Academic literature on the topic 'Grid homology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Grid homology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Grid homology"
Droz, Jean-Marie, and Emmanuel Wagner. "Grid diagrams and Khovanov homology." Algebraic & Geometric Topology 9, no. 3 (July 1, 2009): 1275–97. http://dx.doi.org/10.2140/agt.2009.9.1275.
Full textShin, Moon-Kyun, Hyun-Ah Lee, Jae-Jun Lee, Ki-Nam Song, and Gyung-Jin Park. "ICONE15-10366 Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology Constraints." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_186.
Full textCavallo, Alberto. "The concordance invariant tau in link grid homology." Algebraic & Geometric Topology 18, no. 4 (April 26, 2018): 1917–51. http://dx.doi.org/10.2140/agt.2018.18.1917.
Full textRamyachitra, D., and P. Pradeep Kumar. "Frog leap algorithm for homology modelling in grid environment." International Journal of Grid and Utility Computing 7, no. 1 (2016): 29. http://dx.doi.org/10.1504/ijguc.2016.073775.
Full textShin, M. K., H. A. Lee, J. J. Lee, K. N. Song, and G. J. Park. "Optimization of a nuclear fuel spacer grid spring using homology constraints." Nuclear Engineering and Design 238, no. 10 (October 2008): 2624–34. http://dx.doi.org/10.1016/j.nucengdes.2008.04.003.
Full textDey, Subhankar, and Hakan Doğa. "A combinatorial description of the knot concordance invariant epsilon." Journal of Knot Theory and Its Ramifications 30, no. 06 (May 2021): 2150036. http://dx.doi.org/10.1142/s021821652150036x.
Full textWong, Michael. "Grid diagrams and Manolescu’s unoriented skein exact triangle for knot Floer homology." Algebraic & Geometric Topology 17, no. 3 (July 17, 2017): 1283–321. http://dx.doi.org/10.2140/agt.2017.17.1283.
Full textKaczynski, Tomasz, Marian Mrozek, and Anik Trahan. "Ideas from Zariski Topology in the Study of Cubical Homology." Canadian Journal of Mathematics 59, no. 5 (October 1, 2007): 1008–28. http://dx.doi.org/10.4153/cjm-2007-043-3.
Full textNaumann, Robert K., Patricia Preston-Ferrer, Michael Brecht, and Andrea Burgalossi. "Structural modularity and grid activity in the medial entorhinal cortex." Journal of Neurophysiology 119, no. 6 (June 1, 2018): 2129–44. http://dx.doi.org/10.1152/jn.00574.2017.
Full textMaršálek, Roman, Radim Zedka, Erich Zöchmann, Josef Vychodil, Radek Závorka, Golsa Ghiaasi, and Jiří Blumenstein. "Persistent Homology Approach for Human Presence Detection from 60 GHz OTFS Transmissions." Sensors 23, no. 4 (February 16, 2023): 2224. http://dx.doi.org/10.3390/s23042224.
Full textDissertations / Theses on the topic "Grid homology"
Tombari, Francesca. "Deformation of surfaces in 2D persistent homology." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15809/.
Full textAfzelius, Lovisa. "Computational Modelling of Structures and Ligands of CYP2C9." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4016.
Full textCELORIA, DANIELE. "Grid homology in lens spaces." Doctoral thesis, 2016. http://hdl.handle.net/2158/1039024.
Full textWong, C. M. Michael. "Unoriented skein relations for grid homology and tangle Floer homology." Thesis, 2017. https://doi.org/10.7916/D8251WN1.
Full textBooks on the topic "Grid homology"
Wong, C. M. Michael. Unoriented skein relations for grid homology and tangle Floer homology. [New York, N.Y.?]: [publisher not identified], 2017.
Find full textAndrás, Stipsicz, and Szabó Zoltán 1965-, eds. Grid homology for knots and links. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textOzsváth, Peter S., András I. Stipsicz, and Zoltán Szabó. Grid Homology for Knots and Links. American Mathematical Society, 2015.
Find full textBook chapters on the topic "Grid homology"
"Grid homology." In Mathematical Surveys and Monographs, 65–90. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/surv/208/04.
Full text"Grid homology for links." In Mathematical Surveys and Monographs, 187–214. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/surv/208/11.
Full text"The invariance of grid homology." In Mathematical Surveys and Monographs, 91–112. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/surv/208/05.
Full text"Basic properties of grid homology." In Mathematical Surveys and Monographs, 127–34. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/surv/208/07.
Full text"Grid homology over the integers." In Mathematical Surveys and Monographs, 291–324. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/surv/208/15.
Full text