Academic literature on the topic 'Ground motion scenario'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ground motion scenario.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ground motion scenario"

1

Tarbali, Karim, and Brendon A. Bradley. "Representative ground-motion ensembles for several major earthquake scenarios in New Zealand." Bulletin of the New Zealand Society for Earthquake Engineering 47, no. 4 (December 31, 2014): 231–52. http://dx.doi.org/10.5459/bnzsee.47.4.231-252.

Full text
Abstract:
In this paper, representative ground motion ensembles for several major earthquake scenarios in New Zealand are developed. Cases considered include representative ground motions for the occurrence of Alpine, Hope and Porters Pass earthquakes in Christchurch city, and the occurrence of Wellington, Wairarapa and Ohariu fault ruptures in Wellington city. For each considered scenario rupture, ensembles of 20 and 7 ground motions are selected using the generalized conditional intensity measure (GCIM) approach, ensuring that the ground motion ensembles represent both the mean and distribution of ground motion intensity which such scenarios could impose. These scenario-based ground motion sets can be used to complement ground motions which are often selected in conjunction with probabilistic seismic hazard analysis, in order to understand the performance of structures for the question “what if this fault ruptures?”
APA, Harvard, Vancouver, ISO, and other styles
2

Maeda, Takahiro, and Hiroyuki Fujiwara. "Seismic Hazard Visualization from Big Simulation Data: Cluster Analysis of Long-Period Ground-Motion Simulation Data." Journal of Disaster Research 12, no. 2 (March 16, 2017): 233–40. http://dx.doi.org/10.20965/jdr.2017.p0233.

Full text
Abstract:
This paper describes a method of extracting the relation between the ground-motion characteristics of each area and a seismic source model, based on ground-motion simulation data output in planar form for many earthquake scenarios, and the construction of a parallel distributed processing system where this method is implemented. The extraction is realized using two-stage clustering. In the first stage, the ground-motion indices and scenario parameters are used as input data to cluster the earthquake scenarios within each evaluation mesh. In the second stage, the meshes are clustered based on the similarity of earthquake-scenario clustering. Because the mesh clusters can be correlated to the geographical space, it is possible to extract the relation between the ground-motion characteristics of each area and the scenario parameters by examining the relation between the mesh clusters and scenario clusters obtained by the two-stage clustering. The results are displayed visually; they are saved as GeoTIFF image files. The system was applied to the long-period ground-motion simulation data for hypothetical megathrust earthquakes in the Nankai Trough. This confirmed that the relation between the extracted ground-motion characteristics of each area and scenario parameters is in agreement with the results of ground-motion simulations.
APA, Harvard, Vancouver, ISO, and other styles
3

Wirth, Erin A., Alex Grant, Nasser A. Marafi, and Arthur D. Frankel. "Ensemble ShakeMaps for Magnitude 9 Earthquakes on the Cascadia Subduction Zone." Seismological Research Letters 92, no. 1 (November 18, 2020): 199–211. http://dx.doi.org/10.1785/0220200240.

Full text
Abstract:
Abstract We develop ensemble ShakeMaps for various magnitude 9 (M 9) earthquakes on the Cascadia megathrust. Ground-shaking estimates are based on 30 M 9 Cascadia earthquake scenarios, which were selected using a logic-tree approach that varied the hypocenter location, down-dip rupture limit, slip distribution, and location of strong-motion-generating subevents. In a previous work, Frankel et al. (2018) used a hybrid approach (i.e., 3D deterministic simulations for frequencies <1 Hz and stochastic synthetics for frequencies >1 Hz) and uniform site amplification factors to create broadband seismograms from this set of 30 earthquake scenarios. Here, we expand on this work by computing site-specific amplification factors for the Pacific Northwest and applying these factors to the ground-motion estimates derived from Frankel et al. (2018). In addition, we use empirical ground-motion models (GMMs) to expand the ground-shaking estimates beyond the original model extent of Frankel et al. (2018) to cover all of Washington State, Oregon, northern California, and southern British Columbia to facilitate the use of these ensemble ShakeMaps in region-wide risk assessments and scenario planning exercises. Using this updated set of 30 M 9 Cascadia earthquake scenarios, we present ensemble ShakeMaps for the median, 2nd, 16th, 84th, and 98th percentile ground-motion intensity measures. Whereas traditional scenario ShakeMaps are based on a single hypothetical earthquake rupture, our ensemble ShakeMaps take advantage of a logic-tree approach to estimating ground motions from multiple earthquake rupture scenarios. In addition, 3D earthquake simulations capture important features such as strong ground-motion amplification in the Pacific Northwest’s sedimentary basins, which are not well represented in the empirical GMMs that compose traditional scenario ShakeMaps. Overall, our results highlight the importance of strong-motion-generating subevents for coastal sites, as well as the amplification of long-period ground shaking in deep sedimentary basins, compared with previous scenario ShakeMaps for Cascadia.
APA, Harvard, Vancouver, ISO, and other styles
4

Anderson, John G. "Benefits of scenario ground motion maps." Engineering Geology 48, no. 1-2 (November 1997): 43–57. http://dx.doi.org/10.1016/s0013-7952(97)81913-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thomson, Ethan M., Robin L. Lee, and Brendon A. Bradley. "Ground motion simulations of Hope fault earthquakes." Bulletin of the New Zealand Society for Earthquake Engineering 52, no. 4 (December 1, 2019): 152–71. http://dx.doi.org/10.5459/bnzsee.52.4.152-171.

Full text
Abstract:
This paper examines ground motions for a major potential Mw7.51 rupture of the Hope Fault using a physics based simulation methodology and a 3D crustal velocity model of New Zealand. The simulation methodology was validated for use in the region through comparison with observations for a suite of historic small magnitude earthquakes located proximal to the Hope Fault. Simulations are compared with conventionally utilised empirical ground motion models, with simulated peak ground velocities being notably higher in regions with modelled sedimentary basins. A sensitivity analysis was undertaken where the source characteristics of magnitude, stress parameter, hypocentre location and kinematic slip distribution were varied and an analysis of their effect on ground motion intensities is presented. It was found that the magnitude and stress parameter strongly influenced long and short period ground motion amplitudes, respectively. Ground motion intensities for the Hope Fault scenario are compared with the 2016 Kaik¯oura Mw7.8 earthquake, it was found that the Kaikoura earthquake produced stronger motions along the eastern South Island, while the Hope Fault scenario resulted in stronger motions immediately West of the near-fault region and similar levels of ground motion in Canterbury. The simulated ground motions for this scenario complement prior empirically-based estimates and are informative for mitigation and emergency planning purposes.
APA, Harvard, Vancouver, ISO, and other styles
6

Maeda, Takahiro, Hiroyuki Fujiwara, Toshihiko Hayakawa, Satsuki Shimono, and Sho Akagi. "Cluster Analysis of Long-Period Ground-Motion Simulation Data with Application to Nankai Trough Megathrust Earthquake Scenarios." Journal of Disaster Research 13, no. 2 (March 19, 2018): 254–61. http://dx.doi.org/10.20965/jdr.2018.p0254.

Full text
Abstract:
We developed a clustering method combining principal component analysis and the k-means algorithm, which classifies earthquake scenarios based on the similarity of the spatial distribution of earthquake ground-motion simulation data generated for many earthquake scenarios, and applied it to long-period ground-motion simulation data for Nankai Trough megathrust earthquake scenarios. Values for peak ground velocity and relative velocity response at approximately 80,000 locations in 369 earthquake scenarios were represented by 15 principal components each, and earthquake scenarios were categorized into 30 clusters. In addition, based on clustering results, we determined that extracting relationships between principal components and scenario parameters is possible. Furthermore, by utilizing these relationships, it may be possible to easily estimate the approximate ground-motion distribution from the principal components of arbitrary sets of scenario parameters.
APA, Harvard, Vancouver, ISO, and other styles
7

Ghofrani, Hadi, Gail M. Atkinson, Luc Chouinard, Philippe Rosset, and Kristy F. Tiampo. "Scenario shakemaps for Montreal." Canadian Journal of Civil Engineering 42, no. 7 (July 2015): 463–76. http://dx.doi.org/10.1139/cjce-2014-0496.

Full text
Abstract:
Montreal has significant seismic risk due to the combination of moderate seismicity, high population density, and vulnerable infrastructure. An important tool in damage and risk assessment is a scenario shakemap, which shows the expected ground shaking intensity distribution patterns. In this study, we use regional ground motion and site response evaluations to generate scenario shakemaps for Montreal. The impact of event location on expected ground motions and intensities was tested by considering the occurrence of a scenario (a given magnitude event) at various locations, where the scenarios are defined based on an analysis of the most likely future event locations. Variability in near surface geology plays an important role in earthquake ground shaking; we use microzonation information from Montreal to assess the expected site amplification effects. The results of this study may be used as input to seismic risk studies for Montreal.
APA, Harvard, Vancouver, ISO, and other styles
8

Baby, Ajin, and Manish Shrikhande. "Wavelet Packet Characterization of Scenario Earthquake Ground Motions." Journal of Earthquake and Tsunami 11, no. 03 (August 14, 2017): 1750006. http://dx.doi.org/10.1142/s1793431117500063.

Full text
Abstract:
With increased emphasis on performance-based seismic design, the need for appropriate ground motion time histories for use in nonlinear dynamic analyses is felt accutely. However, it is generally not possible to get a suitable recorded time history consistent with the estimated hazard at a specific site. The ground motion prediction models are therefore derived/developed from a statistical analysis of recorded ground motion for a variety of source and site conditions to address this need. Most often, the ground motion prediction models are developed to model the response spectrum amplitudes at a set of natural periods and the ground motion time history, if required, is then generated to be consistent with this predicted response spectrum. These simulated time histories often lack in modeling the wave arrivals and temporal variation in the distribution of energy with respect to frequency. In this paper, we present a wavelet-based ground motion prediction model for directly generating ground motion time history that is consistent with the postulated scenario earthquake at a site.
APA, Harvard, Vancouver, ISO, and other styles
9

Graves, Robert W., Brad T. Aagaard, and Kenneth W. Hudnut. "The ShakeOut Earthquake Source and Ground Motion Simulations." Earthquake Spectra 27, no. 2 (May 2011): 273–91. http://dx.doi.org/10.1193/1.3570677.

Full text
Abstract:
The ShakeOut Scenario is premised upon the detailed description of a hypothetical Mw 7.8 earthquake on the southern San Andreas Fault and the associated simulated ground motions. The main features of the scenario, such as its endpoints, magnitude, and gross slip distribution, were defined through expert opinion and incorporated information from many previous studies. Slip at smaller length scales, rupture speed, and rise time were constrained using empirical relationships and experience gained from previous strong-motion modeling. Using this rupture description and a 3-D model of the crust, broadband ground motions were computed over a large region of Southern California. The largest simulated peak ground acceleration (PGA) and peak ground velocity (PGV) generally range from 0.5 to 1.0 g and 100 to 250 cm/s, respectively, with the waveforms exhibiting strong directivity and basin effects. Use of a slip-predictable model results in a high static stress drop event and produces ground motions somewhat higher than median level predictions from NGA ground motion prediction equations (GMPEs).
APA, Harvard, Vancouver, ISO, and other styles
10

Raghukanth, S., J. Dixit, and S. Dash. "Ground motion for scenario earthquakes at Guwahati city." Acta Geodaetica et Geophysica Hungarica 46, no. 3 (September 2011): 326–46. http://dx.doi.org/10.1556/ageod.46.2011.3.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ground motion scenario"

1

Magrin, Andrea. "Multi-scale seismic hazard scenarios." Doctoral thesis, Università degli studi di Trieste, 2013. http://hdl.handle.net/10077/8620.

Full text
Abstract:
2011/2012
Seismic hazard assessment can be performed following a neo-deterministic approach (NDSHA), which allows to give a realistic description of the seismic ground motion due to an earthquake of given distance and magnitude. The approach is based on modelling techniques that have been developed from a detailed knowledge of both the seismic source process and the propagation of seismic waves. This permits to define a set of earthquake scenarios and to simulate the associated synthetic signals without having to wait for a strong event to occur. NDSHA can be applied at different geographic scale with different detail levels of modelling. At local scale the source and site characteristics can be take account, whereas at the regional scale seismograms at the nodes of a regular grid are computed. Finite fault simulation is needed to compute realistic ground motions close to a ruptured fault. No reasonable deterministic prediction for many details of a future fault motion can be expected and their variability can be treated in practice only from a statistical viewpoint. Therefore, their effect is simulated through Monte-Carlo approach. To test the accuracy of the method, the L’Aquila earthquake occurred on April 6, 2009 has been modelled. The use of a realistic model for the representation of the extended fault introduces a stochastic element in NDSHA. So the variability due to the stochastic component of seismic source has been evaluated. In standard NDSHA at regional scale, seismograms are computed for an upper frequency content of 1 Hz. The use of a more realistic source model than the scaled point source that takes account of effective duration of rupture process allowed to extend the maximum frequency of computation of seismograms of national scale maps to 10 Hz. A first estimation of uncertainty due to the random representation of the source in national scale maps has been obtained by parametric tests on EU-India Grid infrastructure. NDSHA defines the hazard as the maximum ground motion at the site and it does not supply information about the frequency of occurrence of the expected ground motion. The standard procedure of NDSHA has been modified here, to take into account the additional information of recurrence. The introduction of recurrence estimates in NDSHA allows the generation of ground motion maps for specified return periods that permits a straightforward comparison between the NDSHA and the PSHA maps. Furthermore the map of the recurrence has been associated with standard map of ground motion.
La valutazione della pericolosità sismica può essere effettuata seguendo un approccio neo-deterministico (NDSHA) che permette di dare una descrizione realistica del moto del suolo dovuto a un terremoto di data distanza e magnitudo. L’approccio è basato su tecniche di modellazione che sono state sviluppate da una conoscenza dettagliata sia della sorgente che della propagazione delle onde sismiche. Questo permette di definire un set di terremoti di scenario e di simulare i segnali sintetici associati senza dover aspettare l’accadimento di un forte evento. La metodologia neo-deterministica può essere applicata a diverse scale geografiche cui corrispondono differenti livelli di dettaglio nella modellazione. A scala locale è possibile tenere conto delle caratteristiche specifiche della sorgente e del sito considerati, mentre a scala regionale vengono calcolati i sismogrammi ai nodi di una griglia regolare. Per simulare in modo realistico il moto del suolo in prossimità di una faglia è necessario usare un modello di sorgente estesa. Molti dettagli del processo di rottura sulla sorgente non possono essere predetti in modo deterministico e la loro variabilità può essere trattata solo da un punto di vista statistico. Di conseguenza i loro effetti vengono simulati attraverso una approccio Monte-Carlo. Per testare l’accuratezza del metodo è stato modellato il terremoto dell’Aquila del 6 aprile 2009. L’uso di un modello realistico di sorgente per la rappresentazione della sorgente estesa introduce un elemento stocastico nel metodo neo-deterministico. Si è quindi valutata la variabilità dei valori di picco dovuta alla modellazione della sorgente. Nella metodologia neo-deterministica scala regionale i sismogrammi vengono calcolati con una frequenza massima di 1 Hz. L’uso di un modello di sorgente piu` realistico rispetto a quello della sorgente puntiforme in grado di tener in conto dell’effettiva durata del processo di rottura ha consentito di estendere la frequenza massima di calcolo dei sismogrammi delle mappe di pericolosità nazionali a 10 Hz. Una prima stima dell’incertezza legata alla simulazione stocastica della sorgente sulle mappe a scala nazionale è stata ottenuta con l’uso di test parametrici condotti utilizzando l’infrastruttura informatica EU-India Grid. Il metodo neo-deterministico definisce la pericolosità come il massimo scuotimento al sito e non fornisce alcuna informazione sulla ricorrenza del moto del suolo atteso. La procedura è stata modificata per tener conto dell’informazione aggiuntiva della ricorrenza. In questo modo è stato possibile generare delle mappe di scuotimento per specifici periodi di ritorno che consentono un diretto confronto con le mappe probabilistiche. Inoltre alle mappe di massimo scuotimento sono state associate le rispettive mappe di ricorrenza del moto del suolo.
XXV Ciclo
1983
APA, Harvard, Vancouver, ISO, and other styles
2

Laprocina, Enrica. "Strong ground motion estimations related to sesmic events in the southern - eastern Alps." Doctoral thesis, Università degli studi di Trieste, 2011. http://hdl.handle.net/10077/4494.

Full text
Abstract:
2009/2010
Questa tesi di dottorato va a descrivere un lavoro che comprende due diverse parti: scenari di pericolosità sismica e stima degli effetti di sito e magnitudo di coda. La prima parte tratta di scenari di pericolosità sismica in un’area che copre la regione Friuli Venezia Giulia, la parte occidentale della Slovenia e la parte orientale del Veneto. Poichè parte della tesi è stata svolta nell’ambito del progetto Interreg Italia-Austria, Hareia, "Historical and recent earthquakes in Italy and Austria", è stato trattato anche un evento localizzato nella regione Trentino Alto Adige. La pericolosità sismica, espressa in termini di accelerazione o velocità massima attesa sul territorio, è stata dedotta in base al calcolo di molteplici scenari realistici di scuotimento del suolo con eventi connessi a faglie segnalate in letteratura come le più significative dell’area in esame. Questo approccio permette di ottenere una buona stima sull’eventuale pericolosità dell’area, importante per mitigare gli effetti di potenziali terremoti futuri. Le sorgenti sismogenetiche prese in esame sono state tredici. Tutti i calcoli sono stati eseguiti usando un modello di faglia estesa, applicando un modello di velocita’ di propagazione della rottura costante e variando la posizione dell’epicentro lungo la superficie di faglia. La distribuzione del momento sismico è stata considerata sia omogenea che, applicando il modello k², non uniforme. In questo modo, per ogni modello di faglia, possono essere calcolati diversi scenari. I sismogrammi sintetici sono stati calcolati con una frequenza massima di 1 Hz e per ogni punto di una densa griglia di ricevitori posizionati in modo equidistante dal centro della sorgente. Quindi, da ognuno di questi ricevitori, e’ stato possibile ottenere il valore massimo dell’accelerazione e delle velocità del sismogramma, poi plottato sulla mappa finale. Nella seconda parte della tesi, proprio perchè nella metodologia adottata gli scenari di scuotimento del suolo non tengono conto degli effetti di sito, si è applicata la metodologia di Mayeda et al. (2003), per poter ottenere, a diverse strette bande di frequenza, la risposta delle varie stazioni sismiche prese in esame. Il risultato potrà essere usato in futuro per “correggere” le stime di pericolosità calcolate su roccia. Come input a questa metodologia, è stato scelto un database costituito da 200 eventi avvenuti fra il 2006 ed il 2009, con magnitudo locale da 2.5 a 4, registrati da 25 stazioni slovene, austriache ed italiane. Di questi terremoti è stata infine calcolata anche la magnitudo da momento di coda. I valori di magnitudo così ottenuti sono risultati coerenti con le stime ottenute da altri Autori usando metodologie diverse.
XXII Ciclo
1981
APA, Harvard, Vancouver, ISO, and other styles
3

Vestin, Albin, and Gustav Strandberg. "Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms." Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160020.

Full text
Abstract:
Today, the main research field for the automotive industry is to find solutions for active safety. In order to perceive the surrounding environment, tracking nearby traffic objects plays an important role. Validation of the tracking performance is often done in staged traffic scenarios, where additional sensors, mounted on the vehicles, are used to obtain their true positions and velocities. The difficulty of evaluating the tracking performance complicates its development. An alternative approach studied in this thesis, is to record sequences and use non-causal algorithms, such as smoothing, instead of filtering to estimate the true target states. With this method, validation data for online, causal, target tracking algorithms can be obtained for all traffic scenarios without the need of extra sensors. We investigate how non-causal algorithms affects the target tracking performance using multiple sensors and dynamic models of different complexity. This is done to evaluate real-time methods against estimates obtained from non-causal filtering. Two different measurement units, a monocular camera and a LIDAR sensor, and two dynamic models are evaluated and compared using both causal and non-causal methods. The system is tested in two single object scenarios where ground truth is available and in three multi object scenarios without ground truth. Results from the two single object scenarios shows that tracking using only a monocular camera performs poorly since it is unable to measure the distance to objects. Here, a complementary LIDAR sensor improves the tracking performance significantly. The dynamic models are shown to have a small impact on the tracking performance, while the non-causal application gives a distinct improvement when tracking objects at large distances. Since the sequence can be reversed, the non-causal estimates are propagated from more certain states when the target is closer to the ego vehicle. For multiple object tracking, we find that correct associations between measurements and tracks are crucial for improving the tracking performance with non-causal algorithms.
APA, Harvard, Vancouver, ISO, and other styles
4

Chang, Yu-Ru, and 張育儒. "Broadband ground motion simulation:Case studies of 2010 Jiashian earthquake andHengchun earthquake scenario." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/g49772.

Full text
Abstract:
碩士
國立臺灣大學
海洋研究所
100
One of the most important issues of the recent development of seismology and earthquake engineering is the capability to predict strong ground motion for future large earthquake based on state-of-the-art knowledge and observations. However, it is very difficult to achieve realistic ground motion response by numerical simulation due to the poor resolution of underground structure and high computational consuming. In this study, we present three approaches to extend the simulating frequency band and to establish the feature of realistic strong ground motion pattern. There are two major parts in this study. First part focuses on the developments and tests of the three approaches to realize broadband ground motion simulation. The three approaches are (1) Hybrid method, (2) Frequency ratio method and (3) High frequency numerical simulation. These three approaches are applied on the 2010 Jiashian (M6.4) and 2009 Nanto (M5.13) earthquakes. In the second part, the hybrid broadband simulation technique is considered to apply on Hengchun scenario earthquake. Results indicate that using hybrid method with characteristic source model approach can provide a physics-based simulation result to predict strong ground motion of large earthquake that could occur in the future. The long term goal of this study will be to give contributions to the earthquake mitigation and seismic hazard assessment.
APA, Harvard, Vancouver, ISO, and other styles
5

Reshi, Owais A. "Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area." Thesis, 2016. http://hdl.handle.net/10754/607279.

Full text
Abstract:
Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a Mw4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes Mw6.0, Mw6.25, Mw6.5 and Mw6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes of shaking. The study serves as a step towards dynamic risk quantification for the Istanbul area that integrates physics based ground-motion simulations into an innovative dynamic exposure model to quantify risk.
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Jiu-Yang, and 詹鉅洋. "Establishing Ground-Motion Scaling Procedures for Scenario-Based Performance Assessment of Buildings." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/61235133545738170611.

Full text
Abstract:
碩士
國立臺灣大學
土木工程學研究所
101
The ATC-58 project in the United States developed and published next-generation tools and procedures for seismic performance assessment of buildings in 2012. In the ATC-58 procedures, damage is measured in terms of direct economic loss, indirect economic loss and casualties rather than by building component deformations and accelerations. Uncertainty and randomness will be captured in every step of the performance assessment process, including characterization of earthquake hazard, simulation of building response, damage assessment, and loss computation. The ATC-58 procedures offer three different types of assessments, namely, intensity-, scenario- and time-based assessments. All three involve the use of response-history analysis. The objective of this study is to develop recommendations for the selection and scaling of ground motions for scenario-based assessment. The scenario-based assessment aims at predicting the loss for a specific scenario (representing by a combination of earthquake magnitude and distance). The ground motions scaled for the assessment should reflect the distribution of spectral acceleration for the specific scenario. In this study, a series of nonlinear response-history analyses were performed for a 15-story and a 5-story sample moment resisting frames subjected to ground motions scaled for three sample earthquake scenarios determined based on the aggregation data for the site of the sample buildings.Sets of ground motions were developed for each building and each earthquake scenario using three scaling methods, namely, Conditional Spectrum Method, Unconditional Spectrum Method and Distribution Scaling Method. The impact of 1) scaling procedures, 2) number of ground motions, and 3) ground-motion database on structure responses, including peak inter-story drift, peak floor acceleration, and floor spectral acceleration, was studied. Recommendations for ground-motion scaling procedures for ATC-58 scenario-based assessment were developed.Selections of 30 ground motions from scenario database for ground-motion scaling procedures(Unconditional Spectrum Method and Distribution Scaling Method) is recommended in this study.
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Chia-Hua, and 林珈樺. "Source rupture and ground motion simulations of 1951 Longitudinal Valley Earthquake Sequences and future earthquake scenario." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/16185656532086471571.

Full text
Abstract:
碩士
國立臺灣大學
地質科學研究所
104
The Longitudinal Valley (LV) in the eastern Taiwan is considered as the suture zone between the Eurasia Plate and the Philippine Sea Plate. Thousands of earthquakes are occur in this area every year. The Longitudinal Valley Fault (LVF) is a seismically active structure, which is located along the LV. During the time period from October to December in 1951, lots of large earthquakes occurred between Hualien and Taitung area, including four major earthquakes (M > 6.9) and thousands of aftershocks. This earthquake series is known as the Longitudinal Valley Earthquake sequence. Coseismic surface rupture with a total length of approximate 90 km were observed along LV. In order to understand the characteristics of source rupture and resultant strong ground motion, this study is comprised of two different parts. In first part, we reconstructed the source model and strong ground motion time history of this earthquake sequence. Inversion of the coseismic displacement data was first conducted. Based on the inverted slip distribution, we performed 3D forward simulation using the Spectral Element Method. Therefore, the second part of the thesis focuses on ground motion prediction for scenario earthquakes. We performed wave propagation simulation with ten stochastic rupture scenarios and examined the results collectively. The numerical simulation results showed that the PGA larger than 250 cm/s2 distributed along LV in eastern Taiwan in all cases. If the rupture started in the middle of LVF, PGA larger than 80 cm/s2 could be detected in the entire island. In the particular stochastic source rupture models, the PGA might be larger than expected in some places far from LVF due to source radiation and directivity effect, such as Taipei basin, Ilan and southern part of Taiwan. The models we presented in this thesis for both historical and scenario events can serve as reference for future in-depth seismotectonic studies and hazard assessment.
APA, Harvard, Vancouver, ISO, and other styles
8

Passone, Luca. "Near-source ground motions for complex-geometry scenario earthquakes." Diss., 2018. http://hdl.handle.net/10754/630109.

Full text
Abstract:
This dissertation work concerns the effects of earthquake source geometry on nearfield ground-motions. Through numerical simulations, we investigate the following topics: (1) the effects of listricity on near-field ground motions, and (2) possible ground shaking levels in the Gulf of Aqaba region through multiple earthquake scenarios characterized by several fault segments rupturing either separately or jointly. Listric faults are defined as curved faults in which dip decreases with depth, resulting in a concave upwards profile. The profiles in this study are created by applying a specific shape function: by varying the initial dip and the degree of listricity, we create an ensemble of listric faults. We then define heterogeneous rupture speeds and slip distributions to generate a variety of kinematic source models. Finally, we compare them in terms of peak ground velocities to ground motion prediction equations and find two general features: (1) as listricity increases, the PGVs decrease on the footwall and increase on the hanging-wall; (2) constructive interference of seismic waves emanated from the listric fault causes PGVs over two times higher than those observed for the planar fault. The Gulf of Aqaba region has seen rapid growth in recent years, mainly fuelled by the increasing population, tourism, and investments in national projects. Such projects include the 26.500 km2 city of NEOM, backed by a 500 billion dollar investment by the Saudi Investment Fund and the King Salman bridge across the Straits of Tiran. The recency of the seismic network in the area provides limited information; moreover, no large earthquakes have occurred since its installation. The corresponding lack of data presents engineers with a severe knowledge gap. To contribute to closing this gap, we compute synthetic earthquake ground motions to study the consequences of large magnitude (Mw ~ 7.2) scenario seismic events. To this end, we conduct kinematic rupture simulations that mimic dynamic source behavior including both single- and multi-segment ruptures. Our simulations show higher ground velocities than predicted by GMPEs for the Straits of Tiran and lower for the NEOM area.
APA, Harvard, Vancouver, ISO, and other styles
9

Vlachos, Christos. "Stochastic Characterization and Simulation of Ground Motions based on Earthquake Scenarios." Thesis, 2016. https://doi.org/10.7916/D8RB74TC.

Full text
Abstract:
A novel stochastic earthquake ground motion model is formulated in association with physically interpretable parameters that are capable of efficiently characterizing the complex evolutionary nature of the phenomenon. A multi-modal, analytical, fully non-stationary spectral version of the Kanai-Tajimi (K-T) model is introduced achieving a realistic description of the evolutionary spectral energy distribution of seismic ground motions. The functional forms describing the temporal evolution of the model parameters can efficiently model highly non-stationary power spectral characteristics. The analysis space, where the analytical forms describing the evolution of the model parameters are established, is the energy domain instead of the typical use of the time domain. This space is used in conjunction with a newly defined energy-associated amplitude modulating function. The Spectral Representation Method supports the simulation of sample ground motions realizations. A predictive stochastic model for simulation of earthquake ground motions is developed, using a user-specified earthquake scenario description as input, and resulting in fully nonstationary ground acceleration time-histories at a site of interest. The previously formed analytical non-stationary K-T ground motion model lies at the core of the developed predictive model. An extensive Californian subset of the NGA-West2 earthquake ground motion database is used to develop and calibrate the predictive stochastic model. Sample observations of the model parameters are obtained by fitting the K-T model to the database records, and their resulting marginal distributions are effectively described by simple probability models. Advanced random-effect regression models are established in the normal probabilistic space, capable of linking the stochastic K-T model parameters with the moment magnitude Mw, closest distance Rrup and average shear-wave velocity VS30 at a Californian site of interest. The included random effects take effectively into account the correlation of ground motions pertaining to the same earthquake event, and the fact that each site is expected to have its own effect on the resulting ground motion. The covariance structure of the normal K-T model parameters is next estimated, allowing finally for the complete mathematical description of the predictive stochastic model for a given earthquake scenario. The entirety of the necessary steps for the simulation of the developed predictive stochastic model is provided, resulting in the generation of any number of fully non-stationary ground acceleration time-series that are statistically consistent with the specified earthquake scenario. In an effort to assess the performance and versatility of the developed predictive stochastic model, a list of simple engineering metrics, associated with the characterization of the earthquake ground motion time-series, is studied, and results from simulated earthquake ground acceleration time-series of the developed predictive model are compared with corresponding predictions of pertinent Ground Motion Prediction Equations (GMPEs) for a variety of earthquake and local-site characteristics. The studied set of ground acceleration time-series features includes the Arias intensity IA, the significant duration T5-95 of the strong ground shaking, and the spectral-based mean period of the earthquake record Tm. The predictive stochastic model is next validated against the state-of-the-art NGA-West2 GMPE models. The statistics of elastic response spectra derived by ensembles of synthetic ground motions are compared with the associated response spectra as predicted by the considered NGA-West2 ground motion prediction equations for a wide spectrum of earthquake scenarios. Finally, earthquake non-linear response-history analyses are conducted for a set of representative single- and multi-degree-of-freedom hysteretic structural systems, comparing the seismically induced inelastic structural demand of the considered systems, when subjected to sets of both real strong ground motion records, and associated simulated ground acceleration time-histories as well. The comparisons are performed in terms of seismic structural demand fragility curves.
APA, Harvard, Vancouver, ISO, and other styles
10

Spagnuolo, E. "Fault Directivity and Seismic Hazard." Thesis, 2010. http://hdl.handle.net/2122/10121.

Full text
Abstract:
In planning the design of structures in a region of potential seismic activity, a specification of the “strength” of the earthquake ground motion, or the most likelihood ground motion level, is needed. The earthquake occurrence, and its effects, is described as a stochastic process. Thus its realization is linked to state variables defined over a a known space through a continuous function. The Ground Motion Predictive Equation (GMPE) realize this function and, despite its shortcoming as an effective design tool to control damage (Priestly, 2003), it is still the most widely used representation of earthquake ground motion employed in engineering practice. As a consequence the majority of hazard estimations are based on the GMPE providing a ground motion specification as a function of a certain number of variables. In fact in many situation there are not enough data to allow a direct empirical specification of ground motion. Only few regions, i.e. Japan, have strong-motion network and data-banks sufficient to carry out seismic hazard assessment without the benefit of regionally-derived ground motion predictive model. The central role they hold in the hazard assessment motivates the recent efforts in better synthesize all available regional informations and general knowledge about earthquakes. The representation of the ground motion through the GMPE is simple compared to the complexity of the physical process involved. If only the magnitude and distance are taken into account, the GMPEs predict isoseismal curves that are expected to be isotropic around the hypocenter and uniform if no other effects are considered (i.e. site effects). Instead, the presence of a fault plane, across which a process of failure in shear develops, make this general formulation divert from the observations on a specific case. In fact the dynamic propagation of rupture results in anisotropy effects not included in the predictions although back-analyses of ground motions from past earthquakes have shown that such effects have a strong influence on the spatial distribution of ground motion.Although the anisotropy effects resulting from the propagation of rupture have been generally recognized and finally incorporated in predictions, its effect has not been tested yet in an hazard context. On the contrary, all the aforementioned issues motivate an in depth analysis of its contribution on the present tools of seismic hazard assessment. This work is mainly addressed to conduct such analysis. One guidance is provided answering to the following questions: Does directivity improves the performance of ground motion prediction in real time applications? Is directivity still effective in a PSHA framework? What deterministic hazard model can tell about directivity ?
Università degli studi di Genova, Istituto Nazionale di Geofisica e Vulcanologia
Unpublished
3T. Pericolosità sismica e contributo alla definizione del rischio
4T. Fisica dei terremoti e scenari cosismici
open
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ground motion scenario"

1

Faccioli, Ezio. Prediction of Ground Motion and Loss Scenarios for Selected Infrastructure Systems in European Urban Environments: LESSLOSS Report No. 2007/08. Pavia: Istituto Universitario di Studi Superiori, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ground motion scenario"

1

Tsurugi, Masato. "Strong Ground Motion Prediction for Scenario Earthquakes." In Environmental Science and Engineering, 207–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29107-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pallav, Kumar, S. T. G. Raghukanth, and Konjengbam Darunkumar Singh. "Ground Motion Scenario for Hypothetical Earthquake (Mw 8.1) in Indo-Burmese Subduction at Imphal City." In Advances in Structural Engineering, 751–64. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2193-7_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gallovič, F. "Azimuthal Dependence of the Ground Motion Variability from Scenario Modeling of the 2014 Mw6.0 South Napa, California, Earthquake Using an Advanced Kinematic Source Model." In Pageoph Topical Volumes, 143–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72709-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Slavov, S., I. Paskaleva, M. Kouteva, F. Vaccari, and G. F. Panza. "Deterministic Earthquake Scenarios for the City of Sofia." In Seismic Ground Motion in Large Urban Areas, 1221–37. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7355-0_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Solakov, Dimcho, Stela Simeonova, Plamena Raykova, Boyko Rangelov, and Constantin Ionescu. "Earthquake Ground Motion Scenarios for the City of Ruse." In Studies in Systems, Decision and Control, 243–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70190-1_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crempien, Jorge G. F., and Ralph J. Archuleta. "Within-Event and Between-Events Ground Motion Variability from Earthquake Rupture Scenarios." In Pageoph Topical Volumes, 127–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72709-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kohrangi, M., A. N. Papadopoulos, S. R. Kotha, D. Vamvatsikos, and P. Bazzurro. "Earthquake Catastrophe Risk Modeling, Application to the Insurance Industry: Unknowns and Possible Sources of Bias in Pricing." In Springer Tracts in Civil Engineering, 239–74. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68813-4_11.

Full text
Abstract:
AbstractMathematical risk assessment models based on empirical data and supported by the principles of physics and engineering have been used in the insurance industry for more than three decades to support informed decisions for a wide variety of purposes, including insurance and reinsurance pricing. To supplement scarce data from historical events, these models provide loss estimates caused to portfolios of structures by simulated but realistic scenarios of future events with estimated annual rates of occurrence. The reliability of these estimates has evolved steadily from those based on the rather simplistic and, in many aspects, semi-deterministic approaches adopted in the very early days to those of the more recent models underpinned by a larger wealth of data and fully probabilistic methodologies. Despite the unquestionable progress, several modeling decisions and techniques still routinely adopted in commercial models warrant more careful scrutiny because of their potential to cause biased results. In this chapter we will address two such cases that pertain to the risk assessment for earthquakes. With the help of some illustrative but simple applications we will first motivate our concerns with the current state of practice in modeling earthquake occurrence and building vulnerability for portfolio risk assessment. We will then provide recommendations for moving towards a more comprehensive, and arguably superior, approach to earthquake risk modeling that capitalizes on the progress recently made in risk assessment of single buildings. In addition to these two upgrades, which in our opinion are ready for implementation in commercial models, we will also describe an enhancement in ground motion prediction that will certainly be considered in the models of tomorrow but is not yet ready for primetime. These changes are implemented in example applications that highlight their importance for portfolio risk assessment. Special consideration will be given to the potential bias in the Average Annual Loss estimates, which constitutes the foundation of insurance and reinsurance policies’ pricing, that may result from the application of the traditional approaches.
APA, Harvard, Vancouver, ISO, and other styles
8

Maugeri, M., and S. Grasso. "Ground motion earthquake scenario parameters for the 2009 Abruzzo earthquake." In Earthquake Ground Motion, 49–63. WIT Press, 2014. http://dx.doi.org/10.2495/978-1-84566-000-0/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

G. Koricho, Ermias, and Elizabeth Dimsdale. "Head Impact Injury Mitigation to Vehicle Occupants: An Investigation of Interior Padding and Head Form Modeling Options against Vehicle Crash." In Advancement and New Understanding in Brain Injury. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95250.

Full text
Abstract:
Traumatic Brain Injuries (TBI) occur approximately 1.7 million times each year in the U.S., with motor vehicle crashes as the second leading cause of TBI-related hospitalizations, and the first leading cause of TBI-related deaths among specific age groups. Several studies have been conducted to better understand the impact on the brain in vehicle crash scenarios. However, the complexity of the head is challenging to replicate numerically the head response during vehicle crash and the resulting traumatic Brain Injury. Hence, this study aims to investigate the effect of vehicle structural padding and head form modeling representation on the head response and the resulting causation and Traumatic Brain Injury (TBI). In this study, a simplified and complex head forms with various geometries and materials including the skull, cerebrospinal fluid (CSF), neck, and muscle were considered to better understand and predict the behavior of each part and their effect on the response of the brain during an impact scenario. The effect of padding thickness was also considered to further analyze the interaction of vehicle structure and the head response. The numeral results revealed that the responses of the head skull and the brain under impact load were highly influenced by the padding thickness, head skull material modeling and assumptions, and neck compliance. Generally, the current work could be considered an alternative insight to understand the correlation between vehicle structural padding, head forms, and materials modeling techniques, and TBI resulted from a vehicle crash.
APA, Harvard, Vancouver, ISO, and other styles
10

Costa, Valter, Rosaldo J. F. Rossetti, and Armando Sousa. "Simulator for Teaching Robotics, ROS and Autonomous Driving in a Competitive Mindset." In Rapid Automation, 720–34. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8060-7.ch033.

Full text
Abstract:
Interest in robotics field as a teaching tool to promote the STEM areas has grown in the past years. The search for solutions to promote robotics is a major challenge and the use of real robots always increases costs. An alternative is the use of a simulator. The construction of a simulator related with the Portuguese Autonomous Driving Competition using Gazebo as 3D simulator and ROS as a middleware connection to promote, attract, and enthusiasm university students to the mobile robotics challenges is presented. It is intended to take advantage of a competitive mindset to overcome some obstacles that appear to students when designing a real system. The proposed simulator focuses on the autonomous driving competition task, such as semaphore recognition, localization, and motion control. An evaluation of the simulator is also performed, leading to an absolute error of 5.11% and a relative error of 2.76% on best case scenarios relating to the odometry tests, an accuracy of 99.37% regarding to the semaphore recognition tests, and an average error of 1.8 pixels for the FOV tests performed.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ground motion scenario"

1

Solakov, Dimcho, Stela Simeonova, and Plamena Raykova. "DETERMINISTIC EARTHQUAKE SCENARIO FOR THE CITY OF VARNA." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/1.1/s05.060.

Full text
Abstract:
In the present study deterministic earthquake scenarios for the city of Varna - the thirdlargest city in Bulgaria are presented. By deterministic scenario, it is mean a representation of the severity of ground shaking over an urban area, using one or more hazard descriptors. The assessment of seismic hazard and generation of earthquake scenarios is the first step of seismic risk evaluation and society prevention. Seismic history of Varna shows that the hazard for the city is mainly influence by the earthquakes occurred in the seismogenic zone Shabla (Kaliakra fault system). The local ground shaking levels are computed using the six ground motion prediction equations (GMPE�s) for tectonically active regions that are previously selected. A reliable geotechnical zonation of the city of Varna was incorporated in the earthquake scenario generation. Deterministic ground shaking scenarios for the city of Varna are generated for two scenario earthquakes with different location and magnitudes are considered. The generated scenarios are described in terms of MSK (=EMS98) intensity, peak ground acceleration and velocity and in spectral accelerations for Sa (0.3s) and Sa (1.0s). The results in PGA and MSK intensity for scenario MW7.2 quake located on strike slip Kaliakra fault are mapped. The estimated peak ground accelerations for MW7.2 quake vary between 0.07 and 0.14 g.
APA, Harvard, Vancouver, ISO, and other styles
2

Prothro, Lance, Cleat Zeiler, and Michelle Dunn. "GROUND MOTION SIMULATIONS IN THE YUCCA FLAT BASIN FROM SCENARIO EARTHQUAKES ON THE YUCCA FAULT." In American Geophysical Union Fall Meeting.. https://www.agu.org/Fall-Meeting. US DOE, 2020. http://dx.doi.org/10.2172/1716521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zaineh, Hussam Eldein, and Hiroaki Yamanaka. "Ground-motion simulation for scenario earthquakes along Serghaya Fault and the seismic hazard implications to Damascus city, Syria." In Proceedings of the 11th SEGJ International Symposium, Yokohama, Japan, 18-21 November 2013. Society of Exploration Geophysicists, 2013. http://dx.doi.org/10.1190/segj112013-112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dabbeeru, Madan M., Joshua D. Langsfeld, Petr Svec, and Satyandra K. Gupta. "Towards Energy Efficient Follow Behaviors for Unmanned Ground Vehicles Over Rugged Terrains." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71251.

Full text
Abstract:
This paper focuses on the development of a follow behavior for an unmanned ground vehicle (UGV) in collaborative scenarios. The scenario being studied involves a human traveling over a rugged terrain on foot. The UGV follows the human. We present an approach for automatically generating a reactive energy-efficient follow behavior that maps the vehicle’s states into motion goals. We start by partitioning the state space that encodes the relationship between the state of the vehicle and the human’s state, and the environment. For each cell in the partitioned state space, we either directly generate the motion goal for the vehicle to execute or a function that produces the motion goal. The motion goal defines not only the location towards which the vehicle should move but also specifies a zero activity zone around the human within which the vehicle is supposed to slow down and remain stationary to save its energy until it gets outside the margin caused by the movement of the human. Our approach utilizes off-line simulations to assess the performance of the generated behavior. Our simulation results show that the automatically generated follow behavior significantly outperforms a simple conservative tracking rule in terms of distance traveled and violation of proximity constraints. We anticipate that the approach presented in this paper will ultimately enable us to implement energy efficient follow behaviors on physical UGVs.
APA, Harvard, Vancouver, ISO, and other styles
5

Gusev, A. A., V. Pavlov, F. Romanelli, G. Panza, Adolfo Santini, and Nicola Moraci. "Low-Frequency Seismic Ground Motion At The Pier Positions Of The Planned Messina Straits Bridge For A Realistic Earthquake Scenario." In 2008 SEISMIC ENGINEERING CONFERENCE: Commemorating the 1908 Messina and Reggio Calabria Earthquake. AIP, 2008. http://dx.doi.org/10.1063/1.2963858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Olorunfemi, Oluwaseyi J., and Alan A. Barhorst. "On the Efficacy of Non-Holonomic Canonical Momentum Analysis of Constrained Multi-Body Mechanical Systems – Application in Ground Vehicle Double Wishbone Suspension Dynamics." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95181.

Full text
Abstract:
Abstract In this research, we aim to ascertain the practicability of generalized momentum canonical equations for non-holonomic rigid body systems by applying it to the modeling and simulation of a Double Wishbone suspension system dynamics. The model of the Double Wishbone suspension system of a passenger car’s front drive is assumed to be planar, with four degrees of freedom. Equations of motion derived from the model are solved using Wolfram Mathematica’s NDsolve Algorithm while dynamic simulations are made from modeling a real-life scenario and verification of the model. Simulated real life scenario had the model excited in one of the four DOFs — the roll rate of the model. Therefore simulation results, graphical plots of the total energy, constraint loop and generalized parameters of the DWB suspension system, predicted the response of vehicle dynamics in this event for a period. The method provides accurate results and we can infer that the set of equations of motion formulated from the projective momentum method can accurately simulate the inherent nonlinear vehicle suspension dynamics behavior. Therefore, the generalized momentum canonical equation for constrained systems has the capability to be used for vehicle dynamics analysis and prediction that are necessary for understanding the complexities involved in ground vehicle ride and handling.
APA, Harvard, Vancouver, ISO, and other styles
7

Carey, Kevin, Benjamin Abruzzo, David P. Harvie, and Christopher Korpela. "Performance Comparison of Inertial Measurement Units Fused With Odometry in Extended Kalman Filter for Dead-Reckoning Navigation." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98184.

Full text
Abstract:
Abstract This paper aims to aid robot and autonomous vehicle designers by providing a comparison between four different inertial measurement units (IMUs) which could be used to aid in vehicle navigation in a GPS-denied or inertial-only scenario. A differential-drive ground vehicle was designed to carry the multiple different IMUs, mounted coaxially, to enable direct comparison of performance in a planar environment. The experiments focused on the growth of pose error of the ground vehicle originating from the odometry senors and the IMUs. An extended Kalman Filter was developed to fuse the odometry and inertial measurements for this comparison. The four specific IMUs evaluated were: CNS 5000, Xsens 300, Microstrain GX5-35, and Phidgets 1044 and the ground truth for experiments was provided by an Optitrack motion capture system (MCS). Finally, metrics for choosing IMUs, merging cost and performance considerations, are proposed and discussed. While the CNS 5000 has the best objective error specifications, based on these metrics the Xsens 300 exhibits the best absolute performance while the Phidgets 1044 provides the best performance-per-dollar.
APA, Harvard, Vancouver, ISO, and other styles
8

Nunziata, C., A. Peresan, F. Romanelli, F. Vaccari, E. Zuccolo, G. F. Panza, Adolfo Santini, and Nicola Moraci. "Realistic Ground Motion Scenarios: Methodological Approach." In 2008 SEISMIC ENGINEERING CONFERENCE: Commemorating the 1908 Messina and Reggio Calabria Earthquake. AIP, 2008. http://dx.doi.org/10.1063/1.2963860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Surya Prakash, Nikhil Potu, and Kenn Oldham. "Modeling Large Deformation Impact Dynamics for Legged Microrobot Locomotion: A Preliminary Formulation." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85923.

Full text
Abstract:
A finite element dynamic model is developed to better understand impact events during large amplitude dynamics of a compliant, elastic-legged small-scale robot. The proposed motion of the robot would be achieved as a result of impulse forces generated from the forced collision of piezoelectrically-actuated, beam-like legs with the ground. The nominal robot leg is a prismatic continuous structure with uniform density, cross-sectional area and moment of inertia. Dynamic modeling in this work attempts to manage the non-negligible motion of the actuated beam tip in its axial direction at impact when large bending deformations are excited, which complicates prior analysis methods. For the micro-robot, this motion is proposed to be exploited as a means to produce locomotion in the horizontal direction, and hence must be accounted for. Finite element analysis approaches are adapted for the micro-robotic circumstances. Preliminary results are presented for the scenario of large deformation, unforced dynamics with impact, tested using centimeter-scale mock-ups for future thin-film based micro-robots. Needs and opportunities for further validation are briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Bakalis, Konstantinos, Dimitrios Vamvatsikos, and Michalis Fragiadakis. "Seismic Fragility Assessment of Steel Liquid Storage Tanks." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45370.

Full text
Abstract:
A seismic fragility assessment procedure is developed for atmospheric steel liquid storage tanks. Appropriate system and component-level damage states are defined by identifying the failure modes that may occur during a strong ground motion. Special attention is paid to the elephant’s foot buckling failure mode, where the estimation of the associated capacity and demand requires thorough consideration within a probabilistic framework. A novel damage state is introduced to existing procedures with respect to the uncontrollable loss of containment scenario. Fragility curves are estimated by introducing both aleatory and epistemic sources of uncertainty, thus providing a comprehensive methodology for the seismic risk assessment of liquid storage tanks. The importance of dynamic buckling is acknowledged and the issue of non-sequential damage states is finally revealed.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ground motion scenario"

1

Paul, C., and J. F. Cassidy. Seismic hazard investigations at select DND facilities in Southwestern British Columbia: subduction, in-slab, and crustal scenarios. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331199.

Full text
Abstract:
Southwest British Columbia has some of the highest seismic hazard in Canada and is home to facilities owned by the Department of National Defence which support operations on the west coast of Canada. The potential impact of seismic hazards on these government facilities are investigated here. The hazard is from three primary sources: subduction interface, crustal and in-slab earthquakes. NRCan, in consultation with DRDC have produced representative earthquake scenarios for each of these sources. The subduction scenario we constructed was an M8.9 earthquake extending along the entire Cascadia Subduction Zone from 4 to 18 km depth. We used an M6.8 earthquake occurring along a 30 km fault at between 52 and 60 km depth below Boundary Bay to represent in-slab events. The final scenario, representing a crustal source, was an M6.4 along the central 47 km of the Leech River Valley-Devil's Mountain Fault system. We found that the Cascadia subduction scenario dominated the shaking hazard over much of the study region. Meanwhile, the in-slab and crustal scenarios have higher but more localized hazards in Vancouver and Victoria. In addition to the primary ground motion hazard, we also examined secondary seismic hazards: secondary amplification effects, landslides, liquefaction, surface ruptures, tsunami, flooding, fire, and aftershocks. Each of the secondary hazards had varying impacts depending on the scenario and locations within the region.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography