Academic literature on the topic 'GRID POWER'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GRID POWER.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "GRID POWER"
Nakayama, Mikiyasu, Hirotaka Fujibayashi, and Daisuke Sasaki. "Connecting Jordan to GCC Power Grid: Creation of Geopolitical “Power” Grid." Journal of Asian Development 3, no. 2 (April 12, 2017): 10. http://dx.doi.org/10.5296/jad.v3i2.10966.
Full textAn, Lei, Xinyi Lan, Mianbin Wang, and Jinchao Li. "Research on power grid effective assets input-output evaluation based on super-efficient DEA model." E3S Web of Conferences 118 (2019): 01054. http://dx.doi.org/10.1051/e3sconf/201911801054.
Full textLiu, Jian, Ying Wei Song, Yan Liu, Hui Lan Jiang, and Shuang Qi Zheng. "Effect of Fluctuation of Wind Power Output on Power System Risk." Applied Mechanics and Materials 513-517 (February 2014): 2971–74. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.2971.
Full textHou, Rui, Jian Wu, Huihui Song, Yanbin Qu, and Dianguo Xu. "Applying Directly Modified RDFT Method in Active Power Filter for the Power Quality Improvement of the Weak Power Grid." Energies 13, no. 18 (September 17, 2020): 4884. http://dx.doi.org/10.3390/en13184884.
Full textHuang, Liang, Chao Wu, Dao Zhou, and Frede Blaabjerg. "Impact of Grid Strength and Impedance Characteristics on the Maximum Power Transfer Capability of Grid-Connected Inverters." Applied Sciences 11, no. 9 (May 10, 2021): 4288. http://dx.doi.org/10.3390/app11094288.
Full textUnruh, Peter, Maria Nuschke, Philipp Strauß, and Friedrich Welck. "Overview on Grid-Forming Inverter Control Methods." Energies 13, no. 10 (May 20, 2020): 2589. http://dx.doi.org/10.3390/en13102589.
Full textYu, Dong, Shan Gao, Xin Zhao, Yu Liu, Sicheng Wang, and Tiancheng E. Song. "Alternating Iterative Power-Flow Algorithm for Hybrid AC–DC Power Grids Incorporating LCCs and VSCs." Sustainability 15, no. 5 (March 3, 2023): 4573. http://dx.doi.org/10.3390/su15054573.
Full textMeinecke, Steffen, Džanan Sarajlić, Simon Ruben Drauz, Annika Klettke, Lars-Peter Lauven, Christian Rehtanz, Albert Moser, and Martin Braun. "SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis." Energies 13, no. 12 (June 26, 2020): 3290. http://dx.doi.org/10.3390/en13123290.
Full textCao, Li, Zhengzong Wang, and Yinggao Yue. "Analysis and Prospect of the Application of Wireless Sensor Networks in Ubiquitous Power Internet of Things." Computational Intelligence and Neuroscience 2022 (June 15, 2022): 1–19. http://dx.doi.org/10.1155/2022/9004942.
Full textMeinecke, Steffen, Leon Thurner, and Martin Braun. "Review of Steady-State Electric Power Distribution System Datasets." Energies 13, no. 18 (September 15, 2020): 4826. http://dx.doi.org/10.3390/en13184826.
Full textDissertations / Theses on the topic "GRID POWER"
Hacker, Jonathan Bruce Rutledge David B. "Grid mixers and power grid oscillators /." Diss., Pasadena, Calif. : California Institute of Technology, 1994. http://resolver.caltech.edu/CaltechETD:etd-11302007-145419.
Full textFoo, Ming Qing. "Secure electric power grid operation." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/106964.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 87-91).
This thesis examines two problems concerning the secure and reliable operation of the electric power grid. The first part studies the distributed operation of the electric power grid using the power flow problem, which is vital to the operation of the grid. The power flow problem is a feasibility problem for finding an assignment of complex bus voltages that satisfies the power flow equations and is within operational and safety limits. For reliability and privacy reasons, it is desirable to solve the power flow problem in a distributed manner. Two novel distributed algorithms are presented for solving convex feasibility problems for networks based on the Method of Alternating Projections (MAP) and the Projected Consensus algorithm. These algorithms distribute computation among the nodes of the network and do not require any form of central coordination. The original problem is equivalently split into small local sub-problems, which are coordinated locally via a thin communication protocol. Although the power flow problem is non-convex, the new algorithms are demonstrated to be powerful heuristics using IEEE test beds. Quadratically Constrained Quadratic Programs (QCQP), which occur in the projection sub-problems, are studied and methods for solving them efficiently are developed. The second part addresses the robustness and resiliency of state estimation algorithms for cyber-physical systems. The operation of the electric power grid is modeled as a dynamical system that is supported by numerous feedback control mechanisms, which depend heavily on state estimation algorithms. The electric power grid is constantly under attack and, if left unchecked, these attacks may corrupt state estimates and lead to severe consequences. This thesis proposes a novel dynamic state estimator that is resilient against data injection attacks and robust to modeling errors and additive noise signals. By leveraging principles of robust optimization, the estimator can be formulated as a convex optimization problem and its effectiveness is demonstrated in simulations of an IEEE 14-bus system.
by Ming Qing Foo.
S.M.
Shams, Solary Arasto. "Wind power plants integration to the power grid." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200633.
Full textZhang, Weiyi. "Control of grid connected power converters with grid support functionalities." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/456312.
Full textLos convertidores de potencia conectados a la red actúan comúnmente como interfaz entre plantas de generación basadas en energía renovable y la red eléctrica, permitiendo así el procesado de energía eólica y fotovoltaica y su inyección a red. El control de estos convertidores conectados a la red ha sido objeto de estudio en las últimas décadas, ya que su comportamiento y prestaciones influye de forma determinante tanto en la calidad de la red eléctrica, así como en el cumplimiento de los requisitos de conexión a la red fijados por los códigos de red. Junto con la expansión de las plantas de generación de energía renovable, su impacto en el sistema eléctrico ha crecido también, lo cual ha hecho que se lleven a cabo muchos trabajos de investigación orientados a armonizar la penetración de renovables con la estabilidad de la red. Con los sistemas de control actuales la capacidad de regulación de la red disminuye tanto como la proporción de la generación renovable aumenta. En las redes eléctricas del futuro, se espera que los convertidores de potencia, que actúan como interfaz, exploten sus posibilidades de cómputo y control permitiendo mejorar la interacción de la generación renovable con la red. En este contexto los controles de tipo “droop control”, los cuales son ampliamente utilizados en sistemas de generación tradicionales, se pueden aplicar a los convertidores conectados a red para habilitar funciones de soporte de red, ya que estos contribuyen al control de tensión y frecuencia primaria ajustando el intercambio de potencia activo y reactiva de forma proporcional a la desviación de la frecuencia y magnitud de la tensión en el punto de conexión. En el caso de regulación de frecuencia, y para que este sea bidireccional, el convertidor puede interactuar con la red con la ayuda de sistemas de almacenamiento de energía. Sin embargo, la inclusión del “droop control” no conlleva una solución global. Incluso si se ajusta de forma óptima y se dispone de reserva de energía, aún hay cuestiones como la respuesta inercial que no se pueden dar con este tipo de control. La generación en los sistemas tradicionales se lleva a cabo principalmente por generadores síncronos. Comparados con estos, los convertidores conectados a la red difieren principalmente en la falta de la característica electromecánica. En consecuencia, la estática y la dinámica de las unidades de generación de energía renovable son diferentes en comparación con los generadores síncronos. La dinámica de estos convertidores es altamente dependiente de los sistemas de sincronización (PLL), cuyo comportamiento se degrada en condiciones de red adversas o distorsionadas. Además, el control de potencia normalmente depende control de potencia instantáneo. Debido a las diferentes dinámicas, la inercia total en la red no aumenta junto con la integración de las energías renovables. Sin embargo, los códigos de red han incluido requerimientos tales como “inercia sintética" en los requisitos. Otras deficiencias del control del convertidor convencional incluyen el rendimiento inferior bajo condiciones de avería de red, en conexión de red débil y conexión de red de relación X / R baja. Esta tesis doctoral estudia y valida el control de los convertidores conectados a la red con funcionalidades de soporte de red. El objetivo general del trabajo es mejorar las características de interacción de la red de las plantas de generación de energía renovable mediante la especificación de los convertidores conectados a la red con características de la máquina síncrona emulada y mejorada. La tesis ha aportado contribuciones o ha mostrado originalidades en los siguientes aspectos: Un enfoque de ajuste de bucle de control de corriente interno generalizado; Diseño detallado y validación de la admisión virtual para convertidores conectados a la red; Diseño detallado y validación del circuito de control de potencia para la emulación de inercia y amortiguación.
Lim, Pei Yi. "Power management strategies for off-grid hybrid power systems." Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/2503.
Full textDjerf, Magnus. "Power grid integration using Kalman filtering." Thesis, Uppsala universitet, Signaler och System, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-169195.
Full textSkivington, Graeme Ross. "Off grid applications for wind power." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426299.
Full textAzmi, Syahrul Ashikin. "Grid integration of renewable power generation." Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=23161.
Full textHanson, Alex J. (Alex Jordan). "Enabling miniaturized grid-interface power conversion." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122735.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 271-281).
Many of the most critical challenges of the twenty-first century revolve around energy and its management. Improved performance (efficiency, density) in electrical energy management systems require advancements in a number of areas - semiconductor devices, passive energy storage components, and a variety of circuit- and system-level concerns. The sections of this thesis are somewhat distinct and may find application in a great variety of circumstances. Nevertheless, they can be understood as contributions to a single application system: a grid-interface power converter. These kinds of converters have several unique aspects that make them good targets for research, including a heavy reliance on magnetic components, relatively high voltages for application of emerging GaN transistors, wide range of operating voltages and powers, and a twice-line-frequency energy storage component that is difficult to miniaturize. This thesis will present a high-frequency inductor structure with greatly improved density, an exploration of the limits of magnetic-based current sensing, a method for characterizing GaN losses with large-signal excitations, a control approach for miniaturizing grid-interface energy buffers, and a grid-interface circuit with several advantages over the state of the art.
by Alex J. Hanson.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Elyas, Seyyed Hamid 8045266. "Synthetic Modeling of Power Grids Based on Statistical Analysis." VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4888.
Full textBooks on the topic "GRID POWER"
Mei, Shengwei, Xuemin Zhang, and Ming Cao. Power Grid Complexity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16211-4.
Full textXuemin, Zhang, Cao Ming, and SpringerLink (Online service), eds. Power Grid Complexity. Berlin, Heidelberg: Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg, 2011.
Find full textAlhelou, Hassan Haes, Nabil Mohammed, and Behrooz Bahrani. Grid-Forming Power Inverters. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003302520.
Full textHynes, Patricia Freeland. The electric power grid. Ann Arbor: Cherry Lake, 2008.
Find full textBush, Stephen F. Smart grid - communication-enabled intelligence for the electric power grid. Chichester, West Sussex, [England]: John Wiley & Sons Inc., 2014.
Find full textGrid security and management. New Delhi, India: Power Line Pub., 2009.
Find full textSingh, Chanan, Panida Jirutitijaroen, and Joydeep Mitra. Electric Power Grid Reliability Evaluation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119536772.
Full textSarychev, Dmitriy S., Stanislav G. Slusarenko, Irina V. Krivykh, Victor V. Snezhko, and Leonid Yu Kostyuk. Power grid management software IndorInfo/Power: Users’s guide. Tomsk: Tomsk state university, 2008. http://dx.doi.org/10.17273/book.2008.6.
Full textKrivykh, Irina V., Dmitriy S. Sarychev, Victor V. Snezhko, and Natalia A. Polyakova. Power grid management software IndorInfo/Power: Reference guide. Tomsk: Tomsk state university, 2009. http://dx.doi.org/10.17273/book.2009.2.
Full textSarychev, Dmitriy S., Stanislav G. Slusarenko, Irina V. Krivykh, Victor V. Snezhko, and Leonid Yu Kostyuk. Power grid management software IndorInfo/Power: Users’s guide. Tomsk: Tomsk state university, 2010. http://dx.doi.org/10.17273/book.2010.3.
Full textBook chapters on the topic "GRID POWER"
Abe, Rikiya. "The Power Internet." In Digital Grid, 125–34. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4280-0_12.
Full textAbe, Rikiya. "Power Packets and Commercialization." In Digital Grid, 119–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4280-0_11.
Full textDaneshvar, Mohammadreza, Somayeh Asadi, and Behnam Mohammadi-Ivatloo. "Overview of the Grid Modernization and Smart Grids." In Power Systems, 1–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64099-6_1.
Full textGerlach, P. "Power grid tubes." In The Microwave Engineering Handbook, 41–63. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-4552-5_3.
Full textSapatnekar, Sachin S. "Power Grid Analysis." In Encyclopedia of Algorithms, 1598–601. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_740.
Full textS.Sapatnekar, Sachin. "Power Grid Analysis." In Encyclopedia of Algorithms, 1–4. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27848-8_740-1.
Full textAbe, Rikiya. "The New Power Platform Begins." In Digital Grid, 189–92. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4280-0_19.
Full textWanser, Sven, and Frank Ehlers. "Grid Integration." In Understanding Wind Power Technology, 369–405. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118701492.ch10.
Full textMei, Shengwei, Xuemin Zhang, and Ming Cao. "Introduction." In Power Grid Complexity, 1–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16211-4_1.
Full textMei, Shengwei, Xuemin Zhang, and Ming Cao. "Blackout Model Based on AC Power Flow." In Power Grid Complexity, 291–317. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16211-4_10.
Full textConference papers on the topic "GRID POWER"
Das, Saurav, Farzam Aidelkhani, Somir Mustak, A. K. M. Baki, and M. A. Razzak. "Grid voltage stabilization for smart grid systems." In 2016 IEEE 7th Power India International Conference (PIICON). IEEE, 2016. http://dx.doi.org/10.1109/poweri.2016.8077343.
Full textHalder, T. "A smart grid." In 2014 6th IEEE Power India International Conference (PIICON). IEEE, 2014. http://dx.doi.org/10.1109/poweri.2014.7117674.
Full textYu, Shiwen, Shuaiang Rong, and Lina He. "Performance of Grid-forming Control of Grid-edge DERs in Distribution Grids." In 2022 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2022. http://dx.doi.org/10.1109/pesgm48719.2022.9916842.
Full textColaiacovo, Enrico, and Ulrich Ottenburger. "Power Grid Protection." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.itpp0601.
Full textDongmei, Zhao, Wei Juan, Cheng Xueting, and Liu Yanhua. "Power grid fault diagnosis considering on grid-connected wind power." In 2013 IEEE Grenoble PowerTech. IEEE, 2013. http://dx.doi.org/10.1109/ptc.2013.6652285.
Full textYuan, L., Z. Liu, J. Huang, F. Qiao, H. Yu, and T. Wen. "COMPARATIVE STABILITY ASSESSMENT OF GRID-FOLLOWING AND GRID-FORMING VSCS IN WEAK GRIDS." In The 10th Renewable Power Generation Conference (RPG 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2021.2288.
Full textSoonee, Sushil K., S. C. Saxena, KVS Baba, S. R. Narasimhan, KVN Pawan Kumar, and Subrata Mukhopadhyay. "Flexibility in Indian Grid Operation with High Penetration of Grid-Connected Renewable Energy." In 2018 IEEE 8th Power India International Conference (PIICON). IEEE, 2018. http://dx.doi.org/10.1109/poweri.2018.8704395.
Full textDyachuk, Dmytro, and Michele Mazzucco. "On allocation policies for power and performance." In 2010 11th IEEE/ACM International Conference on Grid Computing (GRID). IEEE, 2010. http://dx.doi.org/10.1109/grid.2010.5697986.
Full textSoonee, Sushil K., S. C. Saxena, K. V. S. Baba, S. R. Narasimhan, K. V. N. Pawan Kumar, and Subrata Mukhopadhyay. "Grid Resilience in Indian Power System." In 2018 IEEE 8th Power India International Conference (PIICON). IEEE, 2018. http://dx.doi.org/10.1109/poweri.2018.8704397.
Full textImada, Takayuki, Mitsuhisa Sato, and Hideaki Kimura. "Power and QoS performance characteristics of virtualized servers." In 2009 10th IEEE/ACM International Conference on Grid Computing (GRID). IEEE, 2009. http://dx.doi.org/10.1109/grid.2009.5353054.
Full textReports on the topic "GRID POWER"
Bose, Anjan, Vaithianathan Venkatasubramanian, Carl Hauser, David Bakken, David Anderson, Chuanlin Zhao, Dong Liu, et al. Power grid reliability and security. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1173069.
Full textNdiaye, Ibrahima, Enrique Betancourt Ramírez, Jesus Avila Montes, Yazhou Jiang, and Ahmed Elasser. Grid Ready, Flexible Large Power Transformer. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1527031.
Full textMAITRA, ARINDAM, RAY LITWIN, Jason lai, and David Syracuse. Ultrafast Power Processor for Smart Grid Power Module Development. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1124624.
Full textSholander, Peter E. Application Note: Power Grid Modeling With Xyce. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1191079.
Full textChinthavali, Supriya, Aleksandar D. Dimitrovski, Steven J. Fernandez, Christopher S. Groer, James J. Nutaro, Mohammed M. Olama, Olufemi A. Omitaomu, Mallikarjun Shankar, Kyle L. Spafford, and Bogdan Vacaliuc. Real Time Simulation of Power Grid Disruptions. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1082004.
Full textHodge, Brian S., Kara Clark, Nicholas W. Miller, and Slobodan Pajic. Concentrating Solar Power Impact on Grid Reliability. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1464923.
Full textTaft, Jeffrey D. Architectural Basis for Highly Distributed Transactive Power Grids: Frameworks, Networks, and Grid Codes. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1523381.
Full textGray, Genetha Anne, Jean-Paul Watson, Cesar Augusto Silva Monroy, and Robert B. Gramacy. Quantifiably secure power grid operation, management, and evolution :. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1096519.
Full textPetri, Mark C. National power grid simulation capability : need and issues. Office of Scientific and Technical Information (OSTI), June 2009. http://dx.doi.org/10.2172/1347575.
Full textKroposki, Benjamin. Grid Integration Science, NREL Power Systems Engineering Center. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1354239.
Full text