Dissertations / Theses on the topic 'Ground and surface water biodiversity'

To see the other types of publications on this topic, follow the link: Ground and surface water biodiversity.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Ground and surface water biodiversity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Vionnet, Leticia Beatriz 1960. "Modeling of ground-water flow and surface water/ground-water interactions of the San Pedro River Basin, Cochise County, Arizona." Thesis, The University of Arizona, 1992. http://hdl.handle.net/10150/278134.

Full text
Abstract:
Ground-water exploitation in the Upper San Pedro Basin has produced the formation of a cone of depression around the Sierra Vista-Fort Huachuca area. A portion of the mountain front recharge that otherwise would reach the San Pedro River is being intercepted by pumping, and portions of baseflow are being captured by pumping. The purpose of this study is to construct a simulation model capable of simulating the ground-water system as well as the ground-water-surface water interactions. The flow simulation was done by a three-dimensional, finite-difference ground-water flow model (MODFLOW) that incorporates a new stream-aquifer interaction package. Steady state simulations were performed to represent mean annual conditions. Transient simulations cover a 48 year period, starting in 1940 and ending in 1988. A sensitivity analysis of the steady state model was also performed.
APA, Harvard, Vancouver, ISO, and other styles
2

Colgan, Gary A. "Estimating surface/ground-water mixing using stable environmental isotopes." Thesis, The University of Arizona, 1989. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_etd_hy0042_m_sip1_w.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McCary, John. "Incorporating surficial aquifer ground-water fluxes into surface-water resource management studies." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rosenberry, Donald O. "Influence of fluvial processes on exchange between ground water and surface water." Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3284456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anderson, Jacob. "Geochemical Tracers of Surface Water and Ground Water Contamination from Road Salt." Thesis, Boston College, 2013. http://hdl.handle.net/2345/3313.

Full text
Abstract:
Thesis advisor: Rudolph Hon
The application of road de-icers has lead to increasing solute concentrations in surface and ground water across the northern US, Canada, and northern Europe. In a public water supply well field in southeastern Massachusetts, USA, chloride concentrations in ground water from an unconfined aquifer have steadily risen for the past twenty years. The objectives of this study are to understand spatial and temporal trends in road salt concentrations in order to identify contamination sources and fate. To this end, the methods of this project include field and lab work. Water samples were collected from surface, near-surface, and ground water from March 2012 to March 2013. The other major field data are specific conductance measurements from probes located in three piezometers. In the lab, all samples were analyzed for major ions with ion chromatography analysis. Additionally, trace elements were measured by inductively coupled plasma analysis on a subset of samples. The results of these hydrogeochemical procedures showed several important trends. First, the highest concentrations of sodium and chloride from near-surface samples were located near to roadways. Second, ground water samples taken from glacial sediments contained relatively high concentrations throughout the water column, whereas ground water samples from wetlands had high concentrations only near the surface. Third, there was no clear relationship between pH and cation concentrations. Finally, specific conductance data showed strong seasonal trends near to the surface, whereas values taken from deeper in the aquifer were steadily increasing. Based on these results, it is highly probable that road salt application is the dominate contamination source. The pathways of road salt in the watershed include runoff into surface water and infiltration into the vadose zone and ground water. Road salt appears to preferentially travel through glacial features rather than floodplain features. It is possible that sodium from road salt is sorbed to aquifer sediment and displaces other cations. However, the low values of trace metals suggest that cation exchange is not mobilizing heavy metals. Finally, the increasing specific conductance values deep in the aquifer suggest that road salt is retained within the aquifer and concentrations will likely increase in the future if the current road salt application procedures are continued
Thesis (MS) — Boston College, 2013
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Earth and Environmental Sciences
APA, Harvard, Vancouver, ISO, and other styles
6

Grundy, Ian H. "Air flow near a water surface /." Title page, table of contents and summary only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phg889.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zwierschke, Kerry Hughes. "IMPACT OF TURFGRASS SYSTEMS ON THE NUTRIENT STATUS OF SURFACE WATER, AND GROUND WATER." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1235150457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Coes, Alissa L., and Alissa L. Coes. "A GEOCHEMICAL APPROACH TO DETERMINE GROUND-WATER FLOW PATTERNS IN THE SIERRA VISTA BASIN, ARIZONA, WITH SPECIAL EMPHASIS ON GROUND-WATER/SURFACE-WATER INTERACTION." Thesis, The University of Arizona, 1997. http://hdl.handle.net/10150/622969.

Full text
Abstract:
Water quality in the Sierra Vista Ground-Water Basin is of extreme importance due to the basin's unique ecosystem and predicted future population growth. Portions of the Upper San Pedro River, flowing through the Sierra Vista Basin, contain some of the few remaining perennial streamflows in the southwest. Baseflow in the perennial reaches of the river are maintained almost entirely by the regional and floodplain aquifer systems. A population increase is predicted for the Sierra Vista Basin, and an impact on groundwater quality and availability can be expected. Due to the closely linked hydrologic systems within the basin, contamination or depletion of the regional aquifer could have direct implications for the San Pedro River. Water samples were collected within the study area from the regional and floodplain aquifers, the San Pedro River, and a bedrock spring in the Huachuca Mountains. Samples were analyzed for field parameters, major-ions, and stable isotopes to describe the main chemical characteristics of the hydrologic systems within the basin. Analysis of regional aquifer geochemistry indicates a ground-water system strongly controlled by calcite precipitation. Specific conductance, deuterium and oxygen-18 values indicate a mixing of regional-aquifer ground water and San Pedro River surface water within the floodplain aquifer. Estimates of inflow to perennial reaches of the floodplain aquifer from the regional aquifer vary from 50 to 80%, depending on location. Inflow to the San Pedro River at Charleston from the regional aquifer is estimated to be about 50 to 70% of the stream discharge.
APA, Harvard, Vancouver, ISO, and other styles
9

Vionnet, Leticia Beatriz, Thomas III Maddock, and David C. Goodrich. "Investigations of stream-aquifer interactions using a coupled surface-water and ground-water flow model." Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1997. http://hdl.handle.net/10150/615700.

Full text
Abstract:
A finite element numerical model is developed for the modeling of coupled surface-water flow and ground-water flow. The mathematical treatment of subsurface flows follows the confined aquifer theory or the classical Dupuit approximation for unconfined aquifers whereas surface-water flows are treated with the kinematic wave approximation for open channel flow. A detailed discussion of the standard approaches to represent the coupling term is provided. In this work, a mathematical expression similar to Ohm's law is used to simulate the interacting term between the two major hydrological components. Contrary to the standard approach, the coupling term is incorporated through a boundary flux integral that arises naturally in the weak form of the governing equations rather than through a source term. It is found that in some cases, a branch cut needs to be introduced along the internal boundary representing the stream in order to define a simply connected domain, which is an essential requirement in the derivation of the weak form of the ground-water flow equation. The fast time scale characteristic of surface-water flows and the slow time scale characteristic of ground-water flows are clearly established, leading to the definition of three dimensionless parameters, namely, a Peclet number that inherits the disparity between both time scales, a flow number that relates the pumping rate and the streamflow, and a Biot number that relates the conductance at the river-aquifer interface to the aquifer conductance. The model, implemented in the Bill Williams River Basin, reproduces the observed streamflow patterns and the ground-water flow patterns. Fairly good results are obtained using multiple time steps in the simulation process.
APA, Harvard, Vancouver, ISO, and other styles
10

Kikuchi, Colin. "Spatially Telescoping Measurements for Characterization of Ground Water - Surface Water Interactions along Lucile Creek, Alaska." Thesis, The University of Arizona, 2011. http://hdl.handle.net/10150/202976.

Full text
Abstract:
A new spatially telescoping approach was proposed to improve measurement flexibility and account for hydrologic scale in field studies of groundwater-surface water (GW-SW) interaction. We applied this spatially telescoping approach in a study GW-SW interactions along Lucile Creek, Alaska. Catchment-scale data were used to screen areas of potentially significant GW-SW exchange, indicating groundwater contribution from a deeper regional aquifer along the middle to lower reaches of the stream. This initial assessment was tested using reach-scale estimates of groundwater contribution during base flow conditions. The reach-scale measurements indicated a large increase in discharge along the middle reaches of the stream accompanied by a shift in chemical composition towards a regional groundwater end member. Point measurements of vertical water fluxes were used to evaluate spatial and temporal variability of GW-SW exchange within representative reaches. The spatially telescoping approach identified locations of GW-SW exchange and improved interpretation of reach-scale and point-scale measurements.
APA, Harvard, Vancouver, ISO, and other styles
11

Robinson, J. Mike. "Chemical and Hydrostratigraphic Characterization of Ground Water and Surface Water Interactions in Cache Valley, Utah." DigitalCommons@USU, 1999. https://digitalcommons.usu.edu/etd/6717.

Full text
Abstract:
A series of five east-west and two north-south hydrostratigraphic cross sections were drawn from drillers' logs of water wells within the southern half of Cache Valley, Utah. These cross-sections demonstrate that ground water flow to streams is restricted by a continuous low- II permeability layer, nearly 100-feet thick. This layer was correlated to the lake-bottom deposits of the Bonneville (30,000 -13,000 years ago) and Little Valley (140,000 - 90,000 years ago) cycles of the ancient Lake Bonneville. The most productive aquifers in the valley, collectively termed the principal aquifer , are in the southeast corner , approximately between Smithfield and Hyrum, and between the eastern valley margin and the valley center. Sands and gravels of the principal aquifer were deposited as alluvial fans and deltas by streams draining the Bear River Range. Ground water chemistry in the principal aquifer system is of the calcium-magnesium bicarbonate type with total dissolved solids (TDS) averaging about 300 ± 100 mg/L. TDS and the relative proportions of sodium, potassium, and chloride increase down flowpath, from recharge areas in the east to discharge areas in the west. Oxygen-18 (18O) and deuterium (D) analyses were performed on precipitation samples at three locations on the east valley benches, four surface water samples from streams entering the valley, and fourteen ground water samples from either wells or springs. Precipitation and surface water values generally plotted along the Global Meteoric Water Line (GMWL), although the precipitation values plotted significantly lower on the GMWL than the surface water values. Of the ground water samples, twelve from the principal aquifer generally clustered near the surface water data points, suggesting that water from streams, rather than infiltrating precipitation, recharges the principal aquifer. Twelve ground water samples were analyzed for tritium. The tritium values of eight samples from wells or springs in the principal aquifer suggest recharge after 1952. Two samples with tritium values dating prior to 1952 are from wells in the principal aquifer, and two are from wells west of the principal aquifer. Four samples were analyzed for 14C. Two of these wells were completed in the principal aquifer and two west of it. Correcting for partial carbon dilution, the age difference between the different areas is on the order of tens of thousands of years.
APA, Harvard, Vancouver, ISO, and other styles
12

Hadley, Heidi K. "Hydrochemical Definition of Ground Water and Surface Water, with an Emphasis on the Origin of the Ground-Water Salinity in Southern Juab Valley, Juab County, Utah." DigitalCommons@USU, 1996. https://digitalcommons.usu.edu/etd/6706.

Full text
Abstract:
As part of a U.S. Geological Survey study in Juab Valley in central Utah from 1991 to 1994, the chemistry of ground - and surface -water samples was determined. Total dissolved solids in the ground water of southern Juab Valley have historically been higher , in general, than ground water in other areas of Utah . Total dissolved solids for ground-water samples from this study ranged from 623 to 3,980 milligrams/liter. High-sulfate chemical data of previous studies suggested that the major source of ground-water salinity is the dissolution of gypsum (hydrous calcium sulfate ) from the Arapien Shale. Sulfur-34 to sulfur- 32 isotopic ratio data have confirmed that dissolved Arapien Shale is the major source of salinity in southern Juab Valley water. This thesis study of southern Juab Valley had four main objectives: 1) define the present chemistry of the ground and surface water; 2) qualitatively determine the mineralogy of the Middle Jurassic Arapien Shale; 3) determine the major sources of salinity; and 4) determine the main flow path in the ground-water system. Chemical data show that the water in southern Juab Valley is predominantly of a calcium-magnesium-sulfate-bicarbonate composition. X-ray diffraction determined the mineralogy of the Arapien Shale as primarily calcite and quartz. Mineralogy of the acid-insoluble residue is illite, chlorite, quartz, and a trace of feldspar. Based on chemical, isotopic, and simple salt weight percent data, dissolution of gypsum is the major source of salinity in southern Juab Valley water. Using the chemical and isotopic data as input , a mass balance computer software program (NETPATH) helped to determine that the gypsum is derived from the Arapien Shale . NETPATH and the potentiometric surface map helped to define the main ground-water flow path as southwest across southern Juab Valley, from Chicken Creek in the San Pitch Mountains on the east side of the valley toward Chick Creek Reservoir in the southwest part of the valley.
APA, Harvard, Vancouver, ISO, and other styles
13

Fleming, Brandon J. "Effects of anthropogenic stage fluctuations on surface water/ground water interactions along the Deerfield River, Massachusetts." Amherst, Mass. : University of Massachusetts Amherst, 2009. http://scholarworks.umass.edu/theses/226/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Vionnet, Leticia Beatriz, and Thomas Maddock. "Modeling of Ground-Water Flow and Surface/Ground-Water Interaction for the San Pedro River Basin Part I Mexican Border to Fairbank, Arizona." Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1992. http://hdl.handle.net/10150/614152.

Full text
Abstract:
Many hydrologic basins in the southwest have seen their perennial streamflows turn to ephemeral, their riparian communities disappear or be jeopardized, and their aquifers suffer from severe overdrafts. Under -management of ground -water exploitation and of conjunctive use of surface and ground waters are the main reasons for these events.
APA, Harvard, Vancouver, ISO, and other styles
15

Van, Metre Peter Chapman 1956, and Metre Peter Chapman 1956 Van. "Flow and water quality relations between surface water and ground water in the Puerco River basin near Chambers, Arizona." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277926.

Full text
Abstract:
The Puerco River is an ephemeral stream that received effluent from uranium-mine dewatering operations from the 1950's until 1962 and from 1968 until mining ceased in 1986. Flow and water-quality relations between the Puerco River and the alluvial aquifer underlying it were investigated at a site near Chambers. Data collection included installing and sampling nine monitor wells and two drive points; monitoring stage and sampling surface water; and slug testing wells. The stream recharges the alluvial aquifer during periods of flow and the streambed is a location of ground-water discharge by evapotranspiration during periods of no flow. Discharge by evapotranspiration may exceed recharge thus reducing the potential for contaminant movement away from the river by advective transport. Geochemical modeling indicates that uranium minerals are undersaturated in the range in Eh observed. A +0.84 correlation was calculated relating dissolved uranium concentration to depth in monitor wells suggesting the stream is a source of uranium to the alluvial aquifer. (Abstract shortened with permission of author.)
APA, Harvard, Vancouver, ISO, and other styles
16

Neaville, Chris C. "Hydrogeology and simulation of ground-water and surface-water flow in Pinal Creek Basin, Gila County, Arizona." Thesis, The University of Arizona, 1991. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1991_400_sip1_w.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Oztas, Nur Banu. "Pesticide Pollution In Surface And Ground Water Of An Agricultural Area, Kumluca, Turkey." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12609445/index.pdf.

Full text
Abstract:
Concentrations of 17 organochlorine and 14 organophosphorus pesticides were measured in 27 ground and 11 surface water samples collected from a heavily agricultural area, Kumluca, in spring and fall seasons of 2005. The samples were preconcentrated by Solid Phase Extraction. GC-ECD and GC-NPD systems were used for quantitative determination of organochlorine and organophosphorus pesticides respectively. The quality check/quality assurance tests were performed by the analysis of field and laboratory blanks, standard reference materials, spiked control and sample matrices, surrogate standards, sampling and analysis replicates. It is observed that, sample matrix lowers average percent recoveries from 89% to 76%. The uncertainties of measurements were calculated to determine major factors affecting the analysis results. It was observed that uncertainty arising from extraction procedure was generally the highest. The most commonly observed pesticide was endosulfan (70%) and chlorpyriphos (53%) for organophosphorus and organochlorine pesticides. The highest average concentration was observed for heptachlor (26 ng/L) and fenamiphos (184 ng/L). Generally pesticides were detected more often in surface waters, where the concentrations were also higher. The concentrations of organophosphorus pesticides in spring, and organochlorine pesticides in fall season were higher. The high occurrences and detection of degradation products of chlorinated pesticides clearly indicate their intense use before 1980s. It is shown that, in Kumluca environment, degradation of these pesticides mostly occurs in surface waters. It is observed that agricultural activities affect water quality in the region. The total concentration limit (500ng/L) was exceeded for 27% of surface and 14% of ground water samples, at least once in both seasons. The legal limit for a single pesticide (100ng/L) was exceeded by 32 % of surface, 24 % of ground water samples.
APA, Harvard, Vancouver, ISO, and other styles
18

Lauwo, Simon Yesse. "A modeling investigation of ground and surface water fluxes for Konza Tallgrass Prairie." Thesis, Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cairampoma, Arroyo Alberto, and Vega Paul Villegas. "Legal regime ground water in Peru." THĒMIS-Revista de Derecho, 2017. http://repositorio.pucp.edu.pe/index/handle/123456789/108913.

Full text
Abstract:
This article studies the legal regime of groundwater by analyzing the context of integrated water resources management and recognizing its definition and characteristics.Furthermore, it analyses the ownership of ground water, the planning regime applicable, the exploration and exploitation activities, their authorization certificates, the activity of supervision over them, and finally the article describes the special schemes for management and limitation recognized in Peruvian law.
En el presente artículo se estudia el régimen jurídico de las aguas subterráneas, analizando el marco de la gestión integrada de recursos hídricos y reconociendo su definición y particularidades.Asimismo, se analiza la titularidad de las aguas subterráneas, el régimen de planificación aplicable, las actividades de exploración y explotación, sus títulos habilitantes, la actividad de supervisión que sobre ellas recae, para finalmente, dejar anotados los regímenes especiales de gestión y limitación reconocidos en el ordenamiento jurídico peruano.
APA, Harvard, Vancouver, ISO, and other styles
20

Mathipa, Morongwa Mary. "Analysis of the bio-physicochemical quality of surface and ground water in the Tubatse Municipality." Thesis, University of Limpopo, 2016. http://hdl.handle.net/10386/1663.

Full text
Abstract:
Thesis (M. Sc. (Microbiology)) -- University of limpopo, 2016
Human activities are known to be the major contributors to contamination of natural water sources. This becomes a serious health risk when the communities rely on the same water sources for their household water needs. The current study investigated the bio-physicochemical quality of surface and ground waters found in a mining area in the Tubatse locality, for their suitability for drinking and other household use. The bacteriological analyses of surface waters showed dominance by genera of the phylum Proteobacteria, followed by Actinobacteria and Firmicutes. The isolates included the genera Aeromonas, Pseudomonas, Cronobacter, Acinetobacter, Enterobacter, Pantoea, Serratia, Bordetella, Kocuria and Streptococcus. This dominance pattern is proportionately similar to the pattern reported on human skin and of gut biota. Enterobacter spp. were the predominant species in the surface waters, followed by Bordetella spp. With regard to ground water, one sample was laden with coliforms whereas the other sample was free of coliforms. Physical quality parameters such as turbidity, colour and (total suspended solids) TSS of the surface and ground water samples were compliant with the set standards for drinking water according to South African water quality guidelines (2005). The concentrations of Zn, [SCN-], Cr, Co, Fe, Ni, Cu, H2O2, Cl2 were determined in the surface and ground waters in dry and wet seasons as well. A non-significant decrease in the levels of Cl2 and [SCN-] and an increase in TDS and Cr were observed in the wet season. All metal and chemical levels in surface and ground water, except Cr, were lower than permitted concentration for drinking water. However the concentrations of Zn, Fe and Co exceeded the normal expected concentrations of < 3.5 μg/L, 0.5 mg/L, < 0.01 mg/L and < 5 μg/L respectively. The sediments and soil samples were digested with aqua regia for Cu, Cr, Fe, Co and Zn analyses. An increase in the levels of Zn, Cr and Co in the wet season was observed. The concentrations of the heavy metals such as Co, Cu and Cr were higher in sediments at the sampling points closer to the mining sites. Cytotoxicity assay was performed with different concentrations, as detected in the water and sediment samples, of Zn, [SCN-], Cr, Co, and Fe on C2C12 (mammalian) cells. An increase in viable cells was observed after treatment with Cr (0.2, 0.45 and 0.9 mg/L), Zn and Fe (1.0 and 2 mg/L), Co (2, 5 and 10 mg/L). Only cells treated with SCN- (3.3, 5.4 and 7.2 mg/L) exhibited a significant decrease in viability. These results demonstrate that the water in the Tubatse municipality is not suitable for drinking and other household purposes without prior treatment which will remove contaminating microorganisms and chemicals and heavy metals.
APA, Harvard, Vancouver, ISO, and other styles
21

Davis, Laura Agnes. "Ground-Water Flow and Interaction with Surface Water in San Bernardino Valley, Cochise County, Arizona and Sonora Mexico." Thesis, The University of Arizona, 1997. http://hdl.handle.net/10150/191298.

Full text
Abstract:
In the center of San Bernardino Valley in southeastern Arizona, San Bernardino National Wildlife Refuge provides unique wetlands habitat for endangered fish and wildlife. Confined conditions exist within the refuge, producing springs, artesian wells, and perennial pools along Black Draw, the main surface-water drainage. A numerical flow model was constructed in order to understand the hydrogeologic system of the basin. Annual inflows to the basin include 50,171 acre-feet of mountain-front recharge, 4,360 acft of underflow, and 7,074 ac-ft of river leakage. Annual outflows consist of 57,704 ac-ft of underflow, 3,010 ac-ft of river leakage, 537 ac-ft of evapotranspiration, 346 ac-ft of spring discharge, and 5 ac-ft of stream leakage. Further investigations are needed to refine the annual steady-state model, develop a seasonal (oscillatory) model, and construct transient simulations predicting responses of the hydrologic system to climatic and/or anthropogenic stresses. Extremely large mountain-front recharge and subsurface outflow estimates should be improved by conducting pump tests, geophysical studies, and isotope dating and chemistry analyses of ground water, and by collecting more water levels in Sonora. These studies will also provide information on the role of basalt flows in mountain-front recharge distribution and ground-water flow patterns. The study concludes with a recommended monitoring program for the refuge.
APA, Harvard, Vancouver, ISO, and other styles
22

Davis, Laura Agnes, Thomas III Maddock, and Robert Mac Nish. "Ground-water flow and interaction with surface water in San Bernardino valley, Cochise county, Arizona and Sonora, Mexico." Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1997. http://hdl.handle.net/10150/615699.

Full text
Abstract:
In the center of San Bernardino Valley in southeastern Arizona, San Bernardino National Wildlife Refuge provides unique wetlands habitat for endangered fish and wildlife. Confined conditions exist within the refuge, producing springs, artesian wells, and perennial pools along Black Draw, the main surface-water drainage. A numerical flow model was constructed in order to understand the hydrogeologic system of the basin. Annual inflows to the basin include 50,171 acre-feet of mountain-front recharge, 4,360 acft of underflow, and 7,074 ac-ft of river leakage. Annual outflows consist of 57,704 ac-ft of underflow, 3,010 ac-ft of river leakage, 537 ac-ft of evapotranspiration, 346 ac-ft of spring discharge, and 5 ac-ft of stream leakage. Further investigations are needed to refine the annual steady-state model, develop a seasonal (oscillatory) model, and construct transient simulations predicting responses of the hydrologic system to climatic and/or anthropogenic stresses. Extremely large mountain-front recharge and subsurface outflow estimates should be improved by conducting pump tests, geophysical studies, and isotope dating and chemistry analyses of ground water, and by collecting more water levels in Sonora. These studies will also provide information on the role of basalt flows in mountain-front recharge distribution and ground-water flow patterns. The study concludes with a recommended monitoring program for the refuge.
APA, Harvard, Vancouver, ISO, and other styles
23

Syaukat, Yusman. "Economics of integrated surface and ground water use management in the Jakarta region, Indonesia." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0028/NQ51048.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhu, Danyun. "Determination of Residential-Use Turf Pesticides in Surface and Ground Water by HPLC/DAD." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/ZhuD2003.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pullan, Stephanie. "Modelling of pesticide exposure in ground and surface waters used for public water supply." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/8605.

Full text
Abstract:
Diffuse transfers of pesticides from agricultural land to ground and surface waters can lead to significant drinking water quality issues. This thesis describes the development and application of a parameter-efficient, numerical model to predict pesticide concentrations in raw water sources within an integrated hydrological framework. As such, it fills an unoccupied niche that exists in pesticide fate modelling for a computationally undemanding model that contains enough process complexity to be applicable in a wide range of catchments and hydrogeological settings in the UK and beyond. The model represents the key processes involved in pesticide fate (linear sorption and first-order degradation) and transport (surface runoff, lateral throughflow, drain flow, percolation to the unsaturated zone, calculated using a soil water balance) in the soil at a daily time step. Soil properties are derived from the national soil database for England and Wales and are used to define the boundary conditions at the interface between the subsoil and the unsaturated zone. This is the basis of the integrated hydrological framework which enables the application of the model to both surface water catchments and groundwater resources. The unsaturated zone model accounts for solute transport through two flow domains (accounting for fracture flow and intergranular matrix flow) in three hydrogeological settings (considering the presence and permeability of superficial deposits). The model was first applied to a small headwater sub-catchment in the upper Cherwell. Performance was good for drainflow predictions (Nash Sutcliffe Efficiency > 0.61) and performed better than the MACRO model and as well as the modified MACRO model. Surface water model performance was evaluated for eight pesticides in five different catchments. Performance was generally good for flow prediction (Nash Sutcliffe Efficiency > 0.59 and percentage bias below 10 %, in the validation period for all but two catchments). The 90th percentile measured concentration was captured by the model in 62 % of catchment-pesticide combinations. In theremaining cases predictions were within, at most, a factor of four of measured 90th percentile concentrations. The rank order of the frequency of pesticides detected over 0.1 μg L-1 was also predicted reasonably well (Spearman’s rank coefficient > 0.75; p < 0.05 in three catchments). Pesticide transport in the unsaturated zone model was explored at the point scale in three aquifers (chalk, limestone and sandstone). The results demonstrate that representing the unsaturated zone processes can have a major effect on the timing and magnitude of pesticide transfers to the water table. In comparison with the other catchment scale pesticide fate models that predict pesticide exposure at a daily time-step, the model developed stands out requiring only a small number of parameters for calibration and quick simulation times. The benefit of this is that the model can be used to predict pesticide exposure in multiple surface and groundwater resources relatively quickly which makes it a useful tool for water company risk assessment. The broad-scale approach to pesticide fate and transport modelling presented here can help to identify and prioritise pesticide monitoring strategies, to compare catchments in order to target catchment management and to highlight potential problems that could arise under different future scenarios.
APA, Harvard, Vancouver, ISO, and other styles
26

Cho, Jae-Pil. "A comprehensive modeling approach for BMP impact assessment considering surface and ground water interaction." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27890.

Full text
Abstract:
The overall goal of this study was to develop a comprehensive tool for assessing the effectiveness of selected BMPs on both hydrology and water quality and to demonstrate the applicability of the system by considering 1) temporally and spatially changing land use management practice in an agricultural watershed and 2) interaction between surface and ground water over the entire system. A user interface and Dynamic Agricultural Non-point Source Assessment Tool (DANSAT) were developed to achieve this goal. DANSAT is the only distributed-parameter, physically-base, continuous-simulation, and multi-soil layer model for simulating impacts of agricultural BMPs on hydrology and water qulality in small agricultural watersheds. DANSAT was applied to QNB plot (18m à 27m) and two agricultural watersheds in Virginia, including Owl Run watershed (1140 ha) and QN2 in the Nomini Creek watershed (216 ha), to evaluate the model components and its performance in predicting runoff, sediment yield, and pesticide load. DANSAT performed well in predicting total runoff and temporal variations in surface runoff for both field-scale and watershed-scale applications. Total percent errors between the measured and predicted results were less than 10% except for one case (39.8% within a subwatershed of Owl Run watershed), while the daily Nash-Sutcliffe model efficiencies were greater than 0.5 in all applications. Predicted total sediment yields were within ±35% of observed values in all applications. However, the performance of DANSAT in predicting temporal trend and spatial distribution of sediment loads was acceptable only within Owl Run watershed, where high correlations between flow rates and sediment loads exist. The predicted total pesticide loads were within ±100% of observed values. DANSAT failed to simulate the temporal occurrence of pesticide loads with a 0.42 daily Nash-Sutcliffe efficiency value. The Dual-Simulation (DS) was developed within the linked ground water approach to resolve problems encountered due to the existence of different temporal scales between DANSAT and the existing ground water models such as MODFLOW and MT3D. The linked approach performed better in predicting the seasonal trend of total runoff compared to the integrated approach by showing an increase in monthly Nash-Sutcliffe efficiency value from 0.53 to 0.60. Surface and subsurface output variables were sensitive to the changes in spatially distributed soil parameters such as total porosity and field capacity. A maximum grid size of 100 m was recommended to be appropriate for representing spatial distribution of topographic, land use, and soil characteristics based on accuracy analysis during the GIS manipulation processes. Larger time-step based on predefined acceptable maximum grid size, decreased the computational time dramatically. Overall sensitivity to different grid sizes and time-steps was smallest for hydrology components followed by sediment and pesticide components. Dynamic crop rotation was considered by DANSAT, and the model successfully simulated the impacts of temporal and spatial changes in crop rotations on hydrology and water quality for both surface and subsurface areas. DANSAT could prove to be a useful tool for non-point source pollution managers to assess the relative effectiveness of temporally and spatially changing BMPs on both surface and ground water quantity and quality.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
27

Nalesso, Mauro. "Integrated Surface-Ground Water Modeling in Wetlands With Improved Methods to Simulate Vegetative Resistance to Flow." FIU Digital Commons, 2009. http://digitalcommons.fiu.edu/etd/122.

Full text
Abstract:
This dissertation focused on developing an integrated surface – subsurface hydrologic simulation numerical model by programming and testing the coupling of the USGS MODFLOW-2005 Groundwater Flow Process (GWF) package (USGS, 2005) with the 2D surface water routing model: FLO-2D (O’Brien et al., 1993). The coupling included the necessary procedures to numerically integrate and verify both models as a single computational software system that will heretofore be referred to as WHIMFLO-2D (Wetlands Hydrology Integrated Model). An improved physical formulation of flow resistance through vegetation in shallow waters based on the concept of drag force was also implemented for the simulations of floodplains, while the use of the classical methods (e.g., Manning, Chezy, Darcy-Weisbach) to calculate flow resistance has been maintained for the canals and deeper waters. A preliminary demonstration exercise WHIMFLO-2D in an existing field site was developed for the Loxahatchee Impoundment Landscape Assessment (LILA), an 80 acre area, located at the Arthur R. Marshall Loxahatchee National Wild Life Refuge in Boynton Beach, Florida. After applying a number of simplifying assumptions, results have illustrated the ability of the model to simulate the hydrology of a wetland. In this illustrative case, a comparison between measured and simulated stages level showed an average error of 0.31% with a maximum error of 2.8%. Comparison of measured and simulated groundwater head levels showed an average error of 0.18% with a maximum of 2.9%.
APA, Harvard, Vancouver, ISO, and other styles
28

Schmid, Wolfgang, and Wolfgang Schmid. "A farm package for modflow-2000: Simulation of irrigation demand and conjunctively managed surface-water and ground-water supply." Thesis, The University of Arizona, 2004. http://hdl.handle.net/10150/626888.

Full text
Abstract:
A new Farm Package (FMP) was developed for using the U.S. Geological Survey's groundwater modeling program, MODFLOW-2000 (MF2K), to estimate irrigation water allocations to irrigation settings. The FMP dynamically integrates irrigation water demand, surface-water & groundwater supply, and return flow from excess irrigation. Routed surface-water delivery is optional, and can be simulated by coupling FMP with the Streamflow Routing Package (SFRl ). MF2K with FMP and SFRl allows estimating the allocation of surface-water and groundwater to farms for the following applications: (1) historic and future simulations, (2) water rights issues and operational decisions, (3) non-drought and drought situations. Irrigation demand, supply, and return flow are partly subject to head-dependent sinks and sources such as transpiration uptake from groundwater (formulated by FMP) and leakage between the conveyance system and the aquifer (formulated by SFRl). A steady state transpiration uptake, varying with changing water level, is stepwise linearly approximated by FMP. This was validated by ensembles of variably saturated soil column models using HYDRUS2D for different soil types, values of potential transpiration, and root zone depths. A restriction of transpiration uptake is proportional to a reduction of the active root zone. It is approximated in FMP by an analytical solution, which determines inactive ranges of the root zone with pressure heads typical for conditions of anoxia or wilting. At steady state, the transpiration uptake equaled the flux across the water table (plus the irrigation flux, if applied). Therefore, changes in soil water storage are assumed negligible. Based on this assumption, the irrigation flux required is determined in FMP by subtracting transpiratory components from natural sources (groundwater, precipitation) from a maximum transpiration uptake. This transpiratory irrigation requirement is calculated for each finite difference cell, and increased sufficiently to compensate for evaporative losses and for inefficient use. Accumulating the resulting cell delivery requirement over all cells in a farm yields the total farm delivery requirement, which is to be satisfied with surface- or groundwater. Five economic and non-economic drought response policies can be applied, if the potential supply of surface- and groundwater is insufficient to meet the crop demand. The code was verified by a hypothetical example problem run in 55 scenarios (5 drought policy scenarios x 11 parameter-group scenarios). Among all sources and sinks in a cumulative volumetric budget, 'farm well discharge,' and particularly 'farm net recharge,' were most sensitive to changes in drought policies or changes of parameters.
APA, Harvard, Vancouver, ISO, and other styles
29

Schmid, Wolfgang. "A farm package for MODFLOW-2000 simulation of irrigation demand and conjunctively managed surface-water and ground-water supply /." Diss., The University of Arizona, 2004. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2004_287_sip1_w.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Schock, Kevin A. "Predicting Seepage of Leachate from the St. Johns Landfill to Ground and Surface Water Systems." PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/4648.

Full text
Abstract:
Determination of the vertical and horizontal groundwater hydraulic gradient within a landfill is the first step in determining the potential of groundwater contamination from the landfill leachate. The length of a study and the frequency at which measurements are recorded can greatly affect the description of the local groundwater environment. A more comprehensive analysis can be preformed for longer periods of study and greater measurement frequency. The intent of this study was to install a continuous groundwater level monitoring system around the st. Johns Landfill for a minimum study length of one year. This would allow a more thorough study of the seasonal character and behavior of the groundwater system beneath the landfill than in previous studies. Particular interest was paid to groundwater level changes resulting from seasonal weather changes. Additional attention was paid to other forcing mechanisms which could be perturbing groundwater levels, and variations in the geochemical groundwater constituents. Included throughout this report is a literature review of various studies pertinent to the analysis of groundwater level variations. Seasonal variations in vertical groundwater hydraulic gradients were reviewed and time averaged vertical seepage rates were estimated. Areal plots of groundwater levels were used to view expected horizontal groundwater hydraulic gradients during seasonal maximum and minimum groundwater levels. A computer model was developed to study the effects temporal variations in slough water levels had on groundwater seepage rates through the perimeter dike separating the landfill from the sloughs. The modeling provided an estimate of the average horizontal leachate seepage rate into the sloughs. Comparison plots of monitoring well groundwater levels were used to analyze potential swash zones beneath the landfill and potential effects of lowered water levels in Bybee Lake. Spectral analysis techniques were imployed to determine the dominant frequencies observed in the groundwater levels, allowing determination of the type of forcing mechanism driving the fluctuations. Geochemical groundwater constituents were statistically analyzed to determine the significance of observed trends in the data: areal plots of chloride concentrations and electrical conductivity were made to view constituent distributions within the underlying aquifers. Estimated vertical and horizontal groundwater seepage rates into the local waters showed that horizontal leachate seepage is insignificant compared to vertical leachate seepage. Groundwater level comparison plots indicated no significant swashing beneath the landfill occurred. The statistical studies on groundwater forcing mechanisms indicated that either the slough or the Columbia River water levels could be perturbing groundwater levels. Trend analyses on the geochemical groundwater constituents indicated significant, positive trends in chloride concentrations, and undeterminable trends in electrical conductivity.
APA, Harvard, Vancouver, ISO, and other styles
31

Holmes, Stuart W. "Investigation of Spatial and Temporal Groundwater Thermal Anomalies at Zanesville Municipal Well Field, Ohio: Implications for Determination of River-Aquifer Connectivity Using Temperature Data." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1462026430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pearce, Meryl Winsome. "Assessment of factors influencing the quality of surface and ground water in the Hout Bay river catchment." Thesis, Rhodes University, 1989. http://hdl.handle.net/10962/d1001900.

Full text
Abstract:
An investigation into the quality of surface water and ground water was conducted during 1988 in the 38,8 km² Hout Bay River catchment near Cape Town. The main objective of the study was to determine those areas and activities which constitute a pollution source and to ascertain the relative proportion which each contributes to the pollution problem and health risk of the surf zone of the beach at Hout Ba . The objective was achieved by monitoring the chemical and microbiological attributes of the Hout Bay River, its tributaries and stormdrains in wet and dry conditions on a routine basis and during storm events. Hout Bay is a rapidly developing residential area in which sewage disposal occurs by means of septic tank soakaway systems. Ground water quality was monitored to investigate the contribution to contamination by septic tank effluent. Results showed that stormdrain effluent in dry and wet conditions and surface runoff during rainfall were the main vectors of pollution. Although the pollution concentration was high during dry conditions the greatest pollution discharge to the surf zone of Hout Bay occurred during storm events. In view of the proposed residential development it is imperative that pollution control measures be undertaken so as to secure the future recreational and aesthetic value of Hout Bay
APA, Harvard, Vancouver, ISO, and other styles
33

Jenkins, Michael Edward 1961. "Ground and surface water assessments supporting instream flow protection at the Hassayampa River Preserve, Wickenburg, Arizona." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277236.

Full text
Abstract:
The Arizona Nature Conservancy's Hassayampa River Preserve is 50 miles northwest of Phoenix near the town of Wickenburg. Four miles of the largely ephemeral Hassayampa River are perennial within the preserve, supporting one of the finest remaining cottonwood-willow forests in the state. Stream flows are affected by wells pumping ground water directly from the alluvial aquifer and may be influenced by wells which intercept lateral inflow from the regional basin-fill aquifer. Developing effective management strategies to protect base flow conditions (∼4 cfs) depends on a clear understanding of the surface and ground-water systems in the preserve. Provided that ground water developers near Wickenburg recognize and incorporate the interconnected nature of each hydrologic system, perennial flow within the preserve is not believed to be immediately threatened. (Abstract shortened with permission of author.)
APA, Harvard, Vancouver, ISO, and other styles
34

Day, Rachel Elise. "CHEMICAL MEASURES OF THE GREAT MIAMI WATERSHED: A SEASONAL POSITION WITH MIDWEST BIODIVERSITY INSTITUTE." Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1390431534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Simpson, Matthew. "An analysis of unconfined ground water flow characteristics near a seepage-face boundary." University of Western Australia. Centre for Water Research, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0025.

Full text
Abstract:
A quantitative understanding of ground water flow characteristics in unconfined aquifers is important because of the prevalence of abstraction from, and pollution of these systems. The current understanding of ground water flow in unconfined aquifers is limited because of the dominance of horizontal flow modelling strategies used to represent unconfined flow processes. The application of horizontal flow principles leads to an ignorance of seepage-face formation and can not predict the complicated three-dimensional nature of the ground water flow that dominates at the ground water-surface water interface. This study aims to address some of these deficiencies by exploring the true three-dimensional nature of ground water flow including the formation of seepage faces at the ground water-surface water interface using numerical and laboratory techniques. A finite element model for simulating two-dimensional (vertical) variably saturated flow is developed and benchmarked against standard laboratory and field-scale solutions. The numerical features of the finite element model are explored and compared to a simple finite difference formulation. The comparison demonstrates how finite element formulations lead to a broader spatial averaging of material properties and a different method for the representation of specified flux boundaries. A detailed comparison analysis indicates that these differences in the finite element solution lead to an improved approximation to the partial differential equation governing two-dimensional (vertical) variably saturated flow. A laboratory analysis of unconfined ground water flow and associated solute transport characteristics was performed. The analysis focused upon unconfined flow towards a pumping well. The laboratory observations were reliably reproduced using a three-dimensional (axi-symmetric), variably saturated ground water flow model. The model was benchmarked against the ground water flow characteristics such as the seepage-face height and total flow rate. In addition, the model was shown to reliably reproduce the solute transport features such as travel times and streamline distributions. This is the first time that a numerical model has been used to reliably reproduce the solute transport characteristics near a seepage-face boundary where the three-dimensional flow effects are prevalent. The ability to reliably predict solute transport patterns in the seepage-face zone is important since this region is known to support vital microbially facilitated reactions that control nutrient cycling and contaminant attenuation. The three-dimensional travel time distribution near the seepage-face was compared to that predicted using a horizontal flow modelling approach derived from the basic Dupuit-Forchheimer equations. The Dupuit-Forchheimer based model indicated that horizontal flow modelling would under-estimate the total residence time near a seepage-face boundary, thereby introducing a considerable source of error in a solute transport analysis. For this analysis, a new analytical solution for the steady travel time distribution in an unconfined aquifer subject to a single pumping well was derived. The analytical model has identified, for the first time in the hydrogeology literature, the use of the imaginary error function. The imaginary error function is a standard transcendental function and an infinite series approach to evaluate the function was successfully proposed. The two-dimensional (vertical) ground water flow model was extended to handle the case where the flow is driven by density gradients near the ground water-surface water interface. The unsteady, two-dimensional, Galerkin finite element model of density-dependent ground water flow in variably saturated porous media is rigorously presented and partially benchmarked under fully saturated (confined) conditions. The partial benchmarking involved reproducing solutions to the standard Henry salt-water intrusion and the Elder salt-convection problems. The model was used in a standard density-coupled and a new density-uncoupled mode to elucidate the worthiness of the Henry and Elder problems as benchmark standards. A comparison of the coupled and uncoupled solutions indicates that the Henry salt-water intrusion problem has limited worthiness as a benchmark as the patterns of ground water flow are relatively insensitive to density-coupled effects. Alternatively, the Elder problem is completely dependent upon a correct representation of the density-coupled flow and solute transport processes. The coupled versus uncoupled comparison is proposed as a new test of the worthiness of benchmark standards. The Henry salt-water intrusion problem was further analysed in an attempt to alleviate some of the difficulties associated with this benchmark problem. The numerical model was tested against a re-evaluated version of Henry's semi-analytical solution for the coupled solute concentration distribution. The numerical model was used to propose a modified version of the Henry problem where the importance of density-coupled processes was increased. The modified problem was shown to have an improved worthiness as compared to the standard solution. The numerical model results were benchmarked against a new set of semi-analytical results for the modified problem. Certain advantages in using the modified problem as a test case for benchmarking the results of a numerical model of density-dependent ground water flow are identified. A numerical investigation of the patterns of density-driven ground water flow at the ground water-surface water interface was undertaken. The numerical model is shown to produce grid-independent results for a finely discretised domain. The pattern of discharge is controlled, in part, by two parameters. One describes the recharge applied to the aquifer, and the second describes the magnitude of the density differences between the fresh recharging fluid and the saline receiving fluid. The influence of dense intrusions upon the formation of seepage-face boundaries at the ground water-surface water interface under steady-state conditions was also investigated. Dense intrusions are shown to dominate the pattern of ground water flow only under mild recharge conditions, while seepage faces dominate the outflow pattern under strong recharge conditions. Therefore, the formation of seepage-face boundaries and dense intrusions are unlikely to coincide under the conditions examined in this study.
APA, Harvard, Vancouver, ISO, and other styles
36

Schoeman, Nika Anna. "Prevalence, characterisation and potential origin of Escherichia coli found in surface and ground waters utilized for irrigation of fresh produce." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/79801.

Full text
Abstract:
Thesis (MSc Food Sc)--Stellenbosch University, 2013.
ENGLISH ABSTRACT: Over the past two decades, there has been an increase in the use of water sources for irrigation, as well as an increase in Escherichia coli outbreaks linked to fresh produce. The full extent and type of E. coli contamination present in natural water sources is unknown and the contamination sources have also not been confirmed. The aim of this study was to enumerate and characterise E. coli from both irrigation water and potential contamination source sites. Total coliform and E. coli counts found in contamination source sites were as high as log 7.114 and log 6.912 MPN.100 mL-1, respectively. Total coliform and E. coli counts for irrigation sites were lower, with maximum counts of log 5.788 and log 5.768 MPN.100 mL-1, respectively. It was found that more than one third (5/14 = 35.71%) of the irrigation sites had E. coli counts exceeding the guidelines (<1 000 counts.100 mL-1) for ‘safe’ irrigation water for fresh produce (<1 000 counts.100 mL-1) as set by the Department of Water Affairs (DWA) and World Health Organisation (WHO), making the water unsuitable for the irrigation of fresh produce. Phylogenetic subgroups (A0, A1, B1, B22, B23, D1 and D2) and the MALDI Biotyper system (PCA dendrogram) were used to create a fingerprint of each E. coli isolated from the environment. These were then used to link E. coli strains from irrigation water to their most probable contamination origin. Escherichia coli population structure was found in this study, to be better suited for linking E. coli strains from irrigation water to their most likely source, than just applying the phylogenetic grouping. The MALDI Biotyper data in combination with the phylogenetic subgroup assignment was then used to group similar strains and link E. coli from irrigation water to their contamination sources by comparing population structures. Strains isolated from surface and groundwater showed similar distribution patterns, but groundwater strains showed a population structure more indicative of porcine and bovine origin, while surface water showed population characteristics which could not be used to make conclusive links between the irrigation water and suspected contamination sources. When investigating the population structures of individual sample sites, it was found that phylogenetic subgroups A0, A1 and B1 frequently made up the bulk of the E. coli population. It was also found that linking individual irrigation sites to contamination sources was successful, as irrigation site Berg-2 was found to have a similar population structure to contamination source site Plank-1 which represents human pollution from an informal settlement. This led to the conclusion that Berg-2 was being contaminated by human pollution, most probably from an informal settlement. Upon further investigation it was found that Berg-2 is downstream of an informal settlement, proving that E. coli population structure is a successful means of microbial source tracking (MST). Virulence factors of the 153 E. coli isolated during the study were identified and the potential risk associated with using the investigated irrigation water for irrigation of fresh produce, was determined. Two enteropathogenic E. coli (EPEC) strains were isolated from the irrigation water, one from the Plankenburg River water, and the other from a borehole in the Drakenstein area. The latter indicates that borehole water is not as safe as was once thought, and that there are bacterial contaminants finding their way into groundwater. The occurrence of an EPEC strain in river water shows that neither ground nor surface water is guaranteed to be safe, and that treatment of water being used for the irrigation of fresh produce should be implemented.
AFRIKAANSE OPSOMMING: Oor die afgelope twee dekades was daar nie net 'n toename in die gebruik van alternatiewe waterbronne vir besproeiing nie, maar ook 'n toename in uitbrake van Escherichia coli uitbrake wat aan vars produkte gekoppel kan word. Die tipe E. coli-besmetting wat in natuurlike waterbronne teenwoordig is, is onbekend en die besmettingsbron is ook nog nie bevestig nie. Daarom was die doel van hierdie studie om die voorkomssyfer van E. coli van beide besproeiingswater en potensiële kontaminasiebronne te bepaal, asook om die E. coli te karakteriseer. Totale kolivorme en E. coli-tellings wat in kontaminasiebronne gevind is, het ‘n maksimum van log 7,114 en log 6,912 MPN.100 mL-1 onderskeidelik bereik, terwyl die totale kolivorme en E. coli-tellings vir besproeiingswater laer was, met 'n maksimum van log 5,788 en 5,768 MPN.100 mL-1, onderskeidelik. Dit is bevind dat meer as 1/3 (5/14 = 35,71%) van die besproeiingswaterbronne meer E. coli bevat as wat toegelaat word in die riglyne vir "veilige" besproeiingswater vir vars produkte (<1 000 fekale koliforme.100 mL-1) wat deur die Departement Waterwese (DWA) en die Organisasie vir Wêreldgesondheid (WHO) aanbeveel word. Filogenetiese subgroepe (A0, A1, B1, B22, B23, D1 en D2) en die ‘MALDI Biotyper’-stelsel (PKA dendrogram) is gebruik om unieke profiele vir elke geïsoleerde E. coli te skep. Dié profiele is daarna gebruik om E. coli-stamme van besproeiingswater te koppel aan die mees waarskynlike oorsprong van kontaminasie. Daar is in hierdie studie bevind dat die E. coli-populasiestruktuur beter geskik was vir die koppeling van E. coli-stamme van besproeiingswater na hul mees waarskynlikste bron, as net die toepassing van die filogenetiese groepering. Dit was toe gevind dat E. coli wat uit oppervlak- en grondwater geïsoleer is, soortgelyke verspreidingspatrone het, maar grondwaterstamme se bevolkingstruktuur is meer aanduidend van fekale besmetting deur varke en beeste, terwyl oppervlakwater se bevolkingseienskappe nie duidelik genoeg was om ‘n gevolgtrekking oor moontlike bronne van besmetting te maak nie. Toe die populasiestruktuur van die individuele bemonsteringspunte ondersoek is, is daar bevind dat die filogenetiese subgroepe A0, A1 en B1 dikwels die meeste tot die E. coli bevolking bydra. Daar is ook bevind dat die koppeling van isolate in individuele besproeiingswaterbronne met hul mees waarskynlike bronne van kontaminasie suksesvol was. Besproeiingswater van Berg-2 het 'n soortgelyke populasiestruktuur as Plank-1 wat beskou is as ‘n kontaminasiebron. Dit het gelei tot die gevolgtrekking dat Berg-2 heel waarskynlik deur menslike besoedeling beïnvloed word, soos Plank-1, en dat daar moontlik ook ‘n informele nedersetting by Berg-2 betrokke is. Na verdere ondersoek is gevind dat Berg-2 inderdaad ook stroomaf van 'n ander informele nedersetting geleë is, wat bewys dat die E. coli-populasiestruktuur 'n suksesvolle manier is om E. coli kontaminasie te verbind met besproeiingswater. Patogeniese faktore, wat in E. coli voorkom en maagkieme veroorsaak, is vooraf getoets in elkeen van die 153 E. coli-isolate wat tydens die studie geïdentifiseer is. Twee ‘enteropathogenic’ E. coli (EPEC)-stamme is uit die besproeiingswater geïsoleer: een uit die Plankenburgrivier (Plank-3), en die ander uit 'n boorgat in die Drakenstein-gebied (Boorgat A1). Hierdie inligting dui aan dat boorgatwater nie so veilig is as wat voorheen vermoed is nie, en dat bakteriese kontaminasie wel vookom wat nie alleen die grondwater besmet nie, maar ook daarin oorleef. Die voorkoms van die EPEC-stamme in hierdie studie is ‘n aanduiding dat beide grond- en opppervlakwater ewe gevaarlik kan wees, en dat daar dus geen waarborg vir die veiligheid van die water is nie. Die behandeling van grond- en oppervlakwater, wat vir die besproeiing van vars produkte gebruik word, moet daarom ernstig oorweeg word om moontlike uitbrake van E. coli op vars produkte te verhoed.
APA, Harvard, Vancouver, ISO, and other styles
37

Lee, Ronald Sang. "A physical assessment of Snake Pond of Cape Cod, Massachusetts, including a thermal and surface/ground water model." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shreya, Shivangi. "Water Quality Protection - A Comparative Study of India and Sweden." Thesis, KTH, Mark- och vattenteknik (flyttat 20130630), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210926.

Full text
Abstract:
This report is a comparative study of ground water and surface water quality protection of a developing country India and a developed country Sweden. It covers the basic water policies, laws, rules, regulations and human right to water provisions in both the countries. The main aim of this report is to compare water quality approaches in India and Sweden and find out the best possible practices in each country and assess the need & feasibility of their application in the other. It describes the present water laws in both the countries and discusses about the present scenario of ground water and surface water quality, problems in ground water and surface water and how to deal with the problems in an efficient and sustainable way. It includes role of EU Water Framework Directive (EU WFD) in water quality protection in Sweden. Some interviews with stakeholders who are working in the water sector in Sweden are also included here. The main focus of this report is to analyse comparatively the present situation of water quality protection approaches and make recommendation for improvement of water quality. It focuses on “What can a developing country like India can learn from a developed country like Sweden for water quality protection?” and “Which things Sweden can adopt from India for water quality protection?” In this study India is found in worse environmental condition than Sweden. Indian ground water and surface water is more polluted than Swedish surface and ground water. Sweden is in much better condition than India and this country has more environmental concern too. In India, the basic reason for deterioration of water quality is lack of environment friendly attitude among the public, religious activities in water, corruption, loss of traditional methods of water conservation and protection, useless and unnecessary westernisation etc. In Sweden the basic cause of water quality deterioration is eutrophication in lakes, climate change, morphological changes, presence of metals and connectivity changes due to construction works, acidification etc. Sweden is an advanced country having the foresight for environmental concerns. They are doing research for betterment of water quality. India can learn some technological advancement and proper implementation of community participation in order to establish decentralised wastewater treatment plants and beneficial production and monitoring of energy resources from wastewater. Maintenance of online database for water is also a good thing to learn from Sweden.
APA, Harvard, Vancouver, ISO, and other styles
39

Larsen, Genevieve R. "Determination of coastal ground and surface water processes and character by use of hydrochemistry and stable isotopes, Fraser Coast, Queensland." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/53334/1/Genevieve_Larsen_Thesis.pdf.

Full text
Abstract:
This study was part of an integrated project developed in response to concerns regarding current and future land practices affecting water quality within coastal catchments and adjacent marine environments. Two forested coastal catchments on the Fraser Coast, Australia, were chosen as examples of low-modification areas with similar geomorphological and land-use characteristics to many other coastal zones in southeast Queensland. For this component of the overall project, organic , physico-chemical (Eh, pH and DO), ionic (Fe2+, Fe3+), and isotopic (ä13CDIC, ä15NDIN ä34SSO4) data were used to characterise waters and identify sources and processes contributing to concentrations and form of dissolved Fe, C, N and S within the ground and surface waters of these coastal catchments. Three sites with elevated Fe concentrations are discussed in detail. These included a shallow pool with intermittent interaction with the surface water drainage system, a monitoring well within a semi-confined alluvial aquifer, and a monitoring well within the fresh/saline water mixing zone adjacent to an estuary. Conceptual models of processes occurring in these environments are presented. The primary factors influencing Fe transport were; microbial reduction of Fe3+ oxyhydroxides in groundwaters and in the hyporheic zone of surface drainage systems, organic input available for microbial reduction and Fe3+ complexation, bacterial activity for reduction and oxidation, iron curtain effects where saline/fresh water mixing occurs, and variation in redox conditions with depth in ground and surface water columns. Data indicated that groundwater seepage appears a more likely source of Fe to coastal waters (during periods of low rainfall) via tidal flux. The drainage system is ephemeral and contributes little discharge to marine waters. However, data collected during a high rainfall event indicated considerable Fe loads can be transported to the estuary mouth from the catchment.
APA, Harvard, Vancouver, ISO, and other styles
40

Dara, Rebwar Nasir. "Using Ground Penetrating Radar (GPR) for identifying floodplain and riverbed structural heterogeneity and implications for groundwater-surface water exchange." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8016/.

Full text
Abstract:
The aim of the study is to investigate the variability in riverbed permeability fields in an unprecedented spatial resolution and quantify the impacts on controlling hyporheic exchange fluxes. Geophysical surveys were conducted deploying GPR on the floodplain and within the channel. At locations identified to be representative for the range of streambed hydrofacies in investigated stream reach, multi-level mini-piezometer networks were installed in the streambed. The results of GPR surveys in both sites provided different radar reflections which indicated a range of different radar facies and helped to delineate the type and extend of high and low conductive materials. The localised high Darcy fluxes inside high conductivity piezometers indicated rapid discharge of groundwater due to the enhanced connectivity to deeper groundwater. Whereas, low flow velocity within and around low conductivity peat and clay lenses indicated that these layers substantially inhibit groundwater upwelling, resulting in enhanced streambed residence and reaction times. The increase in residence time and the related depletion in the volume of DO facilitated the development of conditions necessary for nitrate reduction. In contrast, preferential flow paths and short residence times in highly conductive drift deposits resulted in no significant changes in nitrate concentrations along hyporheic flow paths.
APA, Harvard, Vancouver, ISO, and other styles
41

Sloan, William Taylor. "Up-scaling hydrological processes and the development of a large-scale river basin modelling system." Thesis, University of Newcastle Upon Tyne, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sobczak, Robert V., and Thomas III Maddock. "CONFUSION WHERE GROUND AND SURFACE WATERS MEET: GILA RIVER GENERAL ADJUDICATION, ARIZONA AND THE SEARCH FOR SUBFLOW." Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1994. http://hdl.handle.net/10150/617631.

Full text
Abstract:
Arizona is presently in the midst of a general adjudication for the Gila River system -- the watershed which comprises the southern two- thirds of the state. The purpose of the adjudication is to prioritize all water claims in the river system: both state -established and federally reserved rights. Arizona adheres to a bifurcated (or divided) system of water law which only recognizes a component of ground water -- called subflow -- to be appropriable. Wells which pump non-appropriable water -- called tributary flow -- are not to be included in the adjudication. The problem is that federal laws do not recognize this artificial bifurcation. The challenge lies in identifying a subflow zone which satisfies the hydrologic fiction of existing state precedents and the hydrologic reality of federal statutes. At the core of the problem lies the fate of Arizona's perennial stream water and the fulfillment of federally reserved tribal water rights. Thus, larger questions loom: can Arizona law reconcile its glutinous past with a water -scarce future, will the adjudication ever reach a finality, and even if it does, will it be a finality that all sides can live with?
APA, Harvard, Vancouver, ISO, and other styles
43

McHugh, Kathleen M. "Western water law and the stream-aquifer system and how models are used to determine permitting and compliance of rules governing ground and surface water interaction." Thesis, The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_etd_hy0234_sip1_w.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bourgeois, Jason. "Assessment of surface and ground waters, stream and estuary sediments and other ecosystem receptors to determine long term impacts of surface PCB and heavy metal releases, Makinsons, Newfoundland /." Internet access available to MUN users only, 1997. http://collections.mun.ca/u?/theses,36164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Burk, Neil I. "Geochemistry of Ground Water - Surface Water Interactions and Metals Loading Rates in the North Fork of the American Fork River, Utah, from an Abandoned Silver/Lead Mine." DigitalCommons@USU, 2004. https://digitalcommons.usu.edu/etd/6735.

Full text
Abstract:
The aqueous geochemistry and hydrology of the North Fork of the American Fork River, its tributaries, and the ground water in the vicinity of the Pacific Mine site were investigated in order to determine what impact ground water entering the North Fork has on toxic metal loads in the river. Toxic metal contamination in the North Fork is great enough that brown and cutthroat trout have absorbed lead, cadmium, and arsenic in their tissues at concentrations that are hazardous to human health if consumed. Ground water that flows through the mine site flows directly through the mine tailings before entering the North Fork, which produces an acidic ground water plume that has high concentrations of toxic metals. Together, the surface water discharge results and toxic metals concentrations from the surface and ground waters were used to determine toxic metals loading rates in the North Fork and its tributaries. The results suggest that the dissolved toxic metals (As, Cd, Cu, Fe, Mn, Pb, and Zn) enter the North Fork when the river is gaining water from the ground water. However, the total toxic metal load generally decreases through the reach of river adjacent to the mine site and is significantly greater than the dissolved load. Cadmium and Mn travel as dissolved species while Cu, Fe, Pb, and Zn travel as suspended solids in the North Fork and its tributaries. Arsenic seems to be associated with both the suspended solids and travel in the dissolved state. The geochemical modeling program PHREEQC and the diffuse double layer surface complexation model were used to investigate the chemistry that controls toxic metal mobility and attenuation in the surface and ground waters at the mine site. Based on PHREEQC results, the most important reaction in these waters is the precipitation of hydrous fe1Tic oxide. The toxic metals that sorb to the hydrous ferric oxide are Cu, Pb, most importantly Zn, and to a lesser degree As.
APA, Harvard, Vancouver, ISO, and other styles
46

Pettersson, Rickard. "Dynamics of the cold surface layer of polythermal Storglaciären, Sweden." Doctoral thesis, Stockholm University, Department of Physical Geography and Quaternary Geology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-161.

Full text
Abstract:

Polythermal glaciers, i.e. glaciers with a combination of ice at and below the freezing point, are widespread in arctic and subarctic environments. The polythermal structure has major implications for glacier hydrology, ice flow and glacial erosion. However, the interplay of factors governing its spatial and temporal variations such as net mass balance, ice advection and water content in the ice is poorly investigated and as yet not fully understood. This study deals with a thorough investigation of the polythermal regime on Storglaciären, northern Sweden, a small valley glacier with a cold surface layer in the ablation area. Extensive field work was performed including mapping of the cold surface layer using ground-penetrating radar, ice temperature measurements, mass balance and ice velocity measurements. Analyses of these data combined with numerical modelling were used specifically to investigate the spatial and temporal variability of the cold surface layer, the spatial distribution of the water content just below the cold surface layer transition, the effect of radar frequency on the detection of the surface layer, and the sensitivity of the cold surface layer to changes in forcing.

A comparison between direct temperature measurements in boreholes and ground-penetrating surveys shows that the radar-inferred cold-temperate transition depth is within ±1 m from the melting point of ice at frequencies above ~300 MHz. At frequencies below ~155 MHz, the accuracy degrades because of reduced scattering efficiency that occurs when the scatterers become much smaller compared to the wavelength. The mapped spatial pattern of the englacial cold-temperate transition boundary is complex. This pattern reflects the observed spatial variation in net loss of ice at the surface by ablation and vertical advection of ice, which is suggested to provide the predominant forcing of the cold surface layer thickness pattern. This is further supported by thermomechanical modeling of the cold surface layer, which indicates high sensitivity of the cold surface layer thickness to changes in vertical advection rates.

The water content is the least investigated quantity that is relevant for the thermal regime of glaciers, but also the most difficult to assess. Spatial variability of absolute water content in the temperate ice immediately below the cold surface layer on Storglaciären was determined by combining relative estimates of water content from ground-penetrating radar data with absolute determination from temperature measurements and the thermal boundary condition at the freezing front. These measurements indicate large-scale spatial variability in the water content, which seems to arise from variations in entrapment of water at the firn-ice transition. However, this variability cannot alone explain the spatial pattern in the thermal regime on Storglaciären.

Repeated surveys of the cold surface layer show a 22% average thinning of the cold surface layer on Storglaciären between 1989 and 2001. Transient thermomechanical modeling results suggest that the cold surface layer adapts to new equilibrium conditions in only a few decades after a perturbation in the forcing is introduced. An increased winter air temperature since mid-1980s seems to be the cause of the observed thinning of the cold surface layer. Over the last decades, mass balance measurements indicate that the glacier has been close to a steady state. The quasi-steady state situation is also reflected in the vertical advection, which shows no significant changes during the last decades. Increased winter temperatures at the ice surface would result in a slow-down of the formation of cold ice at the base of the cold surface layer and lead to a larger imbalance between net loss of ice at the surface and freezing of temperate ice at the cold-temperate transition.

APA, Harvard, Vancouver, ISO, and other styles
47

Smith, Lauren A. "Using radon-222 as a tracer of mixing between surface and ground water in the santa fe river sink/rise system." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0003260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sobczak, Robert Valentine. "Confusion where ground and surface waters meet : Gila River General Adjudication, Arizona, and the search for subflow." Thesis, The University of Arizona, 1994. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_etd_hy0325_sip1_w.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mölders, Nicole, and Wolfram Rühaak. "Sensitivity studies with a surface and channel runoff module coupled to a mesoscale atmospheric model." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-215606.

Full text
Abstract:
A module to investigate ground water recharge was developed, and implemented into the mesoscale meteorological model GESIMA (Geesthacht’s simulation model of the atmosphere) as well as coupled to a soil-vegetation scheme. Important features of the ground water module are the determination of surface and channel runoff. A comparison of the results provided by GESIMA with and without consideration of surface and channel runoff shows a remarkable impact of surface runoff on the soil moisture fluxes. Substituting water meadows by willow-forests demonstrates their importance for soil moisture fluxes
Ein Modul zur Untersuchung von Grundwasserneubildung wurde entwickelt, in das mesoskalige meteorologische Modell GESIMA (Geesthachter Simulationsmodell der Atmosphäre) integriert und an ein Boden-Vegetationsmodell gekoppelt. Wesentliche Bestandteile des Grundwassermoduls sind die Berechnung des Oberflächen- und Gerinneabflusses. Ein Vergleich der Ergebnisse von GESIMA, die mit und ohne Oberflächen- und Gerinneabfluss erstellt wurden, belegt einen deutlichen Einfluss des Oberflächenabflusses auf die berechneten Feuchteflüsse im Boden. Untersuchungen zum Einfluss von Auenwäldern auf die Grundwasserneubildung belegen deren Bedeutung für die Wasserflüsse im Boden
APA, Harvard, Vancouver, ISO, and other styles
50

Townsend, Philip James Andrew. "Numerical simulation of the shallow water equations coupled with a precipitation system driven by random forcing." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/77216/.

Full text
Abstract:
Quantification of flood risk and flood inundation requires accurate numerical simulations, both in terms of the mathematical theory that underpins the methods used and the manner in which the meteorological phenomena that cause flooding are coupled to such systems. Through our research, we have demonstrated how rainfall and infiltration effects can be incorporated into existing flood models in a rigorous and mathematically consistent manner; this approach departs from preceding methods, which neglect terms representing such phenomena in the conservation or balancing of momentum. We demonstrate how the omission of these terms means the solution derived from such models cannot a priori be assumed to be the correct one, which is in contrast to solutions from the extended system we have developed which respect the energetic consistency of the problem. The second issue we address is determining how we can model these meteorological phenomena that lead to flooding, with a specific interest in how existing observation data from rain gauges can be incorporated into our modelling approach. To capture the random nature of the precipitation, we use stochastic processes to model the complex meteorological interactions, and demonstrate how an accurate representation of the precipitation can be built. Given the specific industrial applications we have mind in regards to flood modelling and prediction, there will be a high computational cost associated with any such simulations, and so we consider techniques which can be used to reduce the computational cost whilst maintaining the accuracy of our solutions. Having such an accurate flood model, coupled with a stochastic weather model designed for efficient computational modelling, will enable us to make useful predictions on how future climate change and weather patterns will impact flood risk and flood damage.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography