Academic literature on the topic 'Ground-based'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ground-based.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ground-based"

1

Manchandani, Hanshul. "Space based solar power versus ground based solar power." International Journal of Research and Engineering 4, no. 11 (December 13, 2017): 260–62. http://dx.doi.org/10.21276/ijre.2017.4.11.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pilipenko, Vyacheslav. "Space weather impact on ground-based technological systems." Solar-Terrestrial Physics 7, no. 3 (September 28, 2021): 68–104. http://dx.doi.org/10.12737/stp-73202106.

Full text
Abstract:
This review, offered for the first time in the Russian scientific literature, is devoted to various aspects of the problem of the space weather impact on ground-based technological systems. Particular attention is paid to hazards to operation of power transmission lines, railway automation, and pipelines caused by geomagnetically induced currents (GIC) during geomagnetic disturbances. The review provides information on the main characteristics of geomagnetic field variability, on rapid field variations during various space weather mani-festations. The fundamentals of modeling geoelectric field disturbances based on magnetotelluric sounding algorithms are presented. The approaches to the assessment of possible extreme values of GIC are considered. Information about economic effects of space weather and GIC is collected. The current state and prospects of space weather forecasting, risk assessment for technological systems from GIC impact are discussed. While in space geophysics various models for predicting the intensity of magnetic storms and their related geomagnetic disturbances from observations of the interplanetary medium are being actively developed, these models cannot be directly used to predict the intensity and position of GIC since the description of the geomagnetic field variability requires the development of additional models. Revealing the fine structure of fast geomagnetic variations during storms and substorms and their induced GIC bursts appeared to be important not only from a practical point of view, but also for the development of fundamentals of near-Earth space dynamics. Unlike highly specialized papers on geophysical aspects of geomagnetic variations and engineering aspects of the GIC impact on operation of industrial transformers, the review is designed for a wider scientific and technical audience without sacrificing the scientific level of presentation. In other words, the geophysical part of the review is written for engineers, and the engineering part is written for geophysicists. Despite the evident applied orientation of the studies under consideration, they are not limited to purely engineering application of space geophysics results to the calculation of possible risks for technological systems, but also pose a number of fundamental scientific problems
APA, Harvard, Vancouver, ISO, and other styles
3

Shao, Michael. "Ground-based interferometry." Astrophysics and Space Science 241, no. 1 (March 1996): 105–10. http://dx.doi.org/10.1007/bf00644219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martin, Lorenz, Marc Schneebeli, and Christian Mätzler. "ASMUWARA, a ground-based radiometer system for tropospheric monitoring." Meteorologische Zeitschrift 15, no. 1 (February 27, 2006): 11–17. http://dx.doi.org/10.1127/0941-2948/2006/0092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Uchiyama, A., S. Asano, M. Shiobara, and M. Fukabori. "Ground-Based Cirrus Observation." Journal of the Meteorological Society of Japan. Ser. II 77, no. 2 (1999): 513–32. http://dx.doi.org/10.2151/jmsj1965.77.2_513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Uchiyama, A., and M. Fukabori. "Ground-Based Cirrus Observation." Journal of the Meteorological Society of Japan. Ser. II 77, no. 2 (1999): 533–52. http://dx.doi.org/10.2151/jmsj1965.77.2_533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Russell, C. T., P. J. Chi, D. J. Dearborn, Y. S. Ge, B. Kuo-Tiong, J. D. Means, D. R. Pierce, K. M. Rowe, and R. C. Snare. "THEMIS Ground-Based Magnetometers." Space Science Reviews 141, no. 1-4 (March 22, 2008): 389–412. http://dx.doi.org/10.1007/s11214-008-9337-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hill, Frank, and John Leibacher. "Ground-based helioseismology networks." Advances in Space Research 11, no. 4 (January 1991): 149–58. http://dx.doi.org/10.1016/0273-1177(91)90450-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hutter, Donald. "Ground-based optical interferometry." Scholarpedia 7, no. 6 (2012): 10586. http://dx.doi.org/10.4249/scholarpedia.10586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Quirrenbach, Andreas. "Ground-based infrared interferometry." Advances in Space Research 34, no. 3 (January 2004): 524–27. http://dx.doi.org/10.1016/j.asr.2003.05.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ground-based"

1

Yarham, Carson, Urs Boeniger, and Felix J. Herrmann. "Curvelet-based ground roll removal." Society of Exploration Geophysicists, 2006. http://hdl.handle.net/2429/545.

Full text
Abstract:
We have effectively identified and removed ground roll through a twostep process. The first step is to identify the major components of the ground roll through various methods including multiscale separation, directional or frequency filtering or by any other method that identifies the ground roll. Given this estimate for ground roll, the recorded signal is separated during the second step through a block-coordinate relaxation method that seeks the sparsest set for weighted curvelet coefficients of the ground roll and the sought-after reflectivity. The combination of these two methods allows us to separate out the ground roll signal while preserving the reflector information. Since our method is iterative, we have control of the separation process. We successfully tested our algorithm on a real data set with a complex ground roll and reflector structure.
APA, Harvard, Vancouver, ISO, and other styles
2

Henehan, Michael J. "Ground-truthing the boron-based proxies." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/359133/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schüler, Torben. "On ground based GPS tropospheric delay estimation." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963624393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grant, Stanley E. "Performance evaluation of ground based radar systems." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA283654.

Full text
Abstract:
Thesis (M.S. in Systems Technology (Command, Control, and Communications)) Naval Postgraduate School, June 1994.
Thesis advisor(s): F. H. Levien, Dan C. Boger. "June 1994." Includes bibliographical references. Also available online.
APA, Harvard, Vancouver, ISO, and other styles
5

Hagelin, Susanna. "Optical Turbulence Characterization for Ground-Based Astronomy." Doctoral thesis, Uppsala universitet, Institutionen för geovetenskaper, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132798.

Full text
Abstract:
The optical turbulence, which creates perturbations of the wavefronts coming from the stars, is caused by small-scale fluctuations in the index of refraction of the atmosphere and is a problem for astronomers because it limits the maximum resolution of the ground-based telescopes. One way of identifying the best sites to build astronomical observatories, where the influence of the optical turbulence is as small as possible, is to use the standard meteorological parameters to get a first idea of the potential of a site. In the first part of this thesis the three sites on the Internal Antarctic Plateau that are the most interesting for astronomers (Dome A, Dome C and the South Pole) are investigated using the operational analyses of the ECMWF and a ranking of these three sites is presented. The second part of this thesis focuses on the ability of the mesoscale model Meso-NH to simulate the optical turbulence as well as the wind speed at Mt Graham (AZ, USA). A rich sample of measurements of the vertical distribution of the optical turbulence, the largest sample used in this type of study so far, is used to calibrate the Meso-NH model and to quantify its ability to simulate the optical turbulence. The measurements are distributed over different periods of the year thus making it possible to evaluate the performance of the model in different seasons. Both the vertical distribution of the optical turbulence and the astroclimatic parameters (seeing, wavefront coherence time and isoplanatic angle) are investigated.
Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 708
APA, Harvard, Vancouver, ISO, and other styles
6

Matcham, Jeremy Stephen. "Ground based laboratory atomic oxygen calibration experiments." Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seki, Daikichi. "Space Weather Prediction Using Ground-Based Observations." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263804.

Full text
Abstract:
付記する学位プログラム名: 京都大学大学院思修館
京都大学
新制・課程博士
博士(総合学術)
甲第23343号
総総博第16号
京都大学大学院総合生存学館総合生存学専攻
(主査)教授 山敷 庸亮, 教授 寶 馨, 准教授 浅井 歩
学位規則第4条第1項該当
Doctor of Philosophy
Kyoto University
DFAM
APA, Harvard, Vancouver, ISO, and other styles
8

Monserrat, Hernández Oriol. "Deformation measurement and monitoring with Ground-Based SAR." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/81557.

Full text
Abstract:
The Ground-Based Synthetic Aperture Radar (GB-SAR) is a relatively new technique, which in the last ten years has gained interest as deformation measurement and monitoring tool. The GB-SAR technique is based on an imaging radar-based sensor, which o ers high sensitivity to small displacements, in the region of sub-millimetres to millimetres, long-range measurements, which can work up to some kilometres, and massive deformation measurement capability. These features confer to the GB-SAR technique interesting advantages with respect to other point-wise deformation measurement techniques. The process of estimating deformation from the GB-SAR data is not straightforward: it requires complex data processing and analysis tools. This dissertation is focused on these tools, covering the whole deformation estimation process. This thesis collects the main research results achieved on this topic during my work at the Active Remote Sensing Unit of the Institute of Geomatics. Two di erent approaches for measuring deformation with GB-SAR data are described and discussed. The irst one is the interferometric approach, based on the exploitation of the phase component of the GB-SAR data, which is the commonly used GB-SAR method. The second one is a non-interferometric approach, which exploits the amplitude component of the GB-SAR data, o ering an interesting alternative way to exploit the GB-SAR data. This dissertation has two main objectives. The first one is presenting, step by step, a complete interferometric GB-SAR procedure for deformation measuring and monitoring. The second one is presenting two new algorithms, which represent the most innovative part of this thesis. The first algorithm faces the phase unwrapping problem, providing an automatic solution for detecting and correcting unwrapping errors, which is called 2+1D phase unwrapping. The second algorithm is the base of the above mentioned non- interferometric approach, which overcomes some of the most critical limitation of GB-SAR interferometry, at the expense of getting less precise deformation estimates. The dissertation is divided in 6 chapters. The first one is the introduction, while the second one provides an overview of GB-SAR interferometry, introducing the main aspects that are the basics of the subsequent chapters. Chapter 3 describes a complete GB-SAR processing chain. Chapters 4 and 5 contain the most original part of the dissertation, i.e. the 2D+1 phase unwrapping algorithm, and the non-interferometric approach. Finally, in Chapter 6 the conclusions are discussed and further research is proposed.
El radar terrestre d’obertura sintètica (GB-SAR) és una tècnica relativament nova que, en els últims deu anys, ha guanyat interès com a eina per a mesurar i monitorar deformacions. La tècnica GB-SAR es basa en un sistema radar amb capacitat per proporcionar imatges, que ofereix una alta sensibilitat a petits desplaçaments, d’ordre mil·limètric o submil·limètric, que és capaç de mesurar a llargues distàncies (alguns km) i que té una alta capacitat per fer mesures massives. Aquestes característiques donen a la tècnica interessants avantatges respecte a altres tècniques clàssiques de mesura de deformacions, típicament basades en mesures puntuals. Derivar mesures de deformació a partir de dades GB-SAR no és un procés senzill, ja que requereix uns procediments complexos de processat i anàlisi de dades. Aquesta tesi es centra en aquests processos. Aquesta tesi recull alguns dels resultats més destacats de la investigació que he desenvolupat sobre aquest tema a la unitat de Teledetecció Activa de l'Institut de Geomàtica. Al llarg del document es descriuen dues aproximacions diferents per mesurar deformacions amb GB-SAR. Una es basa en la explotació de la tècnica de la interferometria, és a dir explotant la component de la fase de les imatges GB-SAR: és la tècnica GB-SAR usada habitualment. La segona, anomenada tècnica no-interferomètrica, es basa en la component de l’amplitud de les dades GB-SAR i ofereix una interessant alternativa a la primera. La tesi acompleix dos objectius principals. En primer lloc presenta un procediment complet per la mesura i monitoratge de deformacions mitjançant interferometria GB-SAR. En segon lloc, descriu dos nous algorismes que resolen problemes específics de la interferometria clàssica aplicada al GB-SAR i que representen la part més innovadora d’aquesta tesi. El primer algorisme aborda un dels problemes oberts de la interferometria, el phase unwrapping, proposant un mètode automàtic per detectar-ne i corregir-ne els errors. El segon algorisme proposa un nou mètode per a l'explotació de les dades GB-SAR per mesurar deformacions sense utilitzar la interferometria. La estructura de la tesi consisteix en sis capítols. Després de la introducció, el Capítol 2 proporciona una visió general de la interferometria GB-SAR, introduint els conceptes principals utilitzats en la tesi. En el tercer capítol es descriu una cadena de processament basada en GB-SAR interferomètric. Els capítols quart i cinquè contenen la part més original de la tesi: l'algorisme de phase unwrapping i el mètode no-interferomètric per la mesura de deformacions. Finalment, es discuteixen les conclusions principals i es proposen futures línies d’investigació.
APA, Harvard, Vancouver, ISO, and other styles
9

Pipia, Luca. "Polarimetric differential SAR Interferometry with ground-based sensors." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/6951.

Full text
Abstract:
Las técnicas de Interferometría Diferencial se basan en la combinación de varias imágenes SAR con distinta separación temporal y permiten la recuperación de las componentes lineales y no-lineales del proceso de deformación ocurrida en el entorno de interés durante el entero periodo de observación. Condición imprescindible para una correcta estimación de los fenómenos geodéticos es la elevada estabilidad de la plataforma que embarca el sensor SAR. Por esta razón, a nivel operativo se utilizan datos SAR satelitales.
El objetivo de la Polarimetría SAR es describir el entorno de interés analizando las propiedades de la señal que éste dispersa cuando se utilizan diferentes combinaciones de polarización de las antenas transmisora y receptora, definidas canales polarimétricos. La polarimetría interferométrica SAR junta la capacidad de la polarimetría de separar mecanismos de dispersión independientes con la sensibilidad de la Interferometría a la altura de los correspondientes centros de fase, y permite describir la distribución volumétrica de los dispersores dentro de la escena observada. Debido a la falta de conjuntos de datos polarimétricos SAR satelitales que cubran tramos temporales suficientemente largos, hay aún un gran interés en las mejoras que la polarimetría podría aportar a técnicas ya consolidadas como las de Interferometría Diferencial.
La actividad de investigación que se presentará en esta tesis doctoral abarca, por primera vez conjuntamente, las dos áreas de la Polarimetría SAR y de la Interferometría Diferencial utilizando el sensor radar terrestre de corto alcance (gbSAR) desarrollado por la Universitat Politècnica de Catalunyua (UPC). El trabajo constará de dos bloques principales.
El primer bloque describirá las técnicas que se han desarrollado para convertir el sistema UPC gbSAR en un instrumento operativo y simplificar la utilización de sus adquisiciones, incluyendo la formulación matemática de los principios de funcionamiento del sistema, la cadena de procesado de los raw data y su calibración polarimétrica, los procedimientos de georeferenciación, y las técnicas de compensación de los artefactos atmosféricos presentes en sus medidas diferenciales.
La segunda parte se ocupará de demostrar los beneficios que los datos SAR polarimétricos ofrecen respecto a la medición de un único canal polarimétrico para aplicaciones diferenciales. A fin de llevar a cabo esta tarea, se analizarán los datos gbSAR adquiridos durante una campaña de medidas de un año realizada en el pueblo de Sallent, en Cataluña, afectado por un fenómeno de subsidencia. En esta parte se analizarán tres temas principales. El primero es el comportamiento no estacionario en tiempo del entorno urbano bajo la geometría de observación del sensor terrestre. Se estudiarán en detalle los efectos de su inestabilidad y se propondrá una técnica de filtrado novedosa entallada a las propiedades de los blancos deterministas con el fin de preservar la información de la fase diferencial. El segundo tema abarca el problema de los efectos de troposfera en datos diferenciales con separación temporal superior al mes y de su separación de las variaciones de fase inducidas por el proceso de deformación. El tercer tema es la utilización de toda la información polarimétrica diferencial. Con fin de superar las limitaciones propias de las técnicas DInSAR clásicas, se propondrá un nuevo modelo polarimétrico de dispersión y se demostrarán las ventajas de la nueva formulación enseñando la mejor estimación del proceso de subsidencia en Sallent. En la parte final de este apartado se explorará también el potencial de las técnicas polarimétricas de optimización de la coherencia para aplicaciones diferenciales.
Differential SAR interferometry (DInSAR) deals with the combination of multi-temporal SAR images for the estimation of the linear and non-linear components of the deformation process within an area of interest during the whole observation period. A high stability of the platform is required for a reliable estimation of the geodetic phenomena. Accordingly, space-borne SAR images are operatively employed for DInSAR estimation, air-borne DInSAR still constituting a challenging research issue. SAR
Polarimetry aims at charactering the illuminated area through the analysis of its response under different combinations of transmitting and receiving antennas polarization, called polarimetric channels. The Polarimetric SAR Interferometry joins the capability of Polarimetry to separate independent scattering mechanisms and the sensitivity of Interferometry to the corresponding phase centers' elevation, making it possible to describe the volumetric distribution of the scatterers within the observed area. Owing to the lack of long-time collections of polarimetric space-borne SAR data, the studies carried out in this research field have been mainly based on air-borne acquisitions. Yet, there is a great expectation for the improvements that polarimetry may bring to assessed single-polarization techniques such as the DinSAR.
The research described in this PhD dissertation fills for the first time the gap between SAR Polarimetry and SAR Differential Interferometry through the employment of an X-band ground-based SAR (gbSAR) sensor developed by the Remote Sensing Lab of the Universitat Politècnica de Catalunya (UPC).
The work is divided into two main blocks. The first part deals with the algorithms that have been developed to make the UPC system operative and its acquisitions easy to use. Summarily, they include the mathematical formulation of the sensor's working principles, the raw data processing chain and the polarimetric calibration method, the geocoding procedures, and the techniques compensating for the atmospheric artefacts affecting gbSAR zero-baseline acquisitions.
The second part is concerned with demonstrating the benefits that polarimetric SAR measurements provide with respect to single-polarization data for differential applications. In order to cope with this task, the data sets acquired during a one-year measurement campaign carried out in the village of Sallent, northeastern Spain, are analyzed. The experiment was focused on monitoring the subsidence phenomenon affecting a district of the village with the UPC gbSAR sensor. Three main issues are here argued. The first one is the time non-stationary behaviors characterizing the urban environment at X-band in the gbSAR observation geometry. Their effects are analyzed in detail and a novel non-stationary filtering technique tailored to deterministic scatterers' properties is introduced to preserve the differential phase information. The second one is the compensation of the troposphere changes in long-time span gbSAR differential interferograms. A new technique is worked out to effectively separate the differential phase variations due to the atmospheric artefacts from the deformation components. The third one is the use of the whole polarimetric differential information. A novel polarimetric differential scattering model is put forward to relax the constraints of an advanced DInSAR technique, the Coherent Pixel Technique, and to propose an innovative polarimetric approach. The advantages offered by Polarimetric DInSAR are demonstrated in terms of quality of the deformation-rate map describing the subsidence phenomenon in Sallent. In the end, the potentials of coherence-optimization techniques for the further improvement of the deformation process estimation are stressed.
APA, Harvard, Vancouver, ISO, and other styles
10

Ho, Sze-Tek Terence. "Investigating ground swarm robotics using agent based simulation." Thesis, Monterey, Calif. : Naval Postgraduate School, 2006. http://bosun.nps.edu/uhtbin/hyperion.exe/06Dec%5FHo.pdf.

Full text
Abstract:
Thesis (M.S. in Operations Research)--Naval Postgraduate School, December 2006.
Thesis Advisor(s): Susan M. Sanchez. "December 2006." Includes bibliographical references (p.111-114). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ground-based"

1

Hall, Frederick C. Ground-based photographic monitoring. Portland, OR: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brooke, Christopher J. Ground-based remote sensing. Birmingham: Institute of Field Archaeologists, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hall, Frederick C. Ground-based photographic monitoring. Portland, OR: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hall, Frederick C. Ground-based photographic monitoring. Portland, OR: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Kegen. Ground-based radio positioning. Chichester, West Sussex, U.K: Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lockwood, M. Satellite-ground based coordination sourcebook. Noordwijk, Netherlands: ESA Publications Division, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Patterson, Michael J. Ground-based plasma contactor characterization. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Patterson, Michael J. Ground-based plasma contactor characterization. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Patterson, Michael J. Ground-based plasma contactor characterization. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cimini, Domenico, Guido Visconti, and Frank S. Marzano, eds. Integrated Ground-Based Observing Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12968-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ground-based"

1

Shao, Michael. "Ground-Based Interferometry." In The Search for Extra-Solar Terrestrial Planets: Techniques and Technology, 105–10. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5808-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Ye, Jeffery T. Richards, Jessica L. Hellein, Christina M. Johnson, Julia Woodall, Tait Sorenson, Srujana Neelam, Anna Maria J. Ruby, and Howard G. Levine. "NASA’s Ground-Based." In Methods in Molecular Biology, 281–99. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1677-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kolle, Olaf, Norbert Kalthoff, Christoph Kottmeier, and J. William Munger. "Ground-Based Platforms." In Springer Handbook of Atmospheric Measurements, 155–82. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-52171-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jingxin. "Ground-Based Extraction." In Forest and Biomass Harvest and Logistics, 73–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12946-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tarchi, Dario, Nicola Casagli, Joaquim Fortuny-Guasch, Letizia Guerri, Giuseppe Antonello, and Davide Leva. "Ground Deformation from Ground-Based SAR Interferometry." In The Stromboli Volcano: An Integrated Study of the 2002-2003 Eruption, 359–72. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/182gm29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guenther, Eike W. "Ground-Based Exoplanet Projects." In Characterizing Stellar and Exoplanetary Environments, 289–306. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09749-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pullen, Sam. "Ground Based Augmentation Systems." In Springer Handbook of Global Navigation Satellite Systems, 905–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42928-1_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Woltjer, L. "Large Ground-Based Telescopes." In Astrophysics and Space Science Library, 123–27. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0794-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Becklin, E. E. "Ground-Based Infrared Astronomy." In Astrophysics and Space Science Library, 129–32. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0794-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bateman, R. P., G. A. Matthews, and F. R. Hall. "Ground-based Application Equipment." In Field Manual of Techniques in Invertebrate Pathology, 77–112. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-1547-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ground-based"

1

Melo, Arline M. "A new setup for ground-based measurements of solar activity emission at 10 μm." In Ground-based and Airborne Telescopes. SPIE, 2006. http://dx.doi.org/10.1117/12.672068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guerra, Juan Carlos. "Microthermal measurements of the surface layer and its contribution to the seeing." In Ground-based and Airborne Telescopes. SPIE, 2006. http://dx.doi.org/10.1117/12.672473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Front Matter: Volume 7012." In Ground-based and Airborne Telescopes. SPIE, 2008. http://dx.doi.org/10.1117/12.805242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stanghellini, Stefano, Maximilian Kraus, and Pascal Martinez. "Procurement of the dome and the telescope structure of the ESO ELT: status report." In Ground-based and Airborne Telescopes VII, edited by Roberto Gilmozzi, Heather K. Marshall, and Jason Spyromilio. SPIE, 2018. http://dx.doi.org/10.1117/12.2313510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Murach, Thomas, Domenik Ehlert, Markus Garczarczyk, Tim Lukas Holch, Stephan Kaphle, David Melkumyan, Ullrich Schwanke, Gerrit Spengler, and Louise Oakes. "Automatic mirror alignment for the medium-sized telescopes of the Cherenkov Telescope Array using the Bokeh method." In Ground-based and Airborne Telescopes VII, edited by Roberto Gilmozzi, Heather K. Marshall, and Jason Spyromilio. SPIE, 2018. http://dx.doi.org/10.1117/12.2313517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lewis, Steffan A., Enzo Brunetto, Andreas Förster, Christoph Frank, Ivan Guidolin, Stéphane Guisard, Peter Hammersley, et al. "Extremely Large Telescope Prefocal Station A system concept." In Ground-based and Airborne Telescopes VII, edited by Roberto Gilmozzi, Heather K. Marshall, and Jason Spyromilio. SPIE, 2018. http://dx.doi.org/10.1117/12.2313535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pfrommer, Thomas, Steffan A. Lewis, Samuel Lévêque, Christoph Frank, Paolo La Penna, Johan Kosmalski, Jason Spyromilio, et al. "MELT: an optomechanical emulation testbench for ELT wavefront control and phasing strategy." In Ground-based and Airborne Telescopes VII, edited by Roberto Gilmozzi, Heather K. Marshall, and Jason Spyromilio. SPIE, 2018. http://dx.doi.org/10.1117/12.2313537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Groot, Paul J., Steven Bloemen, Peter Jonker, Paul Vreeswijk, Kerry Paterson, Rik ter Horst, Ramón Navarro, et al. "The BlackGEM array (Conference Presentation)." In Ground-based and Airborne Telescopes VII, edited by Roberto Gilmozzi, Heather K. Marshall, and Jason Spyromilio. SPIE, 2018. http://dx.doi.org/10.1117/12.2313557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Catropa, Daniel, Daniel Durusky, Jan Kansky, Derek Kopon, Stuart McMuldroch, William Podgorski, Antonin H. Bouchez, Brian A. McLeod, and Kenneth McCracken. "The acquisition, guiding, and wavefront sensing system for the Giant Magellan Telescope." In Ground-based and Airborne Telescopes VII, edited by Roberto Gilmozzi, Heather K. Marshall, and Jason Spyromilio. SPIE, 2018. http://dx.doi.org/10.1117/12.2313589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Muller, Gary, Ed Hileman, Douglas R. Neill, Felipe Daruich, Michael Warner, Oliver Wiecha, N. G. Mills, et al. "LSST M1M3 figure actuator final design, fabrication, and test." In Ground-based and Airborne Telescopes VII, edited by Roberto Gilmozzi, Heather K. Marshall, and Jason Spyromilio. SPIE, 2018. http://dx.doi.org/10.1117/12.2313598.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ground-based"

1

Hall, Frederick C. Ground-based photographic monitoring. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2001. http://dx.doi.org/10.2737/pnw-gtr-503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Henry, Todd J., David G. Monet, Paul D. Shankland, Mark J. Reid, William van Altena, and Norbert Zacharias. Ground-Based Astrometry 2010-2020. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada524845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schultz, Jack C. Development of Ground-Based Plant Sentinels. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada427784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hawkins, W., and K. Wohletz. Ground-based visual inspection for CTBT verification. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/552775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Davis, Larry S. Vision-Based Navigation for Autonomous Ground Vehicles. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada203712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hadynski, Gregory J. Communications Engineering for the Ground Based Interceptor,. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada319962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Altrock, Richard C. Ground-Based Coronagraphic Observations of Solar Streamers. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada267259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Davis, Larry. Vision-Based Navigation for Autonomous Ground Vehicles. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada171618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weiner, M. M. Performance of Ground-Based High-Frequency Receiving Arrays with Electrically-Small Ground Planes. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada250489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Casey, Leslie A. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1130087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography