Academic literature on the topic 'Grid reactive power support'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Grid reactive power support.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Grid reactive power support"

1

Khorwal, Harish, and Mrs Madhu Upadhyay. "Descriptive Study of Renewable Energy System for Reactive Power Injection and AI Techniques." SMART MOVES JOURNAL IJOSCIENCE 6, no. 1 (January 8, 2020): 4. http://dx.doi.org/10.24113/ijo-science.v6i1.249.

Full text
Abstract:
Solar Photovoltaic (PV) systems have been in use predominantly since the last decade. Inverter fed PV grid topologies are being used prominently to meet power requirements and to insert renewable forms of energy into power grids. At present, coping with growing electricity demands is a major challenge. This paper presents a detailed review of topological advancements in PV-Grid Tied Inverters along with the advantages, disadvantages and main features of each. The different types of inverters used in the literature in this context are presented. Reactive power is one of the ancillary services provided by PV. It is recommended that reactive power from the inverter to grid be injected for reactive power compensation in localized networks. For successful integration with a grid, coordination between the support devices used for reactive power compensation and their optimal reactive power capacity is important for stability in grid power.
APA, Harvard, Vancouver, ISO, and other styles
2

Khorwal, Harish, and Mrs Madhu Upadhyay. "Descriptive Study of Renewable Energy System for Reactive Power Injection and AI Techniques." SMART MOVES JOURNAL IJOSCIENCE 6, no. 1 (January 8, 2020): 37–39. http://dx.doi.org/10.24113/ijoscience.v6i1.249.

Full text
Abstract:
Solar Photovoltaic (PV) systems have been in use predominantly since the last decade. Inverter fed PV grid topologies are being used prominently to meet power requirements and to insert renewable forms of energy into power grids. At present, coping with growing electricity demands is a major challenge. This paper presents a detailed review of topological advancements in PV-Grid Tied Inverters along with the advantages, disadvantages and main features of each. The different types of inverters used in the literature in this context are presented. Reactive power is one of the ancillary services provided by PV. It is recommended that reactive power from the inverter to grid be injected for reactive power compensation in localized networks. For successful integration with a grid, coordination between the support devices used for reactive power compensation and their optimal reactive power capacity is important for stability in grid power.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Yin Guo, Zhi Chang Yuan, Rui Chen, Jian Xi Lin, and Wei Tan. "A Comparing Study on Voltage Support Ability between STATCOM and Generator." Advanced Materials Research 1077 (December 2014): 160–65. http://dx.doi.org/10.4028/www.scientific.net/amr.1077.160.

Full text
Abstract:
STATCOM and synchronous generator are considered as measures of providing dynamic reactive power to power grid. Based on a real regional power grid, ability of voltage support between STATCOM and generator are compared through digital simulations. The results shows that STATCOM always provides additional reactive power to persist voltage collapse, while ability of generator reactive power are restricted by terminal voltage under faults.
APA, Harvard, Vancouver, ISO, and other styles
4

Abdul Kadir, Aida Fazliana, Hanisah Mupangat, Dalila Mat Said, and Zulhani Rasin. "REACTIVE POWER ANALYSIS AT SOLAR POWER PLANT." Jurnal Teknologi 83, no. 2 (February 2, 2021): 47–55. http://dx.doi.org/10.11113/jurnalteknologi.v83.15104.

Full text
Abstract:
Reactive power is essential to control the power system's voltage stability as the reactive power is directly proportional to the voltage. Hence, every new solar photovoltaic (PV) plant installed in the grid system must comply with the grid code requirements to ensure that the electricity supply remains stable and reliable. As the more penetration of PV plants, the electrical system will face some challenges related to reactive power control and voltage support. Thus, many countries including Malaysia have updated their grid codes to permit a smooth interaction between these new plants with the grid system. The inverter of PV solar connected to grid system are required to supply rated power output (MW) at point of common coupling (PCC) between the limits of 0.85 power factor lagging, and 0.95 leading follow to the Malaysian Grid Code (MGC) requirement. Hence, this research aims to design a controller for the PV inverter in Matlab/Simulink that able to absorb and supply the reactive power. Then, the comparison will execute between the simulation results and the MGC requirement. However, due to power loss in the system, the PV inverter controller may not comply with the reactive power capability as the MGC requirement. Thus, the PV system need to integrate with the capacitor bank as a reactive power compensator.
APA, Harvard, Vancouver, ISO, and other styles
5

Mohod, Sharad W., Sudesh M. Hatwar, and Mohan V. Aware. "Wind Energy Generation Interfaced System with Power Quality and Grid Support." Advanced Materials Research 403-408 (November 2011): 2079–86. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.2079.

Full text
Abstract:
The integration of the wind generator into the grid connected system becomes a challenge. The major problem is to have a dynamic reactive power support along with the controlled real power support from the source. In this paper a control algorithm is proposed to maintain the unity power factor of the source supply with no reactive power support from the source. The static compensator ( STATCOM ) is connected at a point of common coupling (PCC) with a battery energy storage system (BESS).The STATCOM and energy storage is interfaced with wind generating system, supporting the real and reactive power and also maintain the stable voltage at PCC and support the grid. The effectiveness of the proposed scheme relieves the main supply source from the reactive power demand of the load and the induction generator. The reactive power compensation by STATCOM with bang-bang controller with hysteresis based technique maintains the dynamic stability of the grid and matches the operating behavior of grid system. This scheme is simulated with a MATLAB/SIMULINK in power system block set, having interface of induction generator and non-linear load at PCC and performance is evaluated.
APA, Harvard, Vancouver, ISO, and other styles
6

Kavya Santhoshi, B., K. Mohana Sundaram, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, and Prabhakaran K. K. "Critical Review of PV Grid-Tied Inverters." Energies 12, no. 10 (May 20, 2019): 1921. http://dx.doi.org/10.3390/en12101921.

Full text
Abstract:
Solar Photovoltaic (PV) systems have been in use predominantly since the last decade. Inverter fed PV grid topologies are being used prominently to meet power requirements and to insert renewable forms of energy into power grids. At present, coping with growing electricity demands is a major challenge. This paper presents a detailed review of topological advancements in PV-Grid Tied Inverters along with the advantages, disadvantages and main features of each. The different types of inverters used in the literature in this context are presented. Reactive power is one of the ancillary services provided by PV. It is recommended that reactive power from the inverter to grid be injected for reactive power compensation in localized networks. This practice is being implemented in many countries, and researchers have been trying to find an optimal way of injecting reactive power into grids considering grid codes and requirements. Keeping in mind the importance of grid codes and standards, a review of grid integration, the popular configurations available in literature, Synchronization methods and standards is presented, citing the key features of each kind. For successful integration with a grid, coordination between the support devices used for reactive power compensation and their optimal reactive power capacity is important for stability in grid power. Hence, the most important and recommended intelligent algorithms for the optimization and proper coordination are peer reviewed and presented. Thus, an overview of Solar PV energy-fed inverters connected to the grid is presented in this paper, which can serve as a guide for researchers and policymakers.
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Mi-na, Jun-sin Yi, Chung-Yuen Won, and Jung-Hyo Lee. "Methods to Improve Dynamic System Response of Power Compensators Using Supercapacitors in Low-Voltage Ride-Through (LVRT) Conditions." Electronics 11, no. 7 (April 5, 2022): 1144. http://dx.doi.org/10.3390/electronics11071144.

Full text
Abstract:
In this paper, a power compensator using supercapacitors in parallel to protect grid-connected devices connected to the distributed power supply in the case of a low-voltage ride-through (LVRT) situation in designed, and a grid-connected device control method with improved responsiveness is proposed. In the LVRT situation, the distributed generation power may boost the DC_link voltage, increasing the risk of destroying grid-connected devices. To prevent this, the power compensator designed in this study absorbs active power in a fault situation and stores it in the supercapacitor to suppress the DC_link voltage rise and efficiently use the power. In addition, we propose methods to improve the response of the grid reactive power through the reactive power compensation of the power compensator in LVRT situation. To this end, the power angle (θPW) was extracted through the formula, and the reactive power command, to be compensated by the power compensator, and the reactive power command, compensated by the grid-connected devices, were calculated according to the active power value. In this way, the grid power controlled by the power compensation device and the grid-connected devices was controlled by the active/reactive power of the same power angle and analyzed mathematically. Active power control and static grid support were performed in the normal state where the reduction rate of the normal value of the grid voltage was around 10%. However, when the grid voltage dropped by 10% to 100%, the reactive power control was appropriately performed with dynamic grid support by increasing the voltage from 10% to 20% or more. We conducted a simulation of the new and renewable energy grid-connected devices using the OPAL-RT-based Hardware-in-the Loop Simulation (HILS) system to control the proposed active/reactive power.
APA, Harvard, Vancouver, ISO, and other styles
8

Charalambous, Anastasis, Lenos Hadjidemetriou, Lazaros Zacharia, Angelina D. Bintoudi, Apostolos C. Tsolakis, Dimitrios Tzovaras, and Elias Kyriakides. "Phase Balancing and Reactive Power Support Services for Microgrids." Applied Sciences 9, no. 23 (November 24, 2019): 5067. http://dx.doi.org/10.3390/app9235067.

Full text
Abstract:
Alternating current (AC) microgrids are expected to operate as active components within smart distribution grids in the near future. The high penetration of intermittent renewable energy sources and the rapid electrification of the thermal and transportation sectors pose serious challenges that must be addressed by modern distribution system operators. Hence, new solutions should be developed to overcome these issues. Microgrids can be considered as a great candidate for the provision of ancillary services since they are more flexible to coordinate their distributed generation sources and their loads. This paper proposes a method for compensating microgrid power factor and loads asymmetries by utilizing advanced functionalities enabled by grid tied inverters of photovoltaics and energy storage systems. Further, a central controller has been developed for adaptively regulating the provision of both reactive power and phase balancing services according to the measured loading conditions at the microgrid’s point of common coupling. An experimental validation with a laboratory scale inverter and a real time hardware in the loop investigation demonstrates that the provision of such ancillary services by the microgrid can significantly improve the operation of distribution grids in terms of power quality, energy losses and utilization of available capacity.
APA, Harvard, Vancouver, ISO, and other styles
9

Garnica, Miguel, Luís García de Vicuña, Jaume Miret, Antonio Camacho, and Ramón Guzmán. "Voltage Support Experimental Analysis of a Low-Voltage Ride-Through Strategy Applied to Grid-Connected Distributed Inverters." Energies 11, no. 8 (July 27, 2018): 1949. http://dx.doi.org/10.3390/en11081949.

Full text
Abstract:
In recent decades, different control strategies have been designed for the increasing integration of distributed generation systems. These systems, most of them based on renewable energies, use electronic converters to exchange power with the grid. Capabilities such as low-voltage ride-through and reactive current injection have been experimentally explored and reported in many research papers with a single inverter; however, these capabilities have not been examined in depth in a scenario with multiple inverters connected to the grid. Only few simulation works that include certain methods of reactive power control to solve overvoltage issues in low voltage grids can be found in the literature. Therefore, the overall objective of the work presented in this paper is to provide an experimental analysis of a low-voltage ride-through strategy applied to distributed power generation systems to help support the grid during voltage sags. The amount of reactive power will depend on the capability of each inverter and the amount of generated active power. The obtained experimental results demonstrate that, depending on the configuration of distributed generation, diverse inverters could have different control strategies. In the same way, the discussion of these results shows that the present object of study is of great interest for future research.
APA, Harvard, Vancouver, ISO, and other styles
10

Ramachandran, Vijayapriya, Angalaeswari Sendraya Perumal, Natrayan Lakshmaiya, Prabhu Paramasivam, and Seshathiri Dhanasekaran. "Unified Power Control of Permanent Magnet Synchronous Generator Based Wind Power System with Ancillary Support during Grid Faults." Energies 15, no. 19 (October 8, 2022): 7385. http://dx.doi.org/10.3390/en15197385.

Full text
Abstract:
A unified active power control scheme is devised for the grid-integrated permanent magnet synchronous generator-based wind power system (WPS) to follow the Indian electricity grid code requirements. The objective of this paper is to propose control schemes to ensure the continuous integration of WPS into the grid even during a higher percentage of voltage dip. In this context, primarily a constructive reactive power reference is formulated to raise and equalize the point of common coupling (PCC) potential during symmetrical and asymmetrical faults, respectively. A simple active power reference is also proposed to inject a consistent percentage of generated power even during faults without violating system ratings. Eventually, the efficacy of the proposed scheme is demonstrated in terms of PCC voltage enhancement, DC-link potential, grid real, and reactive power oscillation minimization using the PSCAD/ EMTDC software.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Grid reactive power support"

1

Eiriksson, Eysteinn. "Distribution grid capacity for reactive power support." Thesis, KTH, Elkraftteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221829.

Full text
Abstract:
The modern power system is changing at a rate faster than would have been expected20 years ago. More and more conventional power plants will be shut down in favour ofdistribution generation (DG). This is happening now with the trend of introducing renewableenergy sources (RES) to the power system.The grids were designed to transfer power from generating units connected to the highvoltage grids towards the end consumers connected to the low voltage grids. With changedpower mix, power flows in the system will change resulting in possible grid problems. Oneof the main problems is keeping the voltage within operational limits of the system. Whenthe generation exceeds the consumption in a distribution network, the power will flow fromthe low voltage network towards the high voltage network (reverse power flow) which willcause the voltage to rise in the low voltage network. Reactive power support from DG canbe a valuable resource to mitigate the problem. Reactive power is necessary to operatethe power system. The main source of reactive power is synchronous generators. If thissource is shut down, the reactive power must come from another source.This thesis investigates if DG could be used to support reactive power to the highvoltage transmission network to control the voltage. For this purpose, a distributionsystem located close toWorms, Germany will be studied. This distribution system consistsof two MV feeders with high penetration of DG, mostly photovoltaic (PV) but also windturbines (WT). Consumption and generation measurement data was provided by the localdistribution system operator (DSO). A few reactive power control methods are introducedand tested on this system. From the results, it is concluded that it is possible to providereactive power support from distribution networks and a voltage dependent reactive powercontrol can be used to this purpose.
Det moderna kraftsystemet förandras snabbara än vad som hade förväntats för 20 årsedan. Fler och fler konventionella kraftverk kommer att stängas till fördel för distributionsgenering.Detta händer nu med trenden att introducera förnybara energikällor tillkraftsystemet.Nätverket utformades för att överföra kraft från generatorer som är anslutna till högspänningsnätetmot konsumenter anslutna till lågspänningsnätet. Med ändrad kraftblandningkommer strömflödena i systemet att förändras vilket resulterar i eventuella nätproblem.Ett av huvudproblemen är att hålla spänningen inom operativa gränser för systemet.När generationen överstiger förbrukningen i ett distributionsnät, kommer strömmen attströmma från lågspänningsnätet till högspänningsnätet vilket kommer att leda till attspänningen stiger i lågspänningsnätet. Reaktivt kraftstöd från distributionsgenering kanvara en värdefull resurs för att mildra problemet. Reaktiv effekt är nödvändig för att drivaelsystemet. Huvudkällan för reaktiv kraft är synkrona generatorer. Om den här källanstängs av måste den reaktiva effekten komma från en annan källa.Denna avhandling undersöker om distributionsgenering skulle kunna användas för attstödja reaktiv kraft till högspänningsöverföringsnätet för att styra spänningen. För dettaändamål studeras ett distributionssystem som ligger nära Worms, Tyskland. Detta distributionssystembestår av två MV-matare med med mycket distributionsgenerering, främstsolceller men även vindturbiner. Förbruknings- och generationsmätningsdata tillhandahöllsav den lokala distributionssystemoperatören. Några reaktiva effektstyrningsmetoderintroduceras och testas på detta system. Av resultaten dras slutsatsen att detär möjligt att tillhandahålla reaktivt kraftstöd från distributionsnät och en spänningsberoendereaktiv effektstyrning kan användas för detta ändamål.
APA, Harvard, Vancouver, ISO, and other styles
2

Johnson, Benjamin Anders. "Modeling and Analysis of a PV Grid-Tied Smart Inverter's Support Functions." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/994.

Full text
Abstract:
The general trends in the past decade of increasing solar cell efficiency, decreasing PV system costs, increasing government incentive programs, and several other factors have all combined synergistically to reduce the barriers of entry for PV systems to enter the market and expand their contribution to the global energy portfolio. The shortcomings of current inverter functions which link PV systems to the utility network are becoming transparent as PV penetration levels continue to increase. The solution this thesis proposes is an approach to control the inverters real and reactive power output to help eliminate the problems associated with PV systems at their origin and in addition provide the grid with ancillary support services. The design, modeling, and analysis of a grid-tied PV system was performed in the PSCAD software simulation environment. Results indicate that in the presence of grid disturbances the smart inverter can react dynamically to help restore the power system back to its normal state. A harmonic analysis was also performed indicating the inverter under study met the applicable power quality standards for distributed energy resources.
APA, Harvard, Vancouver, ISO, and other styles
3

Samadi, Afshin. "Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation Studies." Doctoral thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154602.

Full text
Abstract:
Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load and high PV generation conditions. Therefore, new strategies are required to address the associated challenges. Moreover, due to these changes in distribution grids, a different response behavior of the distribution grid on the transmission side can be expected. Hence, a new equivalent model of distribution grids with high penetration of PV systems is needed to be addressed for future power system studies. The thesis contributions lie in three parts. The first part of the thesis copes with the PV modelling. A non-proprietary PV model of a three-phase, single stage PV system is developed in PSCAD/EMTDC and PowerFactory. Three different reactive power regulation strategies are incorporated into the models and their behavior are investigated in both simulation platforms using a distribution system with PV systems. In the second part of the thesis, the voltage rise problem is remedied by use of reactive power. On the other hand, considering large numbers of PV systems in grids, unnecessary reactive power consumption by PV systems first increases total line losses, and second it may also jeopardize the stability of the network in the case of contingencies in conventional power plants, which supply reactive power. Thus, this thesis investigates and develops the novel schemes to reduce reactive power flows while still keeping voltage within designated limits via three different approaches: decentralized voltage control to the pre-defined set-points developing a coordinated active power dependent (APD) voltage regulation Q(P)using local signals developing a multi-objective coordinated droop-based voltage (DBV) regulation Q(V) using local signals   In the third part of the thesis, furthermore, a gray-box load modeling is used to develop a new static equivalent model of a complex distribution grid with large numbers of PV systems embedded with voltage support schemes. In the proposed model, variations of voltage at the connection point simulate variations of the model’s active and reactive power. This model can simply be integrated intoload-flow programs and replace the complex distribution grid, while still keepingthe overall accuracy high. The thesis results, in conclusion, demonstrate: i) using rms-based simulations in PowerFactory can provide us with quite similar results using the time domain instantaneous values in PSCAD platform; ii) decentralized voltage control to specific set-points through the PV systems in the distribution grid is fundamentally impossible dueto the high level voltage control interaction and directionality among the PV systems; iii) the proposed APD method can regulate the voltage under the steady-state voltagelimit and consume less total reactive power in contrast to the standard characteristicCosφ(P)proposed by German Grid Codes; iv) the proposed optimized DBV method can directly address voltage and successfully regulate it to the upper steady-state voltage limit by causing minimum reactive power consumption as well as line losses; v) it is beneficial to address PV systems as a separate entity in the equivalencing of distribution grids with high density of PV systems.

The Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively. QC 20141028

APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Weiyi. "Control of grid connected power converters with grid support functionalities." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/456312.

Full text
Abstract:
The installation of power generation systems based on renewable energy sources has been increasing exponentially over the last decades. However, in spite of the well-known merits of such energy sources, the expansion of renewable-based generation (RG) plants, which interface the grid through power converters, can produce also negative impacts on the electrical grid, due to its power processing mechanism, which is different from traditional generation plants. In fact, the regulation capability of the grid can decrease as much as the share of the RG increases. To avoid this, power conversion systems belonging to RG plants are requested to be more grid-friendly, and responsive to the electrical network conditions. In this way, they can contribute to the electrical network stability as other generation does, instead of behaving as simply grid-feeding systems focused on injecting as much power as possible.This PhD dissertation is focused on the control of grid-connected power converters with grid support functionalities based on the Synchronous Power Controller (SPC) concept. The SPC is an established solution for controlling grid connected power converters and equipping them with emulated and improved synchronous machine characteristics. In addition to the general goal of improving the grid interaction of the RG plants, grid support functionality stands as a main property among the characteristics given by the SPC. In this dissertation the virtual admittance structure, contained in the electrical block of the SPC, which emulates the stator output impedance of the synchronous machines, is analyzed. Moreover, it is extended to a study case where the admittance value can be different for positive- and negative-sequence components. The designed virtual admittance block contains three branches, which are responsible for positive-sequence current injection, negative-sequence current injection and other harmonic components, respectively. The converter¿s performance under asymmetrical grid fault is especially considered in this case.The analysis and arrangements in the design of the SPC¿s power loop controller is another contribution of this research. Other methods that consider synchronous machine emulation normally construct the controller by reproducing the synchronous generation swing equation. Based on the virtual implementation, which is free from mechanical constraints, one can set a proper damping factor achieving thus better dynamics compared to the traditional synchronous machines. However, the increase of the damping factor changes the inherent power-frequency (P-f) droop characteristics, which may lead to undesired deviations in the active power generation. In the framework of this PhD, a method that modifies the conventional swing equation emulation and lets the inherent P-f droop characteristics be configurable, independently of the inertia and damping characteristics, is proposed.The work presented in this dissertation is supported by mathematical and simulation analysis. Moreover, in order to endorse the conclusions achieved, a complete experimental validation has been conducted. As it will be shown, the performance of the SPC has been validated in tests once the main parts, namely virtual admittance and power loop controller, and other parts are settled. The simulation and experimental test scenarios include events like changes in the power operation point, frequency sweeps, voltage magnitude changes, start-up and parallel converters operation, which are given under different control configurations like the different structures for the power loop controller and different control parameters. This PhD research also compares the transient performance of the SPC-based power converters with the ones achieved with conventional control methods.
Los convertidores de potencia conectados a la red actúan comúnmente como interfaz entre plantas de generación basadas en energía renovable y la red eléctrica, permitiendo así el procesado de energía eólica y fotovoltaica y su inyección a red. El control de estos convertidores conectados a la red ha sido objeto de estudio en las últimas décadas, ya que su comportamiento y prestaciones influye de forma determinante tanto en la calidad de la red eléctrica, así como en el cumplimiento de los requisitos de conexión a la red fijados por los códigos de red. Junto con la expansión de las plantas de generación de energía renovable, su impacto en el sistema eléctrico ha crecido también, lo cual ha hecho que se lleven a cabo muchos trabajos de investigación orientados a armonizar la penetración de renovables con la estabilidad de la red. Con los sistemas de control actuales la capacidad de regulación de la red disminuye tanto como la proporción de la generación renovable aumenta. En las redes eléctricas del futuro, se espera que los convertidores de potencia, que actúan como interfaz, exploten sus posibilidades de cómputo y control permitiendo mejorar la interacción de la generación renovable con la red. En este contexto los controles de tipo “droop control”, los cuales son ampliamente utilizados en sistemas de generación tradicionales, se pueden aplicar a los convertidores conectados a red para habilitar funciones de soporte de red, ya que estos contribuyen al control de tensión y frecuencia primaria ajustando el intercambio de potencia activo y reactiva de forma proporcional a la desviación de la frecuencia y magnitud de la tensión en el punto de conexión. En el caso de regulación de frecuencia, y para que este sea bidireccional, el convertidor puede interactuar con la red con la ayuda de sistemas de almacenamiento de energía. Sin embargo, la inclusión del “droop control” no conlleva una solución global. Incluso si se ajusta de forma óptima y se dispone de reserva de energía, aún hay cuestiones como la respuesta inercial que no se pueden dar con este tipo de control. La generación en los sistemas tradicionales se lleva a cabo principalmente por generadores síncronos. Comparados con estos, los convertidores conectados a la red difieren principalmente en la falta de la característica electromecánica. En consecuencia, la estática y la dinámica de las unidades de generación de energía renovable son diferentes en comparación con los generadores síncronos. La dinámica de estos convertidores es altamente dependiente de los sistemas de sincronización (PLL), cuyo comportamiento se degrada en condiciones de red adversas o distorsionadas. Además, el control de potencia normalmente depende control de potencia instantáneo. Debido a las diferentes dinámicas, la inercia total en la red no aumenta junto con la integración de las energías renovables. Sin embargo, los códigos de red han incluido requerimientos tales como “inercia sintética" en los requisitos. Otras deficiencias del control del convertidor convencional incluyen el rendimiento inferior bajo condiciones de avería de red, en conexión de red débil y conexión de red de relación X / R baja. Esta tesis doctoral estudia y valida el control de los convertidores conectados a la red con funcionalidades de soporte de red. El objetivo general del trabajo es mejorar las características de interacción de la red de las plantas de generación de energía renovable mediante la especificación de los convertidores conectados a la red con características de la máquina síncrona emulada y mejorada. La tesis ha aportado contribuciones o ha mostrado originalidades en los siguientes aspectos: Un enfoque de ajuste de bucle de control de corriente interno generalizado; Diseño detallado y validación de la admisión virtual para convertidores conectados a la red; Diseño detallado y validación del circuito de control de potencia para la emulación de inercia y amortiguación.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Zhongkui. "Reactive Power Control and Optimization of Large Scale Grid Connected Photovoltaic Systems in the Smart Grid." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388764166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nylander, Gabriel. "Compensating the Changing Reactive Power in the Medium-Voltage Grid in Stockholm." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286340.

Full text
Abstract:
A decline in inductive reactive power has been noted by several DNOs around Europe for the last decade. Why this is happening is unknown. One of the DNOs is the Swedish DNO Ellevio AB that has seen large decreases in demand of inductive reactive power from their primary substations. The capacitor banks that are installed at the primary substations have historically been used to compensate the inductive load with capacitive reactive power. However, with a declining inductive load, the need for VAr compensation is diminishing. This thesis sets out to find out why Ellevio has been seeing a decrease in inductive reactive power and how the VAr compensation should be carried out in the future when the load is becoming more capacitive. The results from the thesis show that the decrease can be attributed to technological changes in lighting, motors and electronic loads as well as a change in consumer behavior. Lighting technology has gone from being a resistive and inductive load to a capacitive one. This is due to the phasing out of incadescent lightbulbs and fluorescent lighting with magnetic ballasts and being replaced by compact fluorescent light (CFL) with electronic ballasts and Light Emitting Diodes (LED). Furthermore, variable frequency drives are being used more frequently for controlling pumps and fans which results in the motor load being seen as capacitive from the grid side. The share of the electricity consumption going to power electronic loads, which tend to be capacitive, has also increased for the last decades. The phasing out of older technologies with newer ones results in the medium-voltage grid slowly becoming more capacitive.  An optimal sizing of capacitor banks was found for all the primary substations in Stockholm for three scenarios: compensating just the primary-substation load reactive power, as currently done; compensating also the primary-substation transformers; and compensating load and transformers with one transformer out of service. Furthermore, a comparison between controlling the capacitor banks from the primary substations to controlling them from the bulk supply point substation. The results indicate that the compensation of capacitive reactive power can be controlled in a more efficient way from the bulk supply point with a fewer amount of switches from the capacitor banks.
En markant minskning i induktiv reaktiv effekt har noterats från mellanspänningsnätet för flera elnätsföretag i Europa det senaste  decenniet. Vad denna minskning beror på är okänt. Ett av dessa  elnätsföretag är Ellevio AB som har sätt en markant minskning i  induktiv reaktiv effekt från sina fördelningsstationer i Stockholm. Denna minskning har lett till att de kondensatorbatterier som används för att kompensera den induktiva lasten med kapacitiv reaktiv effekt används i en allt lägre utsräckning. Det här examensarbetet har undersökt vad som kan ligga bakom minskning i induktiv reaktiv effekt samt hur VAr-kompensering ska utföras i framtiden när lasten blir allt mer kapacitiv.   De resultat som erhållits från examensarbetet tyder på att minskningen i induktiv reaktiv effekt kan attribueras till ett flertal olika teknologiska förändringar som har skett genom åren. De kan delas upp i tre kategorier: belysning, motorer samt elektroniska laster. Belysningsteknologi har gått från att vara resistiv och induktiv till att idag vara kapacitiv. Detta beror på att glödlampor och belysningsarmaturer med induktiva driftdon har ersatts med belysningsarmaturer med elektroniska driftdon samt LED-lampor. Laster från motorer har även förändrats. Frekvensomriktare som bland annat används till pumpar och fläktar används i allt större utstäckning och leder till att den induktiva lasten från induktionsmotorer istället ses som en kapacitiv last från nätets sida. Det har även skett förändringar i vilka enfasmotorer som används i vardagen. Kylskåp har gått från att historiskt vara en stor induktiv last till att idag ha en effekfaktor nära 1. Samtidigt som de induktiva lasterna har försvunnit har andelen av elektriciteten som konsumeras av elektronik ökat markant vilket har lett till att dagens hushåll oftast generar reaktiv effekt.   En optimal storlek på kondensatorbatterierna togs fram för alla fördelningsstationer i Stockholm för tre olika fall. Det första fallet är när kondensatorbatterierna enbart ska kompensera den induktiva  lasten från lägre ner i nätet. Det andra fallet kompenserades även  den induktiva lasten från transformatorerna som finns installerade  i fördelningsstationerna. Till sist undersöktes även hur storleken på  kondensatorbatteriena kan optimeras om det inträffar ett fel på en transformator som leder till att lasten från den transformator där  det förekommit ett fel överföras till de andra transformatorerna  som finns installerade i fördelningsstationen. Dessutom undersöktes om den reaktiva effektkompenseringen från kondensatorbatterierna kan optimeras genom att flytta kompenseringen från 11kV-sidan på fördelningsstationerna till 33kV-sidan på tryckpunktsstationerna. Resultaten visar att kompenseringen av kapacitiv reaktiv effekt kan kontrolleras på ett mer effektivt sätt från tryckpunktstationerna med färre antal till och från kopplingar från kondensatorbatterierna
APA, Harvard, Vancouver, ISO, and other styles
7

ARAUJO, MARCELO DE MELO. "REACTIVE POWER SUPPORT COST ALLOCATION METHOD BASED ON CIRCUIT LAWS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10511@1.

Full text
Abstract:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Com a implantação do novo modelo econômico nos sistemas de potência, a justa remuneração das empresas provedoras de serviços ancilares tem se tornado um assunto grande importância. O suporte de potência reativa, por se tratar também de um serviço ancilar, está inserido neste contexto. Desta forma, a factível identificação dos agentes beneficiários pelo suporte, bem como as proporções deste beneficiamento podem implicar em um mecanismo viável de remuneração para os custos de cada fonte provedora. Este trabalho apresenta um método de alocação de custos pelo suporte de potência reativa baseado nos princípios fundamentais da teoria de circuitos elétricos, buscando determinar a contribuição de potência reativa de cada fonte para cada barra de carga. Para isto, é sugerida uma modelagem de fontes de tensão, que permite levar em conta a natureza local da relação Q-V, proporcionando uma abordagem simples e clara do problema. Complementarmente é apresentado um método de alocação das perdas reativas em cada ramo de transmissão entre as fontes provedoras de potência reativa. Para validar o método proposto, são realizados testes em sistemas de potência de pequeno e médio porte, apresentado as parcelas de contribuição de cada fonte de potência reativa para cada carga, e adicionalmente para as perdas reativas em cada ramo de transmissão. Comparações são estabelecidas com um método existente, onde é constatado que o método proposto apresenta maior coerência com as propriedades elétricas dos sistemas de potência, destacando-se a verificação clara da natureza local do consumo de potência reativa. Em relação aos resultados da alocação de perdas reativas, verifica-se que o método serve como indicativo sobre o uso da rede de transmissão por parte de cada fonte de potência reativa.
After implantation of power systems` new economic model, a fair remuneration strategy of ancillary services suppliers had became an important issue. Reactive power support is also an ancillary service, thus, it belongs to this context. Then, identification of service beneficiaries as well as the benefit proportions may take a feasible remuneration mechanism for each source. This work presents a reactive power support cost allocation method based on fundamental principles of circuit theory, where reactive power contribution from each source to each load is calculated. This method suggests a modeling of voltage sources, which takes into account the Q-V relationship, providing a simple and clear treatment of the problem. Additionally, a reactive loss allocation method to each branch is presented. To validate the proposed method, tests with small and medium size systems are realized. So, there are presented results of reactive power demand and transmission losses allocation into systems` sources. Comparisons with an existent method are established, when we can verify that the proposed method brings more coherence with the electrical properties of power systems and the local nature of reactive power consumption. In the other hand, results of reactive losses allocation can indicate the transmission network usage by each reactive power source.
APA, Harvard, Vancouver, ISO, and other styles
8

Omole, Adedamola. "Voltage Stability Impact of Grid-Tied Photovoltaic Systems Utilizing Dynamic Reactive Power Control." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3615.

Full text
Abstract:
Photovoltaic (PV) DGs can be optimized to provide reactive power support to the grid, although this feature is currently rarely utilized as most DG systems are designed to operate with unity power factor and supply real power only to the grid. In this work, the voltage stability of a power system embedded with PV DG is examined in the context of the high reactive power requirement after a voltage sag or fault. A real-time dynamic multi-function power controller that enables renewable source PV DGs to provide the reactive power support necessary to maintain the voltage stability of the microgrid, and consequently, the wider power system is proposed. The loadability limit necessary to maintain the voltage stability of an interconnected microgrid is determined by using bifurcation analysis to test for the singularity of the network Jacobian and load differential equations with and without the contribution of the DG. The maximum and minimum real and reactive power support permissible from the DG is obtained from the loadability limit and used as the limiting factors in controlling the real and reactive power contribution from the PV source. The designed controller regulates the voltage output based on instantaneous power theory at the point-of-common coupling (PCC) while the reactive power supply is controlled by means of the power factor and reactive current droop method. The control method is implemented in a modified IEEE 13-bus test feeder system using PSCAD® power system analysis software and is applied to the model of a Tampa Electric® PV installation at Lowry Park Zoo in Tampa, FL. This dissertation accomplishes the systematic analysis of the voltage impact of a PV DGembedded power distribution system. The method employed in this work bases the contribution of the PV resource on the voltage stability margins of the microgrid rather than the commonly used loss-of-load probability (LOLP) and effective load-carrying capability (ELCC) measures. The results of the proposed method show good improvement in the before-, during-, and post-start voltage levels at the motor terminals. The voltage stability margin approach provides the utility a more useful measure in sizing and locating PV resources to support the overall power system stability in an emerging smart grid.
APA, Harvard, Vancouver, ISO, and other styles
9

Pilgrim, J. D. "Genetic algorithms for optimal reactive power compensation planning on the national grid system." Thesis, University of Bath, 2002. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.631723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tomaszewski, Michal. "Reactive power management capabilities of Swedish sub-transmission and medium voltage level grid." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240411.

Full text
Abstract:
Rising penetration of renewable energy sources in electric power grids isboth a challenge and an opportunity to optimally utilize the potential of eitherwind or PV energy sources, to stabilize operation of future power systems.Bi-directional ows between distribution and transmission system operatorscause signicant problems with keeping the voltages in the grid within admissiblelimits. This paper contains description of Oland's island mediumandlow-voltage electric power grid, ranging from 0.4 kV to 130 kV in thepurpose of quasi-static analysis of active and reactive power ows in the system.Goal of the analysis is to optimize reactive power exchange at the pointof connection with the mainland grid. In the analyzed grid system, thereis an enormous, 190 % penetration of wind sources. Capacity of the windparks connected to dedicated buses totals to 136.1 MW, that supply up to90.5 MW of load. With industry-wise reactive power capability limits, totalcontribution of wind parks reaches almost 66 MVAr, enabling to compensatedecits and extra surpluses of the reactive power in the grid. Presentedsystem is connected to the mainland's grid through one point of connection,which is simulated as Thevenin equivalent circuit. Main objective of thethesis is to test and analyze viable solutions to minimize reactive power exchangeat the point of connection at Stavlo substation connecting Oland'sand Sweden's electric grid keeping valid all necessary contingencies enforcedby current grid codes applied in Sweden as well as thermal limits of the linesand voltage limits of the system. Furthermore, state of the art of currentreactive power compensation methodologies and most promising techniquesto eciently and eectively control reactive power ow are outlined. Droopcontrol methodologies, with focus on global and local objectives, and smartgrid solutions opportunities are being tested and modeled by the authors andare comprehensively presented in this paper. Moreover, economic costs ofcontrol methods are compared. Analysis of active power losses in the systemas well as cost of implementation of alternative solutions is presented, wheremost nancially viable solutions are outlined, giving brief outlook into futureperspectives and challenges of electric power systems. It is shown that controllabilityof reactive power support by wind turbine generators can enhanceoperation of electric power grids, by keeping the reactive power ow minimizedat the boundary between grids of distribution and transmission systemoperators. Furthermore, results indicate that extra reactive power supportby wind turbine generators can lead to diminishment of active power losses inthe system. Presented system is being modeled in the PSS/E software dedicatedfor power system engineers with use of Python programming languages.Analysis of data was done either in Python or R related environments. Thesiswas written with cooperation between KTH and E.On Energidistribution AB.
Hogre genomslagskraft av förnyelsebara energikällor i elnäteten är bådeen utmaning och möjlighet för att optimalt kunna utnyttja potentialen av vindkraft och PV källor, med avseende på att stabilisera driften av framtida elkraftsystem. Tvåvägsflöden mellan distributionoch transmissionsoperatörer orsakar betydande problem att hålla spänningen i nätet inom tillåtna gränsvärden.Denna uppsats innehåller en beskrivning av Ö lands mellanoch lågspänningsnät,på 0.4 kV till 130 kV i syftet att utföra en kvasistatisk analys av aktiva och reaktiva effektflöden i systemet. Målet med analysen är att optimera det reaktiva effektutbytet i kopplingspunkten med fastlandets nät. I det analyserade systemet, finns det en enorm potential på 190% genomslagskraft av vindkraft. Kapaciteten på vindkraftsparker kopplade till medtagna samlingsskenor i systemet uppgår till 136,1 MW, som tillgodoser upp till 90.5 MW last. Med industrimässigt begränsad reaktiv effektkapabilitet, uppgår vindkraftsparkernas bidrag till nästan 66 MVAr, vilken möjliggör kompensation för underskott och överskott av reaktiv effekt i nätet. Det presenterade systemet är kopplat till fastlandet genom en kopplingspunkt, där fastlandet är simulerat som en Thevenin ekvivalent. Huvudsakliga målet med denna uppsats är att testa och analysera gångbara lösningar för att minimera det reaktiva effektutbytet vid kopplingspunkten i Stävlö, som kopplar ihop Ö land med resterande nät i Sverige, samtidigt som alla nödvändiga villkor enligt nuvarande nätkoder i Sverige bibehålls, liksom termiska gränser för ledningarna och spanningsgränser för systemet. Ytterligare beskrivs den bästa tillgängliga tekniken som finns idag för reaktiv effektkompensation, och de mest lovande teknikerna för att effektivt och verkningsfullt kontrollera reaktiva effektflöden. Droop-kontroll-metodologier, med fokus på globala och lokala tillämpningar, och smarta nät-möjligheter testas och modelleras av författarna och presenterar djupgående i detta arbete. Dessutom jämförs ekonomiska kostnader för olika kontrollmetoder. Analyser av aktiva effektförluster i systemet samt kostnader för implementation av alternativa lösningar presenteras, där de flesta gångbara losningar behandlas, och ger en överskådlig bild av framtida perspektiv och utmaningar i elkraftsystemet. Det visas att vindturbiners kontroll av reaktiv effekt, kan förbättra driften av elnäten, genom att minimera det reaktiva effektflödesutbytet i gränsen mellan distributionoch transmissionsoperatörers nät. Ytterligare pekar resultat på att extra understöd av reaktiv effekt från vindturbiner kan leda till förminskning av aktiva förluster i systemet. Det presenterade systemet modelleras i mjukvaruprogrammet PSS/E dedikerat för elkraftsingenjörer med hjälp av Python. Analys av data gjordes antingen i Pythoneller R-relaterade miljöer. Detta arbete har gjorts tillsam-mans med KTH och E.ON Energidistribution AB.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Grid reactive power support"

1

Gandhi, Oktoviano. Reactive Power Support Using Photovoltaic Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61251-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gandhi, Oktoviano. Reactive Power Support Using Photovoltaic Systems: Techno-Economic Analysis and Implementation Algorithms. Springer International Publishing AG, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gandhi, Oktoviano. Reactive Power Support Using Photovoltaic Systems: Techno-Economic Analysis and Implementation Algorithms. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Grid reactive power support"

1

Abu-Siada, Ahmed. "Preface." In Recent Advances in Renewable Energy, i. UAE: Bentham Science Publishers Ltd., 2017. http://dx.doi.org/10.2174/9781681085425117020001.

Full text
Abstract:
Due to the continuous resources’ reduction and cost increase of conventional fossil fuel along with the global trend to decrease the greenhouse effect, clean energy production from renewable sources has been given a global great concern. Among renewable energy sources, wind energy conversion systems have received a worldwide notable attention. It is expected that more than 10% of the global electricity demand will to be generated by wind energy conversion systems by the year 2020. During their early implementation stage, wind turbines were to be disconnected during abnormal and fault conditions within the electricity grid it is connected to. Owing to the fact that current wind installations supply a significant portion of the load demand, disconnecting windfarms may lead to business interruption and discontinuity of power supply to the end user. As such, transmission line operators have developed strict grid codes that wind turbine generator must meet to maintain its connection to support the grid during various fault conditions. To comply with these codes, flexible AC transmission systems have been widely used with current wind energy conversion systems to modulate reactive and/or active power at the point of common coupling of the wind turbine generator and the grid. This book presents the applications of various flexible ac transmission system devices to wind energy conversion systems. Devices such as unified power flow controllers, superconducting magnetic energy storage and static synchronous compensator are covered in this book. Topologies, control systems along with case studies of the aforementioned devices are presented and discussed. This book will be useful for postgraduate research students, upper-division electrical engineering students and practicing engineers.
APA, Harvard, Vancouver, ISO, and other styles
2

Mei, Shengwei, Xuemin Zhang, and Ming Cao. "Blackout Model Considering Reactive Power/Voltage Characteristics." In Power Grid Complexity, 318–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16211-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Corsi, Sandro. "Grid Voltage and Reactive Power Control." In Voltage Control and Protection in Electrical Power Systems, 81–158. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6636-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Min, Lijie Ding, Wen Hua, and Zheng Xu. "Reactive Power Coordination During Emergency DC Power Support." In Lecture Notes in Electrical Engineering, 323–30. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4981-2_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Michalke, Gabriele, and Anca Daniela Hansen. "Grid Support Capabilities of Wind Turbines." In Handbook of Wind Power Systems, 569–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41080-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gandhi, Oktoviano. "Inverter Degradation Consideration in Reactive Power Dispatch." In Reactive Power Support Using Photovoltaic Systems, 83–108. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61251-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ranganathan, Prakash, and Kendall E. Nygard. "A Linear Classifier for Decision Support in a Smart Grid." In Power Electronics and Power Systems, 95–108. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52617-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gandhi, Oktoviano. "Introduction." In Reactive Power Support Using Photovoltaic Systems, 1–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61251-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gandhi, Oktoviano. "Analysis of Local Reactive Power Provision Using PV in Distribution Systems." In Reactive Power Support Using Photovoltaic Systems, 21–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61251-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gandhi, Oktoviano. "Analytical Approach to Power Dispatch in Distribution Systems." In Reactive Power Support Using Photovoltaic Systems, 53–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61251-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Grid reactive power support"

1

Lammert, Gustav, Tobias Hess, Maximilian Schmidt, Peter Schegner, and Martin Braun. "Dynamic grid support in low voltage grids — fault ride-through and reactive power/voltage support during grid disturbances." In 2014 Power Systems Computation Conference (PSCC). IEEE, 2014. http://dx.doi.org/10.1109/pscc.2014.7038468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Meiyin, Lianghui Xu, Cong Cong, and Beibei Wu. "Research on Reactive Power and Voltage Support Capability of Distribution PV power station." In 2019 4th IEEE Workshop on the Electronic Grid (eGRID). IEEE, 2019. http://dx.doi.org/10.1109/egrid48402.2019.9092700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vijai, G., and P. Selvam. "Optimal reactive power support for distributed Micro Grid through PV-Grid connected inverter." In Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India. EAI, 2021. http://dx.doi.org/10.4108/eai.7-6-2021.2308644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hao Jan Liu and Thomas J. Overbye. "Smart-grid-enabled distributed reactive power support with Conservation Voltage Reduction." In 2014 IEEE Power and Energy Conference at Illinois (PECI). IEEE, 2014. http://dx.doi.org/10.1109/peci.2014.6804573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Calderaro, Vito, Vincenzo Galdi, Francesco Lamberti, Antonio Piccolo, and Giorgio Graditi. "Voltage support control of unbalanced distribution systems by reactive power regulation." In 2014 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, 2014. http://dx.doi.org/10.1109/isgteurope.2014.7028911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Charalambous, Anastasis, Lenos Hadjidemetriou, and Marios Polycarpou. "Control Scheme for Phase Balancing and Reactive Power Support from Photovoltaic Inverters." In 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). IEEE, 2020. http://dx.doi.org/10.1109/isgt-europe47291.2020.9248888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mirhosseini, Mitra, Vassilios G. Agelidis, and Jayashri Ravishankar. "Modelling of large-scale grid-connected photovoltaic systems: Static grid support by reactive power control." In 2012 IEEE Power & Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica 2012). IEEE, 2012. http://dx.doi.org/10.1109/powerafrica.2012.6498626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kleinjan, Tristan, and Jin Yang. "Voltage Support Based Peer-to-Peer Energy Trading Scheme with Reactive Power Compensation." In 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, 2022. http://dx.doi.org/10.1109/isgt-europe54678.2022.9960435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

He, Qing, Wenchao Yang, Longyan He, and Yuqing Mao. "Evaluation of Reactive Power and Voltage Support Capability of Power Grid Based on Big Data." In 2021 International Conference on Networking, Communications and Information Technology (NetCIT). IEEE, 2021. http://dx.doi.org/10.1109/netcit54147.2021.00059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Man Kit Sio, João Paulo, and Romeu Reginatto. "Reactive power control of DFIG-based wind turbines for voltage support during faults." In Simpósio Brasileiro de Sistemas Elétricos - SBSE2020. sbabra, 2020. http://dx.doi.org/10.48011/sbse.v1i1.2182.

Full text
Abstract:
The wind power penetration in the power system has already reached a considerate proportion. An important step in that path was the requirement of wind farms to provide Low Voltage Ride Through (LVRT) capacity, remaining connected to the grid during faults. More recently, grid codes are also requiring wind turbines to inject reactive power during the fault event so as to contribute to grid voltage support. The purpose of this work is to analyze a reactive current injection strategy for DFIG-based wind turbines that acts on the reactive power control loop during faults. The results of the simulations show, the behavior of the voltage, active power, and the total current injected in the system for different connection characteristics. The reactive current injection strategy helps in the voltage level during the fault, and the effectiveness is better for connections to the transmission system level.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Grid reactive power support"

1

Nelson, Austin, Gregory Martin, and James Hurtt. Advanced Grid Support Functionality Testing for Florida Power and Light. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1348384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

O'Neill, Barbara, and Ilya Chernyakhovskiy. Designing Wind and Solar Power Purchase Agreements to Support Grid Integration. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1262663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sheldon, Frederick T., Lawrence Paul MacIntyre, Hamed Okhravi, and Dr John C. Munson. Data Diodes in Support of a Power Grid Trustworthy Cyber Infrastructure. Office of Scientific and Technical Information (OSTI), December 2009. http://dx.doi.org/10.2172/978823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Veeramany, Arun, Stephen D. Unwin, Garill A. Coles, Jeffery E. Dagle, W. David Millard, Juan Yao, Clifford S. Glantz, and Sri Nikhil Gup Gourisetti. Framework for Modeling High-Impact, Low-Frequency Power Grid Events to Support Risk-Informed Decisions. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1228355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marcos Morezuelas, Paloma. Gender and Renewable Energy: Wind, Solar, Geothermal and Hydroelectric Energy. Inter-American Development Bank, November 2014. http://dx.doi.org/10.18235/0003068.

Full text
Abstract:
This document focuses on how to incorporate a gender perspective in operations that support the construction, operation and maintenance of medium- and large-scale renewable wind, solar, geothermal and hydroelectric energy installations connected to the grid for purposes of power generation. Additionally, there is also a section on rural energy that is applicable to small installations and mini-grids, or to exceptional cases where medium- and large-scale facilities provide electricity to a community. The document (i) identifies the possible gender equality challenges and opportunities as part of the project assessment, (ii) highlights the risks and potentially negative impacts of the project on gender equality, (iii) offers recommendations for addressing, preventing and mitigating challenges and for maximizing opportunities; and (iv) presents examples of programs that have taken into account gender differences or risks. In addition, the document includes (v) key questions for analyzing gender issues in renewable energy projects, and (vi) examples of indicators for the monitoring and evaluation of operations in the renewable energy sector.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography