Academic literature on the topic 'Grinding test'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Grinding test.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Grinding test"

1

Choi, Young Jae, Kyung Hee Park, Yun Hyuck Hong, Kyeong Tae Kim, Seok Woo Lee, and Hon Jong Choi. "Design of Ultrasonic Horn for Grinding Using Finite Element Method." Advanced Materials Research 565 (September 2012): 135–41. http://dx.doi.org/10.4028/www.scientific.net/amr.565.135.

Full text
Abstract:
In this paper, a ultrasonic horn, which can vibrate longitudinally with a frequency of 20㎑, was designed using finite element method (FEM). And the ultrasonic horn was fabricated for ultrasonic assisted grinding. To evaluate machining performance of the fabricated ultrasonic horn, grinding test was conducted on alumina ceramic (Al2O3). In the grinding test, grinding forces was measured and compared between the conventional grinding and the ultrasonic assisted grinding. The results showed that the grinding force in the ultrasonic grinding was lowered than the conventional grindign by 3~20%.
APA, Harvard, Vancouver, ISO, and other styles
2

Ghosh, S., A. B. Chattopadhyay, and S. Paul. "Study of grinding mechanics by single grit grinding test." International Journal of Precision Technology 1, no. 3/4 (2010): 356. http://dx.doi.org/10.1504/ijptech.2010.031663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Peng-Zhan, Wen-Jun Zou, Jin Peng, Xu-Dong Song, and Fu-Ren Xiao. "Designed a Passive Grinding Test Machine to Simulate Passive Grinding Process." Processes 9, no. 8 (July 29, 2021): 1317. http://dx.doi.org/10.3390/pr9081317.

Full text
Abstract:
Passive grinding is a high-speed rail grinding maintenance strategy, which is completely different from the conventional rail active grinding system. In contrast to active grinding, there is no power to drive the grinding wheel to rotate actively in passive grinding. The passive grinding process is realized only by the cooperation of grinding pressure, relative motion, and deflection angle. Grinding tests for passive grinding can help to improve the passive grinding process specifications and be used for the development of passive grinding wheels. However, most of the known grinding methods are active grinding, while the passive grinding machines and processes are rarely studied. Therefore, a passive grinding test machine was designed to simulate passive grinding in this study. This paper gives a detailed description and explanation of the structure and function of the passive grinding tester. Moreover, the characteristics of the grinding process and parameter settings of the testing machine were discussed based on the passive grinding principle. The design of a passive grinding test machine provides experimental equipment support for investigating passive grinding behavior and grinding process.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Tao, Xian Chuang Li, Chang Hong Wang, Guang Miao, and Yan Yan Wang. "The Grinding and Test of Annular Milling Cutter with Double-Circular-Arc." Materials Science Forum 836-837 (January 2016): 205–11. http://dx.doi.org/10.4028/www.scientific.net/msf.836-837.205.

Full text
Abstract:
For the problem of the non standard cutter shape cutting edge not smooth transition connection and flank face of cutting tool grinding precision difference, the influence of wheel deformation is analyzed to different grinding linear speed, and the grinding wheel deformation error compensation grinding method is studied in this work. The grinding of annular milling cutter with double-circular-arc is processed in five axis CNC tool grinder. Finally the machining precision of annular milling cutter with double-circular-arc is tested by the tool test center, the result show that the wheel grinding method based on compensation of grinding can realize smooth transition in different parts of cutting edge belt of annular milling cutter with double-circular-arc and flank grinding precision is ensured.
APA, Harvard, Vancouver, ISO, and other styles
5

Żółkoś, Marcin, Marek Krok, Janusz Porzycki, Janusz Świder, and Marek Grabowy. "Grinding processes automated diagnostic test stand." Mechanik 91, no. 8-9 (September 10, 2018): 747–50. http://dx.doi.org/10.17814/mechanik.2018.8-9.122.

Full text
Abstract:
Presented is the automated measuring test stand based on the modified Haas VF-2YT machining center. That allows conducting experimental research of conventional and assisted with workpiece ultrasonic oscillations grinding processes (UAG). Respective measurement paths and automated measurement data acquisition process during the experimental research was discussed. Particular notice was given to grinding force components measurement system.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Pengzhan, Wenjun Zou, Jin Peng, and Furen Xiao. "Investigating the Effect of Grinding Time on High-Speed Grinding of Rails by a Passive Grinding Test Machine." Micromachines 13, no. 12 (November 30, 2022): 2118. http://dx.doi.org/10.3390/mi13122118.

Full text
Abstract:
High-speed rail grinding is a unique passive grinding maintenance strategy that differs from conventional grinding techniques. Its grinding behavior is dependent on the relative motion between the grinding wheel and rail; hence, it possesses great speed and efficiency. In this study, the effects of the duration of grinding time and the increase in the number of grinding passes on the grinding of high-speed rails were investigated using passive grinding tests with a single grinding time of 10 s and 30 s and grinding passes of once, twice, and three times, respectively. The results show that when the total grinding time was the same, the rail removal, grinding ratio of grinding wheels, rail grinding effect, grinding force, and grinding temperature were better in three passes of 10 s grinding than in one pass of 30 s grinding, indicating that the short-time and multi-pass grinding scheme is not only conducive to improving the grinding efficiency and grinding quality in the high-speed rail grinding but can also extend the service life of the grinding wheels. Moreover, when the single grinding times were 10 s and 30 s, respectively, the grinding removal, grinding efficiency, grinding marks depth, and surface roughness of rail increased with the number of grinding passes, implying that the desired rail grinding objective can be achieved by extending the grinding time via the multi-pass grinding strategy. The results and theoretical analysis of this study will contribute to re-conceptualizing the practical operation of high-speed rail grinding and provide references for the development of the grinding process and grinding technology.
APA, Harvard, Vancouver, ISO, and other styles
7

Yao, Guang, Bing Guo, and Chang Hao Wu. "Test and Simulation of Indentation and Scratch on ZnS." Materials Science Forum 770 (October 2013): 50–53. http://dx.doi.org/10.4028/www.scientific.net/msf.770.50.

Full text
Abstract:
This paper discusses the grinding performance of ZnS. Its the base for ultra-precision grinding to master the mechanical properties and removal mechanism of ZnS which is an infrared material. This study determined the hardnessfracture toughness and critical grinding depth by micro-indentation test; Based on the result of nanoindentation test, constitutive model of ZnS was established and simulation of indentation and scratch were completed. Grinding removal mechanism and effect of process parameters on scratch result were explored by scratch test. It was found that test was consistent with simulation.
APA, Harvard, Vancouver, ISO, and other styles
8

YAKOU, Takao, Yuichi YOSHIKAWA, and Hajime SUGIUCHI. "Bonding Test of Thin Grinding Wheels." Journal of the Japan Society for Precision Engineering 60, no. 10 (1994): 1475–79. http://dx.doi.org/10.2493/jjspe.60.1475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Annamalai, V. E., Arjhunn Hariharan, S. K. Vigneshram, C. Vinoth Kumar, Vivek Ananthakrishnan, and A. Xavier Kennedy. "Development of an In-House Test for Nut Integrity in F-Type Wheels." Applied Mechanics and Materials 787 (August 2015): 340–44. http://dx.doi.org/10.4028/www.scientific.net/amm.787.340.

Full text
Abstract:
Nut embedded disc grinding wheels, also known as disc grinding or F-Type wheels, are required for many production jobs. Nut pull-out is a common problem encountered in disc grinding wheels. The present work proposes a simple fixture, using which the integrity of the nut in the grinding wheel can be assessed. This method can be adopted by any grinding wheel manufacturer for a realistic estimate of nut pull out strength in double disc grinding wheels.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Bo, Ping Xie, and Chong Yang Zhao. "Ultrasonic Vibration Grinding Test of Composite Ceramics Based on the Nonlocal Theory." Advanced Materials Research 126-128 (August 2010): 139–42. http://dx.doi.org/10.4028/www.scientific.net/amr.126-128.139.

Full text
Abstract:
The effects of ultrasonic frequency on the grinding force and surface quality were analyzed from the grinding experiment on ZTA nano-composite ceramics. The results indicate that, in the same parameters, ultrasonic normal grinding force is about 65 to 85 percents of the ordinary grinding condition, and the surface quality is better than that of ordinary grinding condition, as the frequency increasing, this trend will be more evident. The reasons for it were also discussed from microscopic and the nonlocal theory in this paper.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Grinding test"

1

Courtney, Scott B. "A rapid, non-destructive test to detect camshaft lobe grinding burn." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09042008-063602/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davaanyam, Zorigtkhuu. "Piston press test procedures for predicting energy-size reduction of high pressure grinding rolls." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54154.

Full text
Abstract:
High Pressure Grinding Rolls (HPGR) have been used for over 20 years, however the technology has not received wide industry acceptance despite reports of substantial energy advantages. One barrier is that full and fair consideration cannot be given to HPGR-based comminution circuits for early-stage mining projects, because industry standard tests require large sample sizes for evaluation of the technology. The main objective of the research was to develop methodologies, requiring small sample quantities, to predict the energy–size reduction performance of HPGRs. A key outcome is the development of three piston press testing procedures that require significantly less sample than standard HPGR evaluation methods. One method, referred to as the direct calibration methodology, involves calibrating results of piston press tests against pilot-scale HPGR tests. This methodology was developed primarily for situations where HPGR test data is only available for a composite sample and the energy requirements of individual geometallurgical units within a deposit are to be determined. To address the case where HPGR test results are not available, a second method was developed which relies only on piston press testing and empirical equations that were determined from a database of pilot-scale HPGR results. The simulation-based methodology was also developed to be able to assess the impact of changes in HPGR operation or circuit configuration on comminution performance. An existing energy–breakage model was adopted and modified for application to particle-bed comminution. The three methodologies were compared by applying them to samples from a copper-gold deposit in central British Columbia. Through utilization of these methodologies, the energy–size reduction performance of the HPGR technology can be predicted with small sample requirements which can be applied to a broad range of ore types and provide a stronger statistical basis for the process design. During development of the methodologies, significant research outcomes resulted. Controlled piston press and HPGR pilot tests on the same samples confirmed that normalized product PSDs of the respective equipment can be regarded as equivalent. Furthermore, data from particle-bed comminution tests was used to determine master curves describing breakage appearance functions for the compression mode of breakage.
Applied Science, Faculty of
Mining Engineering, Keevil Institute of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
3

Mwanga, Abdul-Rahaman. "Development of a geometallurgical testing framework for ore grinding and liberation properties." Doctoral thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59904.

Full text
Abstract:
Efficient measurement methods for comminution properties are an important prerequisite for testing the variability of an ore deposit within the geometallurgical context. This involves the investigation of effects of mineralogy and mineral texture on the breakage of mineral particles. Breakage properties of mineral particles are crucial for the liberations of minerals and the energy required for that. For process optimization and control purposes, comminution indices are often used to map the variation of processing properties of an entire ore body (e.g. Bond work index). Within the geometallurgical approach this information is then taken up when modelling the process with varying feed properties. The main focus of this thesis work has been to develop a comprehensive geometallurgical testing framework, the Geometallurgical Comminution Test (GCT), which allows the time and cost efficient measurement of grinding indices and their linkage to mineralogical parameters (e.g. modal mineralogy or mineral texture, mineral liberation). In this context a small-scale grindability test has been developed that allows estimating the Bond work index from single pass grinding tests using small amounts of sample material. Verification of the evaluation method and validation was done with different mineral systems. For selected samples the mineral liberation distribution was investigated using automated mineralogy. By transferring the energy-size reduction relation to energy – liberation relation new term liberability has been established. As part of the experimental investigations, mineralogical parameters and mineral texture information were used for predicting breakage and liberation properties. Patterns for describing the breakage phenomena were established for a set of iron oxide ore samples. The determined breakage patterns indicated that the specific rate of mineral breakage slows down when reaching the grain size of mineral particles, thus allowing maximizing mineral liberation significantly without wasting mechanical energy.
CAMM
APA, Harvard, Vancouver, ISO, and other styles
4

Schmitt, Raoul. "A Geometallurgical Approach Towards the Correlation Between Rock Type Mineralogy and Grindability: A case study in Aitik mine, Sweden." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87012.

Full text
Abstract:
Aitik is a large copper porphyry type deposit located in northern Sweden, currently exploited at an annual rate of approximately 45Mt. The ore's exceptionally low head grade of 0.22 % Cu and varying degrees of hardness across the entire deposit pose challenges to the two fully autogenous grinding lines, each of which comprises a 22.5 MW primary autogenous mill in series with a pebble mill. The variability in ore grindability frequently leads to fluctuations in mill throughput.  Within the framework of a geometallurgical approach, the present study investigated the relationships between ore grindability and modal mineralogy. For this purpose, drill core samples from different lithologies were subjected to Boliden AB's in-house grindability tests. This laboratory-scale autogenous grinding test generates a grindability index Ks mainly related to abrasion breakage, which is a significant breakage mechanism within autogenous mills. The test results suggested divergent degrees of grindability within and across the selected rock types. Furthermore, subsequent sieve analyses identified a relationship between the grindability index, PSD, and the proportions of fines generated by abrasive grinding. A combination of scanning electron microscopy, X-ray powder diffraction, and X-ray fluorescence analyses was performed for the grinding products and bulk mineral samples. The resulting mineralogical and elemental properties were correlated to the parameters from the grindability tests. It was shown that the main mineral phases, such as plagioclase, quartz, and micas, correlate well with the grindability indices. Similar correlations were found regarding the sample's chemical composition, attributable to the main mineral phases. Derived from the previous findings, two exemplary linear empirical models for the calculation of grindability based on either mineral contents or chemical composition were presented. Careful examination of the mineralogical data revealed that the prevalent abrasion breakage mechanism leads to constant and continuous removal of mineral particles from the sample's surface. No indications for a preferential abrasion of any mineral phases were found.  A further inverse correlation between the sample's calculated average weighted Mohs hardness based on modal mineralogy and the grindability index Ks was established. Hence, it was proposed that a higher Mohs hardness results in a finer grinding product, oppositional to the Ks-values. Since Ks can be interpreted as a measure of abrasiveness, it can be stated that abrasiveness decreases with an increasing average sample hardness and vice versa.  Moreover, mineral liberation information provided by scanning electron microscopy was associated with the parameters mentioned earlier. It was determined that different degrees of mineral liberation were reached within specific particle size classes. The identified relationships between grindability, modal mineralogy, and element grades may help Boliden develop a predictive throughput model for Aitik to be integrated into the mine's block model. Based on this information, a strategy for smart blending could be developed, where run of mine material from ore blocks of varying grindabilities could be blended to attain the target plant throughput.
APA, Harvard, Vancouver, ISO, and other styles
5

Pachón-Morales, John Alexander. "Torrefaction and grinding of lignocellulosic biomass for its thermochemical valorization : influence of pretreatment conditions on powder flow properties." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC051.

Full text
Abstract:
Une technologie prometteuse pour répondre à la demande croissante en énergie renouvelable est la gazéification de biomasse lignocellulosique pour la production de biocarburants de deuxième génération. Ce procédé nécessite une alimentation en biomasse sous forme de poudre. Les problèmes de convoyage et de manipulation liés à la faible coulabilité de la biomasse broyée sont un verrou pour l’industrialisation des procédés BtL. La torréfaction comme procédé de prétraitement, en plus d'augmenter densité énergétique de la biomasse, peut influencer également les propriétés des particules obtenues après broyage, et en conséquence, l’écoulement des poudres. L'évaluation de l'écoulement des poudres de biomasse sous différentes conditions de consolidation est essentielle pour concevoir des technologies de manipulation et de convoyage efficaces.L'objectif de ce travail est d'évaluer l'effet des conditions de torréfaction et de broyage sur l’écoulement de poudres de biomasse. Une première partie consiste en une étude expérimentale dans laquelle la coulabilité d'échantillons torréfiés sous différentes intensités a été évaluée à l'aide d'un appareil de cisaillement annulaire. La coulabilité est corrélée à l'intensité de la torréfaction (mesurée par la perte de masse globale) pour deux essences différentes. La forme des particules semble être le paramètre qui influence de manière prédominante la coulabilité des poudres à l'état consolidé. La caractérisation de la coulabilité à l’état non consolidée a été effectuée à l'aide d'un tambour rotatif par l’analyse des avalanches des poudres. Des corrélations entre les caractéristiques des particules et la coulabilité sont ainsi établies. La modélisation de l'écoulement de la biomasse à l'aide de la Méthode des Éléments Discrets (DEM) constitue une deuxième partie de cette recherche. La taille submillimétrique des particules de biomasse, ainsi que leur faible densité, leur forme allongée et leur comportement cohésif sont des défis pour l’implémentation d’un modèle de réaliste d’écoulement particulaire en DEM. Un modèle DEM des particules de biomasse est mis en œuvre à l'aide d'une représentation simplifiée (assemblement de sphères) à gros grains de la forme des particules, ainsi que d'un modèle de force cohésif. Une procédure systématique de calibration des paramètres DEM permet d'obtenir un ensemble de paramètres ajustés. L'évolution expérimentale des contraintes de cisaillement d’une poudre dans un état consolidé peut alors être reproduite de façon réaliste. De même, le comportement d’avalanche des poudres dans un tambour tournant est également bien reproduit par les simulations, de façon qualitative et quantitative. Ces résultats mettent en évidence le potentiel des simulations DEM pour étudier l'effet des caractéristiques des particules, qui sont influencées par la torréfaction et les conditions de broyage, sur le comportement d'écoulement de la biomasse en poudre
Gasification of lignocellulosic biomass for production of second-generation biofuels is a promising technology to meet renewable energy needs. However, feeding and handling problems related to the poor flowability of milled biomass considerably hinder the industrial implementation of Biomass-to-Liquid processes. Torrefaction as pretreatment step, in addition to improving energy density of biomass, also affects the properties of the milled particles (namely size and shape) that significantly influence flow behavior. The evaluation of biomass flow characteristics under different flow conditions is essential to design efficient and trouble-free handling solutions.The aim of this work is to assess the effect of the torrefaction and grinding conditions on the biomass flow behavior. A first part consists of an experimental study in which the flow properties of samples torrefied under different intensities were obtained using a ring shear tester. Flowability is correlated to the intensity of torrefaction, as measured by the global mass loss, for two different wood species. Particle shape seems to be the predominant parameter influencing flowability of powders in a consolidated state. Characterization of non-consolidated flowability through avalanching analysis using an in-house rotating drum was also conducted. Correlations between particle characteristics and flow behavior are thus established.The modelling of biomass flow using the Discrete Element Method (DEM) constitutes a second major part of this research. Challenging aspects of biomass particle modeling are their submillimetric size, low density, elongated shape and cohesive behavior. A material DEM model is implemented using a simplified (multisphere) upscaled representation of particle shape, along with a cohesive contact model. A systematic calibration procedure results in an optimal set of DEM parameters. The experimental shear stress evolution and yield locus can then be realistically reproduced. The avalanching behavior of the powders is also well captured by simulations, both qualitatively and quantitatively. These results highlight the potential of DEM simulations to investigate the effect of particle characteristics, which are driven by torrefaction and grinding conditions, on the flow behavior of powdered biomass
APA, Harvard, Vancouver, ISO, and other styles
6

Vendrame, Saimon. "Integridade superficial do aço-rápido AISI M3:2 após o processo de retificação /." Bauru, 2019. http://hdl.handle.net/11449/191113.

Full text
Abstract:
Orientador: Eduardo Carlos Bianchi
Resumo: Aços-rápidos são materiais que exibem elevada resistência ao desgaste abrasivo, aliada a uma tenacidade relativamente alta, propriedades estas que os tornam adequados para se fabricar ferramentas de corte. Grande parte de suas propriedades se deve a presença de carbonetos na microestrutura. Ao mesmo tempo que estas propriedades mecânicas são favoráveis para a utilização como ferramentas, tornam-se desafios na sua fabricação. O processo de retificação é empregado nas últimas etapas de fabricação de ferramentas de corte como machos e brocas e a presença dos carbonetos afetam a eficiência dos rebolos. Neste contexto, este trabalho visa investigar o quanto a diferença de microestrutura de aços-rápidos classe AISI M3:2, obtidos de diferentes fornecedores, influencia na retificação, levando em consideração a integridade superficial. Os materiais, aqui nomeados como M-A, M-B e M-C, foram avaliados sob três aspectos: características da microestrutura, resistência à abrasão e integridade da superfície após a retificação. Da microestrutura os carbonetos tipo MC e M6C, foram descritos quanto à forma e a distribuição, utilizando para isso MEV e EDS. A resistência à abrasão dos materiais foi medida recorrendo ao método de ensaio tribológico pino-lixa. Após esta caracterização, foram realizados ensaios de retificação tangencial plana com rebolo de Carboneto de Silício (SiC) em várias penetrações de trabalho (entre 10 µm e 30 µm). As superfícies das amostras foram avaliadas mensurando a rug... (Resumo completo, clicar acesso eletrônico abaixo)
High-Speed Steels are materials that exhibit high abrasive wear resistance coupled withrelatively high toughness, properties that make them suitable for making cutting tools. Much ofits properties are due to the presence of carbides in the microstructure. While these mechanicalproperties are favorable for use as tools, they impose challenges in their manufacture. Thegrinding process is employed in the final stages of the cutting tools manufacturing, such as tapsand drills and the presence of carbides affects the efficiency of the grinding wheels. In thiscontext, this work aims to investigate how the microstructure difference of class AISI M3: 2steel, obtained from different suppliers, influences the grinding, taking into consideration thesurface integrity. The materials, here named M-A, M-B, and M-C, were evaluated under threeaspects: microstructure characteristics, abrasion resistance, and surface integrity after grinding.From the microstructure, carbides type MC and M6C were described regarding the shape anddistribution, using for this purpose SEM and EDS. The abrasive wear resistance of the materialswas measured using the pin-abrasive tribological test. After this characterization, flat tangentialgrinding tests were performed, using silicon carbide grinding wheel (SiC), in various workdepths (between 10 μm and 30 μm). The ground samples surfaces were evaluated by measuringthe roughness parameters, evaluated by SEM, and the microhardness profil
Doutor
APA, Harvard, Vancouver, ISO, and other styles
7

Lerra, Flavia <1991&gt. "Dry grinding technology for automotive gears manufacturing: process modeling and optimization." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10073/1/tesi%20dottorato%20Flavia%20Lerra.pdf.

Full text
Abstract:
The following thesis focused on the dry grinding process modelling and optimization for automotive gears production. A FEM model was implemented with the aim at predicting process temperatures and preventing grinding thermal defects on the material surface. In particular, the model was conceived to facilitate the choice of the grinding parameters during the design and the execution of the dry-hard finishing process developed and patented by the company Samputensili Machine Tools (EMAG Group) on automotive gears. The proposed model allows to analyse the influence of the technological parameters, comprising the grinding wheel specifications. Automotive gears finished by dry-hard finishing process are supposed to reach the same quality target of the gears finished through the conventional wet grinding process with the advantage of reducing production costs and environmental pollution. But, the grinding process allows very high values of specific pressure and heat absorbed by the material, therefore, removing the lubricant increases the risk of thermal defects occurrence. An incorrect design of the process parameters set could cause grinding burns, which affect the mechanical performance of the ground component inevitably. Therefore, a modelling phase of the process could allow to enhance the mechanical characteristics of the components and avoid waste during production. A hierarchical FEM model was implemented to predict dry grinding temperatures and was represented by the interconnection of a microscopic and a macroscopic approach. A microscopic single grain grinding model was linked to a macroscopic thermal model to predict the dry grinding process temperatures and so to forecast the thermal cycle effect caused by the process parameters and the grinding wheel specification choice. Good agreement between the model and the experiments was achieved making the dry-hard finishing an efficient and reliable technology to implement in the gears automotive industry.
APA, Harvard, Vancouver, ISO, and other styles
8

Dočkal, Jakub. "Vliv technologie mletí na vlastnosti směsných cementů s pucolánovou složkou." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-239954.

Full text
Abstract:
The aim of this thesis was to summarize and assess the possibility of using recycled glass in the manufacture of blended portland cements. Work was focused on examining the possibilities to improve pozzolanic properties of recycled glass with new milling processes. The formation of agglomerates material during the course of grinding and their subsequent effect on the hydration process of binders has been also examining. Part of the thesis was also focused on grindability of materials and determination of using separate or inters grinding.
APA, Harvard, Vancouver, ISO, and other styles
9

Alff, Dave. "Contestatory voices in a composite text grinding Cane's double pastiche /." Diss., Connect to the thesis, 2005. http://hdl.handle.net/10066/642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jurán, Antonín. "Efektivní obrábění nových konstrukčních keramických materiálů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228424.

Full text
Abstract:
The objective of this diploma thesis are new design materials in a view of their structure, properties, manufacture,partitions, applications and possibili-ties of effective machining them Ceramics are used in the field of design applications more often than before. They are in form of compact parts and in form of thin coatings on the surface of metal parts. Fast development of constructive applications requires the same progress rate of machining ma-chines innovations and development of new methods of effective machining these materials, too. The aim is to produce parts of demanded shapes, dimensions and surface quality at affordable costs. Ceramics guarantee long terming durability and reliability. The evaluation of ceramics grinding tests from the point of view of cutting forces and surface quality of the machined faces are presented in the last part of the diploma thesis.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Grinding test"

1

Riley, W. D. Spectral characteristics of grinding sparks used for identification of scrap metals. [Avondale, Md.]: U.S. Dept. of the Interior, Bureau of Mines, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kalousek, Joseph. Corrective and preventive rail grinding--evaluation of the field tests =: Meulage préventif et meulage correctif des rails--évaluation des essais sur le terrain. [Ottawa, Ont.]: National Research Council Canada, Div. of Mechanical Engineering, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seitz, John C., and Christine Firer Hinze, eds. Working Alternatives. Fordham University Press, 2020. http://dx.doi.org/10.5422/fordham/9780823288359.001.0001.

Full text
Abstract:
Popular interest in the kinds of conditions that make work productive, growing media attention to the grinding cycle of poverty, and the widening sense that consumption must become sustainable and just, all contribute to an atmosphere thirsty for humanistic economic analysis. This volume offers such analysis from a novel and generative diversity of vantage points, including religious and secular histories, theological ethics, and business management. In particular, Working Alternatives brings modern Roman Catholic forms of engaging with economic questions—embodied in the evolving set of documents that make up the area of “Catholic social thought”—into conversation with one another and with non-Catholic experiments in economic thought and practice. Clustered not by discipline but by their emphasis on either 1) new ways of seeing economic practice 2) new ways of valuing human activity, or 3) implementation of new ways of working, the volume’s essays facilitate the necessarily interdisciplinary thinking demanded by the complexities of economic sustainability and justice. Collectively, the works gathered here assert and test a challenging and far-reaching hypothesis: economic theories, systems, and practices—ways of conceiving, organizing and enacting work, management, supply, production, exchange, remuneration, wealth, and consumption—rely on basic, often unexamined, presumptions about human personhood, relations, and flourishing.
APA, Harvard, Vancouver, ISO, and other styles
4

Two-Dimensional Air-Flow Tests of the Effect of ITA Flowliner Slot Modification by Grinding/Polishing on Edge Tone Generation Potential. Independently Published, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Davis, J. R., ed. Gear Materials, Properties, and Manufacture. ASM International, 2005. http://dx.doi.org/10.31399/asm.tb.gmpm.9781627083454.

Full text
Abstract:
Gear Materials, Properties, and Manufacture explains how material-related properties and operating conditions affect the lifetime and performance of gears and the ways in which they fail. It begins with a review of the basic design and configuration of gears and related engineering considerations. It then examines the effect of friction and wear and the role of lubrication in gear failures. It explains how to calculate lubricant film thickness, defines lubrication regimes, and presents guidelines for selecting and applying lubricants for specific applications. The chapters that follow cover gear materials and manufacturing methods, providing details on metals and plastics and processes such as casting and forging, powder metallurgy, injection molding, machining, grinding, finishing, and carburizing and nitriding treatments. The final chapters discuss the types and causes of gear failures and the steps involved in failure analysis. They also explain how to assess fatigue damage and estimate remaining service life and describe the tests that are used to evaluate the durability of gears under load. For information on the print version, ISBN 978-0-87170-815-1, follow this link.
APA, Harvard, Vancouver, ISO, and other styles
6

Chiou, Wen-An, Helmut Coutelle, Andreas Decher, Michael Dörschug, Reiner Dohrmann, Albert Gilg, Stephan Kaufhold, et al. Bentonites -. Edited by Stephan Kaufhold. E. Schweizerbart Science Publishers, 2021. http://dx.doi.org/10.1127/bentonites/9783510968596.

Full text
Abstract:
<p><b>Bentonites</b> are rocks mostly consisting of swelling clay minerals. They were first described from the Cretaceous Benton Shale near Rock River, Wyoming, USA. </p> <p> Because of their useful properties (e.g. highly adsorbent, cation exchanging, swelling), bentonites have many uses, in industry (among them as drilling mud, purification agent, binder, adsorbent, paper production), culture (for e.g. pottery) and medicine/cosmetics/cat litter, civil engineering, and in the future even in the disposal of high-level nuclear waste. </p> <p> Particular chemical characteristics of bentonite clay minerals are rather variable but critically determine their suitability for a particular application. </p> <p> The 15 specialist authors discuss bentonite terminology, classification and genesis and use in eight chapters. Individual chapters deal with the methods bentonites are analysed with, their properties and performance in terms of parameters such as cation exchange capactiy, rheology, coagulation concentraion, water uptake capacity, free swelling, and electrical resistivity (amongst others). </p> <p> A chapter is dedicated to the sources of bentonites, the technology employed to produce them, and how quality control is carried out both in the mine and the laboratory. A further chapter is dedicated to methods of processing the mined material, different activation methods, drying, grinding, and purification. </p> <P> Use cases for bentonites are discussed in a chapter of its own. References, a section on norms and standards, and a list of abbreviations complete the text. </p> <p> The volume addresses students, researchers, and professionals in the mineral industry dealing with bentonite and their clay-mineral constituents, quality assessement and control, and persons that use bentonites in their products. </p>
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Grinding test"

1

Shi, Lun. "Study on the Control and Test of High Precision Honing Machine for Injection Nozzle." In Advances in Grinding and Abrasive Technology XIV, 162–65. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-459-6.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xiang, Dao Hui, Ming Chen, and Fang Hong Sun. "Finite Element Modeling and Blister Test to Investigate the Adhesive Strength of Diamond Thin Film." In Advances in Grinding and Abrasive Technology XIV, 85–89. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-459-6.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Waldman, Steven D. "The apley grinding test for meniscal tear." In Physical Diagnosis of Pain, 372. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-71260-6.00259-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Comparative Study on Tribological Properties of Nanofluids in Friction-Wear Experiments and Grinding Processing." In Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding, 298–316. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1546-4.ch013.

Full text
Abstract:
This chapter presents the lubricating properties of different vegetable-oil-based nanofluids through a comparative evaluation between frictional test and grinding experiment. The first experiment aimed to prejudge the lubricating properties of different nanofluids with a frictional test, which simulated the interface state of grinding between the abrasive grains and the workpiece. The second aimed to test and verify the lubricating properties of the same nanofluids through a grinding experiment. The mechanism of oil-film formation of nanofluids in the grinding zone was analyzed by morphology and element analysis of the worn surface. The experimental results show that Al2O3 nanofluids have the best tribological properties. Compared with pure base oil, the friction coefficient is reduced by 20%, and the optimal friction surface morphology is obtained. The good anti-friction and anti-wear properties of nanofluids are attributed to the formation of the protective oil film formed by chemical reaction on the surface.
APA, Harvard, Vancouver, ISO, and other styles
5

"Postcarburizing Thermal Treatments." In Carburizing, 171–98. ASM International, 1999. http://dx.doi.org/10.31399/asm.tb.cmp.t66770171.

Full text
Abstract:
Abstract This chapter familiarizes readers with tempering and refrigeration treatments and their effect on case-carburized parts. It explains how tempering makes such parts easier to machine, more structurally and dimensionally stable, and more durable in certain applications. It identifies key process parameters and provides test data showing how they affect hardness, yield strength, bending and contact fatigue, and fracture toughness. It also addresses potential problems stemming from process-related factors such as the presence of hydrogen and the effects of aging and grinding. In regard to refrigeration, the chapter explains that it is not uncommon for subzero treatments to be included in the production of carburized parts whether as a standard procedure or optional step. Subzero cooling promotes the transformation of retained austenite to martensite, thereby increasing surface hardness and reducing the propensity of quenched carburized steels to burn and crack during surface grinding. The chapter includes numerous data plots and tables showing how the various treatments influence hardness, wear resistance, tensile properties, and fatigue and fracture behaviors.
APA, Harvard, Vancouver, ISO, and other styles
6

Setiati, Rini, Septoratno Siregar, and Deana Wahyuningrum. "Laboratory Optimization Study of Sulfonation Reaction toward Lignin Isolated from Bagasse." In Biomass [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93662.

Full text
Abstract:
Bagasse is scientifically defined as waste from the extraction of sugarcane liquid after the grinding process. Bagasse is biomass which is used as raw material to be processed into surfactants. Bagasse fiber cannot be dissolved in water because it consists mostly of cellulose, pentosane and lignin. The optimum conditions for obtaining the highest yield and the best conversion of bagasse to lignin were achieved when used 80 mesh bagasse and 3 M NaOH as a hydrolysis agent. Then lignin is reacted with 0.25 sodium bisulfite to the surfactant sodium lignosulfonate. Lignin and sodium lignosulfonate were further characterized using a FTIR spectrophotometer to determine the components contained therein. The lignin component consists of phenolic functional group elements, aliphatic and aromatic groups, ketone groups, aren functional groups, amine groups and alkyl groups along with standard lignin components. Likewise with lignosulfonates, with indicator components consisting of C═C alkenes, Sulfate S═O, C═O carboxylic acids and S-OR esters. The NMR test was resulted the monomer structure of SLS surfactant bagasse. The results indicate that the lignin isolation process from bagasse has been successfully. Likewise, the sulfonation of lignin to lignosulfonate is also successful.
APA, Harvard, Vancouver, ISO, and other styles
7

Molina-Quintana, Bertha, Antonio Vaamonde-Liste, and María Berta Quintana-León. "Integrative Activities with Suppliers and Customers to Achieve Supply Chain Integration." In Communication Management [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97743.

Full text
Abstract:
This paper analyzes nine integrative activities about demand forecasts, production plans, long-term relationships, joint planning, information through technologies, product development processes, product design processes, joint goals, that companies do in their daily activities with suppliers and customers in order to achieve supply chain integration. The objective is to analyze these integrative activities to determine if it exists collaboration among external partners of the supply chain in the food industry companies, to know the level or intensity of the exchange of information, communication and collaboration between companies and their external partners of suppliers and customers. The measurement instrument was applied to 93 companies from the food industry sector of Michoacán, México which are divided into nine sectors; grinding grains and seeds, obtaining oils and fats, confectionery with and without cocoa, preserving fruits, vegetables and prepared foods, dairy products, meat and poultry processing, preparation and packaging of fish and seafood, bakery and tortillas. The Integrative activities are analyzed by means of statistical descriptions, paired samples test, one-sided contrast, mean difference and confidence intervals and associations. The results indicate that the difference is always in favor of customers than for suppliers.
APA, Harvard, Vancouver, ISO, and other styles
8

Gnanasekaran, S., Samson Jerold Samuel Chelladurai, G. Padmanaban, and S. Sivananthan. "Microstructural and High Temperature Wear Characteristics of Plasma Transferred Arc Hardfaced Ni–Cr–Si–B-C Alloy Deposits." In Liquid Metals [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98622.

Full text
Abstract:
Due to the tough working environments, wear damage to nuclear reactor components is frequent. Usually, nuclear elements run at 573 k to 873 k. The feed water controller valves, used for the thundering of coolant flow, wear out faster among the reactor components. Austenitic stainless steels, using different methods for hardfacing, improve wear resistance to the cobalt and nickel alloys. Nickel based hardfacing is more resistant to wear than cobalt based hardfacing at high temperatures thanks to the solid oxide layers. Austenitic stainless-steel substrates generally favor nickel-based hardfaced (Ni–Cr-Si–B-C) over cobalt-driven hardfacing because this reduces radiation-induced nuclear activity. A well-known surface method for depositing nickel hardfacing, minimal dilution, alloys is the Plasma Transfer Arc (PTAs) weld technique. In this study the Ni-based alloy is hardfaced over a 316 L (N) ASS substratum with PTA hardfacing, for a dense of approximately 4–4.5 mm. The substrates and deposits were tested at different temperatures with a pin on disc wear (room temperature, 150 and 250°C).When grinding with 1000 grain SiC abrasive paper, the wear test samples were polished to the roughness value (Ra) of less than 0,25 m.The deposit showed a variety of wear mechanisms regarding the test temperature. Using friction and wear values and wear analysis, the wear mechanisms were determined. There was a considerable wear loss at room temperature (RT).At 423 K operating heat, mild ploughing at short sliding distances and tribo-oxidation were carried out with increasing sliding time.The primary wear mechanism was adherence at the time of operating temperature at 623 K, but as the sliding distance widened, tribo-oxidation improved. In combination with a working hardened substrate, the formation of an oxide layer could significantly reduce the wear loss of nickel-based alloys.
APA, Harvard, Vancouver, ISO, and other styles
9

Virivinti, Nagajyothi, and Kishalay Mitra. "Handling Optimization Under Uncertainty Using Intuitionistic Fuzzy-Logic-Based Expected Value Model." In Handbook of Research on Emergent Applications of Optimization Algorithms, 750–76. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-2990-3.ch032.

Full text
Abstract:
Uncertainty in parameters during deterministic optimization studies can have large impact on the outcome of the optimization result. It is pragmatic that these parameters are uncertain as they have direct link with real life scenarios, e.g. fuel price appearing as a parameter in objective function or constraints. However, their variability is ignored while solving the problem in a deterministic optimization framework. While mitigating the above mentioned scenario, it is, therefore, necessary to investigate the development of uncertainty handling techniques for a realistic optimization problem. In this work, we propose intuitionistic fuzzy expected value model (IFEVM), which assumes uncertain parameters as intuitionistic fuzzy variables and derives the solution out of an equivalent transformed deterministic formulation while defining the expected values of the objective functions and constraints. Intuitionistic fuzzy parameters can be regarded as a superset of the conventional fuzzy set where the aspect of non-determinacy of a fuzzy member to a set is additionally taken into account. The proposed IFEVM technique has been applied on two examples: first, with the Binh-korn's multi-objective test function where uncertain parameters are linearly related and next with a real life case study of industrial grinding operation having multiple numbers of non-linearly related uncertain parameters. The technique has been further applied to these case studies considering three different levels of risk scenarios e.g. optimistic, pessimistic and intermediate approaches. The IFEVM technique is fairly generic and advantageous, can be applied to any kind of system for handling uncertainty in parameters.
APA, Harvard, Vancouver, ISO, and other styles
10

Haner, Serhan. "The Effects of Mill Conditions on Breakage Parameters of Quartz Sand in the District of Şile on the Black Sea Coast of İstanbul." In Sand in Construction [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102554.

Full text
Abstract:
Casting, glass, ceramic, construction, plastic, dyeing, and abrasive industries are the main consumption areas of quartz sand, which are formed as a result of the weathering of igneous metamorphic rocks. In such industries, it is very important to select the correct ball size in order to grind the raw material to the desired particle size in optimum time. In this study, the changes in the specific rate of breakage of the quartz sand sample were investigated by using alloy steel balls of five different sizes. For this purpose, three different mono-size samples were prepared according to 4√2 series in the range of 0.090–0.053 mm. The quartz sand prepared in these three intervals was ground with 6.35, 7.94, 9.52, 12.70, and 19.05 mm alloy steel balls for different durations. The specific rate of breakage values was obtained from the particle size distributions acquired after various grinding periods. As a result of grinding tests, an increase in the rate of breakage is observed due to the increase in ball diameter.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Grinding test"

1

Siqueira, Bernardo, Harri Lehto, Mattias Astholm, and Ville Keikkala. "GRINDING TEST FOR IRON ORE TERTIARY GRINDING CIRCUIT." In 45º Redução / 16º Minério de Ferro / 3º Aglomeração. São Paulo: Editora Blucher, 2017. http://dx.doi.org/10.5151/2594-357x-27073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

YOKOSAWA, T. "GRINDING CHARACTERISTICS OF MICRO TENSILE TEST PIECE GROUND BY FORM EXTERNAL GRINDING." In Proceedings of the Third International Conference on Abrasive Technology (ABTEC '99). WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817822_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Menezes, Pradeep L., Kishore, and Satish V. Kailas. "Effect of Directionality of Grinding Marks on Friction at Different Surface Roughness Using Inclined Scratch Test." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64000.

Full text
Abstract:
Surface topography of a tool plays an important role as it predominantly controls the frictional behavior at the interface. In the present study, Inclined Scratch Tester was used to understand the effect of directionality of surface grinding marks on coefficient of friction and transfer layer formation. EN8 steel flats were ground to attain different surface roughness with unidirectional grinding marks. Then Al-Mg alloy pins were scratched against the prepared EN8 steel flats. Grinding angle (angle between direction of scratch and grinding marks) was varied between 0° and 90° during the scratch tests. It was observed that the coefficient of friction and transfer layer formation depend primarily on the directionality of grinding marks of the harder mating surface, and independent of surface roughness of harder mating surface. The grinding angle effect on coefficient of friction was attributed to the variation of plowing component of friction with grinding angle.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Hua, Yefeng Liu, Xi Chen, Huanhuan Zhao, Yulin Cai, Jun Yao, Haitao Huang, and Dairu Zhu. "Experimental Study on Cooling-Air Grinding for 40Cr." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22084.

Full text
Abstract:
Cooling-air grinding is one of important green grinding. Cooling-air grinding performances for 40Cr are test in this paper using cooling-air generator. Main performance influencing factors are test and analyzed, such as air temperature, wheel granularity, amount of feed and so on. Cooling-air grinding results shows that roughness of surface of test pieces can reach precise grinding standard. So cooling-air grinding can replace traditional grinding in this experiment. This study for the promotion of cooling-air grinding application technology has important significance for reference.
APA, Harvard, Vancouver, ISO, and other styles
5

Vogt, C., S. Sinzinger, M. Rohrbacher, and R. Rascher. "Prediction of grinding tool wear and lifetime by using a test bench." In Third European Seminar on Precision Optics Manufacturing, edited by Rolf Rascher, Oliver Fähnle, Christine Wünsche, and Christian Schopf. SPIE, 2016. http://dx.doi.org/10.1117/12.2236212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Phan, Andrew M., Michael P. Summers, and John P. Parmigiani. "Optimization Device for Grinding Media Performance Parameters." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64210.

Full text
Abstract:
The investment casting industry relies heavily on the use of grinding media during manufacturing. Typically, grinding media, when used in this application, have very short effective lifetimes. Determining the optimum life of grinding media is a key cost-containment and manufacturing-efficiency issue. However, current methods for determining optimum life as well as evaluating new grinding media products and optimum operating parameters are highly subjective and often is a matter of operator opinion. This subjectivity can lead to the premature retirement or overuse of grinding media, increasing cost and decreasing efficiency. A means of objectively and efficiently evaluating grinding media for optimum life and operating conditions, as well as evaluating new grinding-media products is needed. The approach taken in this work is to create a relatively low-cost test apparatus that uses grinding equipment, media, and specimens typically seen in the casting industry and measures key parameters. Also, the apparatus produces the fundamental motions and application forces typical of human operators. The resulting apparatus simultaneously moves a specimen in three orthogonal directions while applying a user-defined grinding force. Applied force, electric power input, grinding-motor rotational speed, test-specimen surface temperature and material removal are recorded. All operations of the device are autonomously performed through LabVIEW. The apparatus was constructed using standard commercial products for less than $15,000. Data comparing applied load versus material removal rate, surface temperature, and total material removed can be collected for different materials and grinding media. The device has been used to grind inconel specimens subjected to 10 to 70 pounds (45–312 N) of contact force corresponding to material removal rates of 0.26 to 5.26 grams/s at temperature changes of 90 to 210 degrees Fahrenheit (32.2–98.9 degrees Celsius). This data was used to determine a correlation between changes in performance parameters and a drop in material removal rate, total material removed, and belt life. No significant difference was found between the material removal rate of saw-cut and flame-cut Inconel specimens, dispelling a commonly held belief. Knowing key parameters that identify the effective lifetime of grinding media is significant to the casting industry. Methods described in this paper can be used to optimize grinding media life and determine optimum operating parameters.
APA, Harvard, Vancouver, ISO, and other styles
7

Deng, Yangfang, Jianguan Tang, and Fan Wu. "Application of Zernike polynomials to test large aspheric surfaces in the fine grinding stage." In 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, edited by Yudong Zhang, José Sasián, Libin Xiang, and Sandy To. SPIE, 2010. http://dx.doi.org/10.1117/12.864176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lutey, Adrian H. A., Alessandro Fortunato, Simone Carmignato, Filippo Zanini, and Alessandro Ascari. "Laser Profiling of Aluminum Oxide Grinding Wheels." In ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9293.

Full text
Abstract:
Laser profiling experiments are performed at normal incidence on fine grain medium density aluminum oxide grinding wheels with a pulsed nanosecond 1064nm fiber laser source with maximum pulse fluence 369J/cm2. In order to determine the incision depth and ideal laser pass separation distance, laser exposures are first performed on high purity, low porosity aluminum oxide blocks and subsequently analyzed with an optical profiler operating in confocal mode. This ablation data is then applied to path planning for grinding wheel profiling experiments, with division of the necessary removal depth according to the measured incision depth and ideal pass separation distance. X-ray computed tomography is utilized to determine the resulting profile accuracy as a function of process parameters. Test results indicate a maximum profile accuracy in the order of 200μm; however, in order to approach the accuracy of diamond dressing, some two orders of magnitude lower, it is likely that tangential laser incidence is necessary.
APA, Harvard, Vancouver, ISO, and other styles
9

Iinuma, Naoki, Boshi Chen, Tappei Kawasato, and Yasuhiro Kakinuma. "Shape Error Analysis in Ultra-Precision Grinding of Optical Glass by Using Motor-Current-Based Grinding Force Monitoring." In ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-85472.

Full text
Abstract:
Abstract 4K and 8K technologies are attracting attention in optical industries. The most important mechanical element to enhance the imaging performance is the aspherical lens requiring higher surface quality and higher form accuracy. Currently, the production process of optical lenses consists of brittle-mode grinding and pro-longed polishing process, which play a role of shaping the form and producing the fine surface, respectively. However, this process is not considered to be suitable for manufacturing such higher-quality lenses for 4K and 8K imaging devices because a required form accuracy could not be ensured, and the polishing time gets longer. To enhance the form accuracy and production efficiency, application of ductile-mode grinding is expected to reduce polishing amount. However, the shape error generated by the ductile mode grinding is not clear. Therefore, the purpose of this research is to analyze the relation between the shape error and the grinding force estimated from motor-current in the grinding machine. The motor-current acquisition system in all translational axes and the work spindle is constructed and implemented into a 4-axis ultra-precision aspherical machine. The grinding force in each axis is derived by subtracting the motor current during non-grinding previously obtained in air-grinding test from the current during grinding. Firstly, the behavior of the motor current in each axis is investigated from the viewpoint of repeatability and position dependency. While the periodic fluctuation of the motor current affected by the influence of permanent magnet in the linear motor is confirmed, it shows high repeatability at each position. This result indicated that grinding force is easily calculated from the motor current with less uncertainty. Then, influence of grinding condition in the range of ductile mode grinding on the shape error is analyzed by monitoring the motor current. Toward the outside of the workpiece, the shape error gradually increases with the increase of motor current, which means larger grinding force at the outer side causes the deformation of the resin grinding wheel.
APA, Harvard, Vancouver, ISO, and other styles
10

Jing, Hongwei, Long Kuang, and Bin Fan. "Method for removing temperature shifting during measurement of large mirrors in grinding process." In 3rd International Symposium on Advanced Optical Manufacturing and testing technologies: Optical test and Measurement Technology and Equipment, edited by Junhua Pan, James C. Wyant, and Hexin Wang. SPIE, 2007. http://dx.doi.org/10.1117/12.783785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography