Academic literature on the topic 'Greywater'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Greywater.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Greywater"
Ungvári, Csaba, Andrea Izbéki-Szabolcsik, and Ildikó Bodnár. "Analysis of Greywater Samples Treated by Filtration." Műszaki Tudományos Közlemények 9, no. 1 (October 1, 2018): 247–50. http://dx.doi.org/10.33894/mtk-2018.09.57.
Full textSabara, Zakir, Aswariani Anwar, Setyawati Yani, Kusnul Prianto, Rahmad Junaidi, Rofiqul Umam, and Rizqi Prastowo. "Activated Carbon and Coconut Coir with the Incorporation of ABR System as Greywater Filter: The Implications for Wastewater Treatment." Sustainability 14, no. 2 (January 17, 2022): 1026. http://dx.doi.org/10.3390/su14021026.
Full textCecconet, Daniele, Silvia Bolognesi, Luca Piacentini, Arianna Callegari, and Andrea Capodaglio. "Bioelectrochemical Greywater Treatment for Non-Potable Reuse and Energy Recovery." Water 13, no. 3 (January 26, 2021): 295. http://dx.doi.org/10.3390/w13030295.
Full textAlbalawneh, Abeer, and Tsun-Kuo Chang. "REVIEW OF THE GREYWATER AND PROPOSED GREYWATER RECYCLING SCHEME FOR AGRICULTURAL IRRIGATION REUSES." International Journal of Research -GRANTHAALAYAH 3, no. 12 (December 31, 2015): 16–35. http://dx.doi.org/10.29121/granthaalayah.v3.i12.2015.2882.
Full textNondlazi, Sinoyolo, Nosiphiwe Ngqwala, Bongumusa M. Zuma, Paul K. Mensah, and Roman Tandlich. "Effect of fly ash-lime treatment on the acute toxicity of greywater towards Daphnia magna." Nova Biotechnologica et Chimica 18, no. 1 (June 1, 2019): 59–65. http://dx.doi.org/10.2478/nbec-2019-0008.
Full textBakare, B. F., S. Mtsweni, and S. Rathilal. "Characteristics of greywater from different sources within households in a community in Durban, South Africa." Journal of Water Reuse and Desalination 7, no. 4 (November 14, 2016): 520–28. http://dx.doi.org/10.2166/wrd.2016.092.
Full textAl-Mefleh, Naji K., Yahia A. Othman, Maher J. Tadros, Amani Al-Assaf, and Samer Talozi. "An Assessment of Treated Greywater Reuse in Irrigation on Growth and Protein Content of Prosopis and Albizia." Horticulturae 7, no. 3 (February 25, 2021): 38. http://dx.doi.org/10.3390/horticulturae7030038.
Full textFilali, Hanen, Narcis Barsan, Dalila Souguir, Valentin Nedeff, Claudia Tomozei, and Mohamed Hachicha. "Greywater as an Alternative Solution for a Sustainable Management of Water Resources—A Review." Sustainability 14, no. 2 (January 7, 2022): 665. http://dx.doi.org/10.3390/su14020665.
Full textNyagatare, Guillaume, Christian Shingiro, and Claire Nyiranziringirimana. "Effect of domestic greywater reuse for irrigation on soil physical and chemical characteristics and tomatoes growth." Journal of Agriculture and Environment for International Development (JAEID) 115, no. 2 (December 30, 2021): 51–63. http://dx.doi.org/10.36253/jaeid-12069.
Full textNewcomer, Evan, Courtney Boyd, Laban Nyirenda, Emmanuel Opong, Shannon Marquez, and Rochelle Holm. "Reducing the burden of rural water supply through greywater reuse: a case study from northern Malawi." Water Supply 17, no. 4 (January 10, 2017): 1088–96. http://dx.doi.org/10.2166/ws.2017.004.
Full textDissertations / Theses on the topic "Greywater"
Ottosson, Jakob. "Hygiene Aspects of Greywater and Greywater Reuse." Licentiate thesis, KTH, Land and Water Resources Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1551.
Full textGreywater is domestic household wastewater without inputfrom the toilet, i.e. wastewater from sinks, the shower,washing machine and dishwasher in a home. Source separation ofgreywater can be a strategy to enhance recirculation of plantnutrients and/or improve water use. The risk for transmissionof disease when reusing greywater is largely dependent on thecross-contamination by faeces. High levels of faecalindicators, mainly thermotolerant coliform bacteria, have beenreported in greywater, indicating substantial faecal pollution.However, growth of indicator bacteria within the system leadsto an overestimation of thefaecal input and thus the hygienerisk. The faecal input of the greywater in Vibyåsen,Sollentuna, North of Stockholm, was estimated to be 0.04 ±0.02 g faeces person-1 day-1 from the quantification of thefaecal sterol coprostanol, compared to 65 g, 5.2 g and 0.22 gp-1 d-1 using E. coli, enterococci and cholesterolrespectively.
Prevalence of pathogens in the population and the faecalload based on coprostanol concentrations were used to form thebasis of a screening-level quantitative microbial riskassessment (QMRA) that was undertaken for rotavirus, Salmonellatyphimurium, Campylobacter jejuni, Giardia intestinalis andCryptosporidium parvum, looking at the treatment required to bebelow an acceptable level of risk (10-3) for reuse or dischargeof the greywater. The different exposure scenarios simulatedgroundwater recharge, direct contact, irrigation andrecreational watershowed that a reduction of 0.73.7 log was needed for rotavirus, with the measured level offaecal load in Vibyåsen. The other pathogen of concern wasCampylobacter, where a 2.2 log reduction was needed forgroundwater recharge. The infectious dose of Salmonella is highand the excretion numbers of Giardia cysts and Cryptosporidiumoocysts low, resulting in no treatment requirements for theseorganisms under these circumstances. Pathogen input fromcontaminated food via the kitchen sink had a minor effect onthe microbiological quality of the greywater. Studies on virusoccurrence in greywater as well as validation of the faecalload of greywater at another site would give valuable input forfuture QMRAs.
Greywater treatment efficiency studies, especially on virusremoval, are scarce and more investigations are warranted.Active sludge may not be a suitable technique for greywater dueto the low carbon content in this flow. Chemical precipitationhas the advantage of removing phosphorus as well as virusesefficiently and it is suggested as one possible method fortreating greywater. Otherwise the most common practice forgreywater treatment in Sweden is soil infiltration. However, itis suggested that the recommendations for wastewaterinfiltration also be observed for greywater, despite the lowfaecal load, due to the simulated results on virus reductionneeded.
Key words:greywater, greywater reuse, greywatertreatment, microbial risk assessment, groundwater recharge,irrigation, recreational water, faecal contamination, indicatorbacteria, index organisms, faecal sterols, bacteriophages,enteric pathogens, rotavirus, Salmonella, Campylobacter,Giardia, Cryptosporidium, Legionella
Denis, Achu. "Greywater Treatment systems' assessment." Thesis, Linköping University, Department of Water and Environmental Studies, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9732.
Full textThe purpose of this study was to investigate the various types of onsite greywater treatment facilities available at two housing communities (Hull Street and Moshoeshoe Eco Village) in Kimberley, South Africa. The objective was to undertake a close observation through personal experience of the installations, measure water consumption and greywater produced, do an inventory of household cleaning chemicals and conduct interviews of different stake-holders of the Housing Project to find out their views on greywater and Ecosan issues. The study was conducted between June and August 2006.
The average water consumption per household per day during the study period was 272 L and 170 L in Eco Village and Hull Street respectively. The average greywater produced per household per day was 190 L and 119 L in Eco Village and Hull Street respectively. In Hull Street, the average water consumed and greywater produced per person per day during this study was 51L and 36L respectively. Three main types of treatment systems were installed in the study area; sandfilters, infiltration pits and resorption trenches. The sandfilters were poorly designed and were not functioning properly. The infiltration pits though working they were experiencing problems of poor infiltration and required constant draining and maintenance in many homes, especially those that have high water consumption and produce much greywater. The resorption trenches that make use of aerobic mulch media followed by infiltration had been installed in one house unit and after about 7 months had not presented problems to the user. Close monitoring done on this facility for about 4 weeks showed proper functioning according to its design.
Quite a lot had been done over time to improve on the installations in Hull Street and Eco village. The toilet installations have been exchanged and a number of alternatives to improve on the treated greywater have been attempted. The users and the housing company’s personnel feel one of the major problems being encountered is in treating greywater. Appropriate ways to compost faecal matter are still being sought. Hence use of greywater, urine and composted faeces in urban agriculture by residents is yet to be visible and will need encouragement.
Generally, the residents at Hull Street and Eco Village like the community life, house structures and location. However, they wish that improvement be made in some areas to make life in these areas more comfortable. The residents of both Hull Street and Eco Village expect better greywater treatment facilities. The community in Hull Street requests shopping centres, sport facilities, fence around the area, and taxi services among others. It is important to note that many people did not ask for further improvements on the toilet systems which might indicate they are coping with the urine diversion alternative sanitation.
The user perception on whole was good, but the need for constant attention and maintenance seems to offer a hurdle to the infiltration and sand filter facilities to treat greywater.
Weingärtner, Dorothea Elisabeth [Verfasser], and H. H. [Akademischer Betreuer] Hahn. "Greywater - Characteristics, Biodegradability and Reuse of some Greywaters / Dorothea Elisabeth Weingärtner. Betreuer: H. H. Hahn." Karlsruhe : KIT-Bibliothek, 2013. http://d-nb.info/1045663727/34.
Full textPartanen, Sarah Bonnie. "Greywater reuse in agritourism destinations." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52725.
Full textApplied Science, Faculty of
Civil Engineering, Department of
Graduate
Dinama, Desmond, and s3084691@student rmit edu au. "Greywater Systems: Barriers for Builders." RMIT University. Property, Construction and Project Management, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090119.142338.
Full textWickstead, Frank Anthony. "Quantifying the benefits of greywater systems." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39626.
Full textLaine, Anu Talvikki. "Technologies for greywater recycling in buildings." Thesis, Cranfield University, 2001. http://dspace.lib.cranfield.ac.uk/handle/1826/1205.
Full textAbed, S. N. "Floating treatment wetlands for synthetic greywater remediation." Thesis, University of Salford, 2017. http://usir.salford.ac.uk/42227/.
Full textKaduvinal, Varghese Jeslin. "The effects of the implementation of grey water reuse systems on construction cost and project schedule." Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1447.
Full textMars, Ross. "Using the submergent Triglochin huegelii for domestic greywater treatment." Thesis, Mars, Ross (2001) Using the submergent Triglochin huegelii for domestic greywater treatment. PhD thesis, Murdoch University, 2001. https://researchrepository.murdoch.edu.au/id/eprint/180/.
Full textBooks on the topic "Greywater"
Art, Ludwig, Farwell Larry, and Oasis Biocompatible Products (Firm), eds. Greywater information. Santa Barbara, Calif: Oasis Biocompatible Products, 1991.
Find full textLudwig, Art. Builder's greywater guide: Installation of greywater systems in new construction and remodeling. Santa Barbara, Calif: Oasis Design, 2000.
Find full textCreate an oasis with greywater: Your complete guide to managing greywater in the landscape. 3rd ed. Santa Barbara, CA: Oasis Design, 1998.
Find full textRadin Mohamed, Radin Maya Saphira, Adel Ali Saeed Al-Gheethi, and Amir Hashim Mohd Kassim, eds. Management of Greywater in Developing Countries. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-90269-2.
Full textBranched drain greywater systems: Reliable, economical, sanitary distribution of household greywater to downhill plants without filtration or pumping. Santa Barbara, CA: Oasis Design, 2000.
Find full textMcIlwaine, Stephen. Greywater use in the Middle East: Technical, social, economic and policy issues. Warwickshire, UK: Practical Action Pub., 2010.
Find full textErlenbach, Dave. Planning guide for on-site greywater disposal systems for recreational and administrative sites. San Dimas, Calif: U.S. Dept. of Agriculture, Forest Service, Technology & Development Center, 1995.
Find full textS, Mustow, Great Britain. Drinking Water Inspectorate., and Building Services Research and Information Association., eds. Water conservation: Implications of using recycled greywater and stored rainwater in the UK. Bracknel, Berks: Building Services Research and Information Association, 1997.
Find full textErlenbach, Dave. Planning guide for on-site greywater/wastewater disposal systems for recreational and administrative sites. San Dimas, Calif: U.S. Dept. of Agriculture, Forest Service, Technology & Development Program, 1998.
Find full textErlenbach, Dave. Planning guide for on-site greywater/wastewater disposal systems for recreational and administrative sites. San Dimas, Calif: U.S. Dept. of Agriculture, Forest Service, Technology & Development Program, 1998.
Find full textBook chapters on the topic "Greywater"
Akter, Aysha. "Greywater Water Reuse." In Springer Water, 165–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94643-2_5.
Full textHyde, Katherine, and Matthew Smith. "Greywater Recycling and Reuse." In Urban Pollution, 211–21. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119260493.ch16.
Full textNeubrand, W., J. Heiser, A. Schindler, M. Treberspurg, W. Hofbauer, and H. Czaya. "Greywater Recycling: Field Experience." In Water Resources Quality, 359–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56013-2_21.
Full textNolde, Erwin, and Nolde Partner. "Greywater Recycling in Buildings." In Water Efficiency in Buildings, 169–89. Oxford: John Wiley & Sons, 2013. http://dx.doi.org/10.1002/9781118456613.ch10.
Full textAl-Jayyousi, Odeh Rashed. "10. Greywater use: Islamic perspectives." In Greywater Use in the Middle East, 139–47. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 2010. http://dx.doi.org/10.3362/9781780440224.010.
Full textAl-Gheethi, Adel Ali Saeed, Efaq Ali Noman, Radin Maya Saphira Radin Mohamed, Balkis A. Talip, Amir Hashim Mohd Kassim, and Norli Ismail. "Disinfection Technologies for Household Greywater." In Management of Greywater in Developing Countries, 185–203. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90269-2_10.
Full textAl-Gheethi, Adel Ali Saeed, Efaq Ali Noman, Radin Maya Saphira Radin Mohamed, and Amir Hashim Mohd Kassim. "Determination of Pathogens in Greywater." In Management of Greywater in Developing Countries, 51–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90269-2_3.
Full textNoman, Efaq Ali, Adel Ali Saeed Al-Gheethi, Siti Asmah Bakar, Radin Maya Saphira Radin Mohamed, Balkis A. Talip, and Amir Hashim Mohd Kassim. "Treatment Technologies of Household Greywater." In Management of Greywater in Developing Countries, 125–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90269-2_7.
Full textKumar, P. Naresh, and Arun Kumar Thalla. "Greywater Treatment by Two-Stage Bioreactor." In Climate Impacts on Water Resources in India, 211–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51427-3_18.
Full textHijikata, Nowaki. "On-site Use of Reclaimed Greywater." In Resource-Oriented Agro-sanitation Systems, 243–68. Tokyo: Springer Japan, 2018. http://dx.doi.org/10.1007/978-4-431-56835-3_16.
Full textConference papers on the topic "Greywater"
Shashi Kant, Fouad H Jaber, and Raghupathy Karthikeyan. "Greywater Treatment System Modeling: An approach Using Simulated Greywater." In 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131620367.
Full textRaclavsky, Jaroslav. "GREYWATER RECYCLING IN BUILDINGS." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b41/s17.037.
Full textMcDonald, Arthur Phaoenchoke, Alejandro Montoya, and Fernando Alonso-Marroquin. "Vertical garden for treating greywater." In OFF-GRID TECHNOLOGY WORKSHOP. Author(s), 2017. http://dx.doi.org/10.1063/1.4985557.
Full textBaker, K. H., D. I. Harrow, and B. A. Ritchey. "Tricosan in Greywater: Implications for Reuse." In Low Impact Development International Conference (LID) 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41099(367)90.
Full textMohan, S., and Manthapuri Vineeth. "Phycoremediation of Greywater Using Chlorella vulgaris." In World Environmental and Water Resources Congress 2021. Reston, VA: American Society of Civil Engineers, 2021. http://dx.doi.org/10.1061/9780784483466.067.
Full textThomas, Nimy Mary, and Roshni K. R. "Reduction of Greywater Turbidity by Natural Coagulants." In Proceedings of the Advances in Technology, Engineering and Computing A Multinational Colloquium - 2017. Singapore: Research Publishing Services, 2017. http://dx.doi.org/10.3850/978-981-11-0744-3_c17-19.
Full text"The Potential Of Greywater Reuse In Irrigation." In 21st Century Watershed Technology Conference and Workshop Improving Water Quality and the Environment. American Society of Agricultural and Biological Engineers, 2014. http://dx.doi.org/10.13031/wtcw.2014-018.
Full textSinno, Sarah, Bushra Tatan, Mohamed N. Singer, Khaled Elkersh, and Kazi Fattah. "Recycling of Carwash Greywater Through Electrocoagulation Treatment." In 2022 Advances in Science and Engineering Technology International Conferences (ASET). IEEE, 2022. http://dx.doi.org/10.1109/aset53988.2022.9735125.
Full textWaris, Abdul, and Fadi A. Ghaith. "Design of Solar Powered Greywater Treatment Unit for Residential Applications." In ASME 2022 Power Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/power2022-85201.
Full textLakeh, Reza Baghaei, Daniel Andrade, Kyle Miller, Mohammad Masoud Modabernia, Thuan John Nguyen, Justine Nguyen, Elbon Flanagan, et al. "Design and Testing of a Solar-Driven Wastewater Treatment Unit for Off-Grid Applications." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87090.
Full textReports on the topic "Greywater"
Sahai, Rashmi, Nihar Shah, and Amol Phadke. Addressing Water Consumption of Evaporative Coolers with Greywater. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1223004.
Full textHaering, Chad, Peter Lavigne, Jude Jordan, Josue D az, Don Pickard, Jeff Wallace, Michael Edelson, Max Beila, and John Lupien. Portable System for Field-Feeding Greywater Remediation and Recycling. Fort Belvoir, VA: Defense Technical Information Center, July 2006. http://dx.doi.org/10.21236/ada607016.
Full textZabetakis, Dan, and Bruce P. Gaber. Certain Properties of Laboratory Greywater and Shipboard Non-Oily Wastewater and Permeates. Fort Belvoir, VA: Defense Technical Information Center, May 1997. http://dx.doi.org/10.21236/ada326092.
Full textVavrin, John L. A Quantitative Study of the Viability of Greywater Heat Recovery (GWHR): GWHR Implemented in Barracks and Dining Facilities. Fort Belvoir, VA: Defense Technical Information Center, June 2011. http://dx.doi.org/10.21236/ada559324.
Full textTravé Allepuz, Esther, María Dolores López, and Karen Alvaro Rueda. Greyware Pottery from Sant Miquel de La Vall: some Thoughts about the Distribution and Exchange of Utilitarian Cooking Pots in Medieval Catalonia. Edicions de la Universitat de Lleida, 2017. http://dx.doi.org/10.21001/itma.2017.11.07.
Full text