shaking maps in terms of ground motion parameters such as PGV are used to discuss the main seismic wave propagation effects at a wide scale.
APA, Harvard, Vancouver, ISO, and other styles
6

PAN, TSO-CHIEN, KUSNOWIDJAJA MEGAWATI, and CHEE LEONG LIM. "SEISMIC SHAKING IN SINGAPORE DUE TO PAST SUMATRAN EARTHQUAKES." Journal of Earthquake and Tsunami 01, no. 01 (March 2007): 49–70. http://dx.doi.org/10.1142/s1793431107000043.

Full text
Abstract:
In 1996, the Meteorological Service of Singapore (MSS) installed a network of seven seismic stations. Nanyang Technological University (NTU) has also installed two additional seismic stations. Together, the nine stations form a network called the Singapore Array for Earthquake Response (SAFER). One of the stations installed by NTU consists of two sets of four accelerometers installed in a 66-storey commercial building for the study of building response to far-field earthquakes. This paper summarizes the research work that has been developed from the network of sensors. During the operation of the SAFER array, far-field earthquake ground motions have been recorded for many Sumatra earthquake events. From this, local site characteristics have been studied and hazard maps showing the amplified peak ground acceleration of the earthquake has been developed for the local sites. A case study for the hazard map due to the Bengkulu earthquake (Mw = 7.7) of June 4, 2000, is shown. Based on numerical studies of typical building structures in Singapore, an additional response map showing spatial variation of approximate base shear of buildings has been developed for Singapore. A case study of the response map due to the Bengkulu earthquake (Mw = 7.7) of June 4, 2000, is also shown. For future seismic hazard assessments of Singapore, a set of attenuation relationships that can reasonably predict the ground-motion intensity in Singapore generated by potential seismic sources have to be established. These attenuation relationships have to be developed using synthetic seismograms because the ground motion data that have been recorded within the last 10 years is not sufficient to develop them empirically. However, the available ground motions play a critical role in validating the synthetic attenuation relationships. The ultimate objective of this continuing research work is to incorporate a real-time monitoring system with the ground motion prediction models into hazard and response maps for scenario earthquakes. Such an integrated system when developed may assist in the planning of emergency responses to various earthquake scenarios.
APA, Harvard, Vancouver, ISO, and other styles
7

Tanyaş, Hakan, Dalia Kirschbaum, and Luigi Lombardo. "Capturing the footprints of ground motion in the spatial distribution of rainfall-induced landslides." Bulletin of Engineering Geology and the Environment 80, no. 6 (April 18, 2021): 4323–45. http://dx.doi.org/10.1007/s10064-021-02238-x.

Full text
Abstract:
AbstractThe coupled effect of earthquakes and rainfall is rarely investigated in landslide susceptibility assessments although it could be crucial to predict landslide occurrences. This is even more critical in the context of early warning systems and especially in cases of extreme precipitation regimes in post-seismic conditions, where the rock masses are already damaged due to the ground shaking. Here, we investigate this concept by accounting for the legacy of seismic ground shaking in rainfall-induced landslide (RFIL) scenarios. We do this to identify whether ground shaking plays a role in the susceptibility to post-seismic rainfall-induced landslides and to identify whether this legacy effect persists through time. With this motivation, we use binary logistic regression and examine time series of landslides associated with four earthquakes occurred in Indonesia: 2012 Sulawesi (Mw = 6.3), 2016 Reuleut (Mw = 6.5), 2017 Kasiguncu (Mw = 6.6) and 2018 Palu (Mw = 7.5) earthquakes. The dataset includes one co-seismic and three post-seismic landslide inventories for each earthquake. We use the peak ground acceleration map of the last strongest earthquake in each case as a predisposing factor of landslides representing the effect of ground shaking. We observe that, at least for the study areas under consideration and in a probabilistic context, the earthquake legacy contributes to increase the post-seismic RFIL susceptibility. This positive contribution decays through time. Specifically, we observe that ground motion is a significant predisposing factor controlling the spatial distribution of RFIL in the post-seismic period 110 days after an earthquake. We also show that this effect dissipates within 3 years at most.
APA, Harvard, Vancouver, ISO, and other styles
8

van der Meijde, Mark, Md Ashrafuzzaman, Norman Kerle, Saad Khan, and Harald van der Werff. "The Influence of Surface Topography on the Weak Ground Shaking in Kathmandu Valley during the 2015 Gorkha Earthquake, Nepal." Sensors 20, no. 3 (January 26, 2020): 678. http://dx.doi.org/10.3390/s20030678.

Full text
Abstract:
It remains elusive why there was only weak and limited ground shaking in Kathmandu valley during the 25 April 2015 Mw 7.8 Gorkha, Nepal, earthquake. Our spectral element numerical simulations show that, during this earthquake, surface topography restricted the propagation of seismic energy into the valley. The mountains diverted the incoming seismic wave mostly to the eastern and western margins of the valley. As a result, we find de-amplification of peak ground displacement in most of the valley interior. Modeling of alternative earthquake scenarios of the same magnitude occurring at different locations shows that these will affect the Kathmandu valley much more strongly, up to 2–3 times more, than the 2015 Gorkha earthquake did. This indicates that surface topography contributed to the reduced seismic shaking for this specific earthquake and lessened the earthquake impact within the valley.
APA, Harvard, Vancouver, ISO, and other styles
9

Castro, Sebastián, Alan Poulos, Juan Carlos Herrera, and Juan Carlos de la Llera. "Modeling the Impact of Earthquake-Induced Debris on Tsunami Evacuation Times of Coastal Cities." Earthquake Spectra 35, no. 1 (February 2019): 137–58. http://dx.doi.org/10.1193/101917eqs218m.

Full text
Abstract:
Tsunami alerts following severe earthquakes usually affect large geographical regions and require people to evacuate to higher safety zones. However, evacuation routes may be hindered by building debris and vehicles, thus leading to longer evacuation times and an increased risk of loss of life. Herein, we apply an agent-based model to study the evacuation situation of the coastal city of Iquique, north Chile, where most of the population is exposed to inundation from an incoming tsunami. The study evaluates different earthquake scenarios characterized by different ground motion intensities in terms of the evacuation process within a predefined inundation zone. Evacuating agents consider the microscale interactions with cars and other people using a collision avoidance algorithm. Results for the no ground shaking scenario are compared for validation with those of a real evacuation drill done in 2013 for the entire city. Finally, a parametric analysis is performed with ten different levels of ground motion intensity, showing that evacuation times for 95% of the population increase in 2.5 min on average when considering the effect of building debris.
APA, Harvard, Vancouver, ISO, and other styles
10

Tumurbaatar, Zorigt, Hiroyuki Miura, and Tsoggerel Tsamba. "Development of Building Inventory Data in Ulaanbaatar, Mongolia for Seismic Loss Estimation." ISPRS International Journal of Geo-Information 11, no. 1 (December 30, 2021): 26. http://dx.doi.org/10.3390/ijgi11010026.

Full text
Abstract:
During the last two decades, the rapid urbanization movement has increased the concentration of population and buildings in Ulaanbaatar city (UB), Mongolia. There are several active faults around UB. The estimated maximum magnitude of 7 in the Emeelt fault has been expected to significantly impact the UB region because the fault is only 20 km from the city. To consider the disaster mitigation planning for such large earthquakes, assessments of ground shaking intensities and building damage for the scenarios are crucial. In this study, we develop the building inventory data in UB, including structural types, construction year, height, and construction cost in order to assess the buildings’ vulnerability (repair cost) due to a scenario earthquake. The construction costs are estimated based on the procedure of the Mongolian construction code from the coefficients of cost per floor area for each structural type, and coefficients for heating system, floor areas, and buildings’ locations. Finally, the scenario’s economic loss of the damaged buildings is evaluated using the developed building inventory, global vulnerability curves of GAR-13, and estimated spectral accelerations.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ground shaking scenarios"

1

Zuccolo, Elisa. "Neo-deterministic seismic hazard scenarios: from the modelling of the past to prediction." Doctoral thesis, Università degli studi di Trieste, 2010. http://hdl.handle.net/10077/3489.

Full text
Abstract:
2008/2009
È stato affrontato il problema della definizione della pericolosità sismica utilizzando il metodo neo-deterministico (NDSHA), che si basa sul calcolo di sismogrammi sintetici realistici. Considerando modelli strutturali medi e un set di sorgenti distribuite internamente alle zone sismogenetiche, possono essere definite delle mappe di scuotimento al bedrock complementari alla mappa di pericolosità di tipo probabilistico (PSHA) sulla quale è basata la normativa antisismica italiana. L’analisi di stabilità effettuata ha dimostrato che l’informazione disponibile sui terremoti del passato può non essere rappresentativa per i futuri terremoti, anche se si hanno a disposizione cataloghi estesi nel tempo (∼ 1000 anni). Ciò non è sorprendente se si tiene presente la scala dei tempi dei processi geologici, ma tale consapevolezza è spesso ignorata in PSHA. NDSHA permette di superare questo limite mediante l’uso di indicatori indipendenti sul potenziale sismico di un’area (e.g. nodi sismogenetici e faglie attive) che consentono di colmare le lacune nella sismicità osservata. Il confronto tra le mappe di pericolosità PSHA e NDSHA sul territorio italiano ha evidenziato che NDSHA fornisce valori maggiori di PSHA nelle aree caratterizzate da forti terremoti osservati e in corrispondenza dei nodi sismogenetici. I valori massimi di NDSHA sono confrontabili con quelli di PSHA per lunghi periodi di ritorno (T≥2475 anni). D’altro canto, PSHA tende a sovrastimare, rispetto a NDSHA, la pericolosità sismica in aree a bassa sismicità. È quindi auspicabile una revisione della normativa che tenga conto di questi fatti. Gli scenari di scuotimento sono utili sia per la ricostruzione delle caratteristiche di sorgente dei terremoti del passato (es. terremoto del 1117) che per la previsione degli effetti degli eventi futuri. Quest’ultimo aspetto, importante per le azioni di prevenzione della Protezione Civile, è stato sviluppato nell’ambito del progetto ASI-SISMA mediante la generazione di scenari dipendenti dal tempo a diversa scala di dettaglio. L’applicazione della tecnica analitica di calcolo dei sismogrammi sintetici in mezzi anelatici tridimensionali, per la cui è stata messa a punto una subroutine per la gestione automatica dell’input, è stata applicata allo studio di eventi di profondità intermedia, avvenuti in Vrancea (Romania), considerando sia serie temporali registrate (accelerogrammi) che intensità osservate.
The problem of the definition of the neo-deterministic seismic hazard assessment (NDSHA), based on the computation of realistic synthetic seismograms, has been capably addressed. Considering average structural models and a set of sources distributed within the seismogenic zones, ground shaking maps at the bedrock, complementary to the probabilistic seismic hazard (PSHA) map on which the Italian seismic code is based, can be defined. The stability analysis performed showed that the available information from past events may not be well representative of future earthquakes, even if long earthquake catalogues (< 1000 years) are available. This is not surprising if we consider the geological times, but this awareness is often ignored in PSHA. NDSHA can easily overcome this limit since it allows to take into account, in a formally well defined way, not only the observed seismicity but also independent indicators of the seismogenic potential of a given area like the seismogenic nodes and active faulting data. The comparison between PSHA and NDSHA maps over the Italian territory evidenced that NDSHA provides values larger than those given by PSHA in areas where large earthquakes are observed and in areas identified as prone to large earthquakes (i.e. seismogenic nodes). The maximum values of NDSHA are consistent with those of PSHA for long return periods (T≥2475 years). Comparatively smaller values are obtained in low-seismicity areas. Therefore a revision of the code taking into account these facts is desirable. Ground shaking scenarios are useful in order to detect the main characteristics of the past earthquakes (e.g. the 1117 earthquake) and to predict the expected ground shaking associated with future earthquakes. The last aspect, which constitutes a useful tool for the rescue actions of the Civil Protection, has been developed in the framework of the ASI-SISMA Project by means of the generation of multi-scale time-dependent seismic hazard scenarios. The application of the analytical technique for the computation of synthetic seismograms in three-dimensional anelastic models, for which a subroutine for the automatic generation of the input has been developed, has been applied to the study of intermediate-depth Vrancea (Romania) earthquakes, considering both recorded time series (accelerograms) and observed macroseismic intensities.
XXII Ciclo
1982
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ground shaking scenarios"

1

Earthquake scenario and probabilistic ground shaking maps for the Salt Lake City, Utah, metropolitan area. Utah Geological Survey, 2002. http://dx.doi.org/10.34191/mp-02-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ground shaking scenarios"

1

Paolucci, Roberto, Ilario Mazzieri, Chiara Smerzini, and Marco Stupazzini. "Physics-Based Earthquake Ground Shaking Scenarios in Large Urban Areas." In Perspectives on European Earthquake Engineering and Seismology, 331–59. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07118-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Faccioli, Ezio, and Vera Pessina. "62 Use of engineering seismology tools in ground shaking scenarios." In International Geophysics, 1031–48. Elsevier, 2003. http://dx.doi.org/10.1016/s0074-6142(03)80176-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ground shaking scenarios"

1

Solakov, Dimcho, Stela Simeonova, and Plamena Raykova. "DETERMINISTIC EARTHQUAKE SCENARIO FOR THE CITY OF VARNA." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/1.1/s05.060.

Full text
Abstract:
In the present study deterministic earthquake scenarios for the city of Varna - the thirdlargest city in Bulgaria are presented. By deterministic scenario, it is mean a representation of the severity of ground shaking over an urban area, using one or more hazard descriptors. The assessment of seismic hazard and generation of earthquake scenarios is the first step of seismic risk evaluation and society prevention. Seismic history of Varna shows that the hazard for the city is mainly influence by the earthquakes occurred in the seismogenic zone Shabla (Kaliakra fault system). The local ground shaking levels are computed using the six ground motion prediction equations (GMPE�s) for tectonically active regions that are previously selected. A reliable geotechnical zonation of the city of Varna was incorporated in the earthquake scenario generation. Deterministic ground shaking scenarios for the city of Varna are generated for two scenario earthquakes with different location and magnitudes are considered. The generated scenarios are described in terms of MSK (=EMS98) intensity, peak ground acceleration and velocity and in spectral accelerations for Sa (0.3s) and Sa (1.0s). The results in PGA and MSK intensity for scenario MW7.2 quake located on strike slip Kaliakra fault are mapped. The estimated peak ground accelerations for MW7.2 quake vary between 0.07 and 0.14 g.
APA, Harvard, Vancouver, ISO, and other styles
2

Nardin, Chiara, Igor Lanese, Rocco di Filippo, Roberto Endrizzi, Oreste S. Bursi, and Fabrizio Paolacci. "Ground Motion Model for Seismic Vulnerability Assessment of Prototype Industrial Plants." In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21190.

Full text
Abstract:
Abstract Relationships between seismic action, system response and relevant damage levels in industrial plants require a solid background both in experimental data, due to the high level of non-linearity and seismic input. Besides, risk and fragility analyses depend on the adoption of a huge number of seismic records usually not available in a site-specific analysis. In order to manage these issues and to gain knowledge on the definition of damage levels, limit states and performance for major-hazard industrial plant components, we present a possible approach for an experimental campaign based on a real prototype industrial steel structure. The investigation of the seismic behaviour of the reference structure will be carried out through shaking table tests. In particular, tests are focused on structural or process-related interactions that can lead to serious secondary damages as leakage in piping systems or connections with tanks and cabinets. The aforementioned test program has been possible thanks to the adoption of: i) a number of artificial spectrum-compatible accelerograms; ii) a ground motion model (GMM) able to generate a suite of synthetic time-histories records for specified site characteristic and earthquake scenarios. More precisely, GMM model parameters can be identified by matching the statistics of a target-recorded accelerogram to the ones of the model in terms of faulting mechanism, earthquake magnitude, source-to-site distance and site shear-wave velocity. As a result, the stochastic model, based both on these matched parameters and on filtered white-noise process, can generate the ensemble of synthetic ground motions capable of capturing the main features of real earthquake ground motions, including intensity, duration, spectral content and peak values. Moreover, the synthetic records are selected to target specific damages and limit states in industrial components. Finally, by means of the combination of artificial and synthetic accelerograms, a seismic vulnerability assessment of both the whole structure and relevant industrial components can be carried out.
APA, Harvard, Vancouver, ISO, and other styles
3

Zaleski, Martin, Gerald Ferris, and Alex Baumgard. "Near-Real-Time Seismic Monitoring for Pipelines." In 2018 12th International Pipeline Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/ipc2018-78013.

Full text
Abstract:
Earthquake hazard management for oil and gas pipelines should include both preparedness and response. The typical approach for management of seismic hazards for pipelines is to determine where large ground motions are frequently expected, and apply mitigation to those pipeline segments. The approach presented in this paper supplements the typical approach but focuses on what to do, and where to do it, just after an earthquake happens. In other words, we ask and answer: “Is the earthquake we just had important?”, “What pipeline is and what sites might it be important for?”, and “What should we do?” In general, modern, high-pressure oil and gas pipelines resist the direct effects of strong shaking, but are vulnerable to large co-seismic differential permanent ground displacement (PGD) produced by surface fault rupture, landslides, soil liquefaction, or lateral spreading. The approach used in this paper employs empirical relationships between earthquake magnitude, distance, and the occurrence of PGD, derived from co-seismic PGD case-history data, to prioritize affected pipeline segments for detailed site-specific hazard assessments, pre-event resiliency upgrades, and post-event response. To help pipeline operators prepare for earthquakes, pipeline networks are mapped with respect to earthquake probability and co-seismic PGD susceptibility. Geological and terrain analyses identify pipeline segments that cross PGD-susceptible ground. Probabilistic seismic models and deterministic scenarios are considered in estimating the frequency of sufficiently large and close causative earthquakes. Pipeline segments are prioritized where strong earthquakes are frequent and ground is susceptible to co-seismic PGD. These may be short-listed for mitigation that either reduces the pipeline’s vulnerability to damage or limits failure consequences. When an earthquake occurs, pipeline segments with credible PGD potential are highlighted within minutes of an earthquake’s occurrence. These assessments occur in near-real-time as part of an online geohazard management database. The system collects magnitude and location data from online earthquake data feeds and intersects them against pipeline network and terrain hazard map data. Pipeline operators can quickly mobilize inspection and response resources to a focused area of concern.
APA, Harvard, Vancouver, ISO, and other styles
4

Shiomi, Kensuke, and Yusuke Wada. "The Fracture Limit of Steel-Frame Members Under Dynamic Repeated Loads Through the Shaking Table Test." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84830.

Full text
Abstract:
Recently, much larger earthquakes are considered in the seismic designs of steel-frame structures in Japan. Under these severe ground motions, it is expected that not only the elasto-plastic deformation but also the fracture of the structural members could occur during the earthquakes. And through these situations, the more advanced seismic design or evaluation method which allow the partial destruction inside the structure and prevent from the worst-case scenario like the whole collapse are coming to be demanded. One of the ways to achieve this demand is considering the effects of not only the elasto-plastic deformation but also the fracture of structural members in the seismic analysis. In order for that, it is important to clarify the fracture limit of steel-frame members precisely under the dynamic load. Many static tests to clarify the members’ ultimate behavior were conducted in the past, but the dynamic tests were not well enough. In this research, the vibration tests were conducted to clarify the fracture limit of steel-frame members under the dynamic load. The behavior of the steel-frame members until the fracture was obtained by applying the repeated dynamic bending deformation with the shaking table. Also, The FEM analysis for the shaking table test results was conducted. Through the tests and the analysis study which simulates the test results, the mechanism of the member fracture occurred in the test under the dynamic loads were examined.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ground shaking scenarios"

1

Paul, C., and J. F. Cassidy. Seismic hazard investigations at select DND facilities in Southwestern British Columbia: subduction, in-slab, and crustal scenarios. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331199.

Full text
Abstract:
Southwest British Columbia has some of the highest seismic hazard in Canada and is home to facilities owned by the Department of National Defence which support operations on the west coast of Canada. The potential impact of seismic hazards on these government facilities are investigated here. The hazard is from three primary sources: subduction interface, crustal and in-slab earthquakes. NRCan, in consultation with DRDC have produced representative earthquake scenarios for each of these sources. The subduction scenario we constructed was an M8.9 earthquake extending along the entire Cascadia Subduction Zone from 4 to 18 km depth. We used an M6.8 earthquake occurring along a 30 km fault at between 52 and 60 km depth below Boundary Bay to represent in-slab events. The final scenario, representing a crustal source, was an M6.4 along the central 47 km of the Leech River Valley-Devil's Mountain Fault system. We found that the Cascadia subduction scenario dominated the shaking hazard over much of the study region. Meanwhile, the in-slab and crustal scenarios have higher but more localized hazards in Vancouver and Victoria. In addition to the primary ground motion hazard, we also examined secondary seismic hazards: secondary amplification effects, landslides, liquefaction, surface ruptures, tsunami, flooding, fire, and aftershocks. Each of the secondary hazards had varying impacts depending on the scenario and locations within the region.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography