Academic literature on the topic 'Gravity variations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gravity variations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gravity variations"
Kumari, Pooja, V. Raghunandan, and P. Biswal. "Diurnal variation in aviation significant gravity-dependent and gravity-independent anthropometric parameters." Indian Journal of Aerospace Medicine 65 (August 6, 2021): 5–9. http://dx.doi.org/10.25259/ijasm_61_2020.
Full textLaFehr, T. R. "Standardization in gravity reduction." GEOPHYSICS 56, no. 8 (August 1991): 1170–78. http://dx.doi.org/10.1190/1.1443137.
Full textDumberry, Mathieu. "Gravity variations induced by core flows." Geophysical Journal International 180, no. 2 (February 2010): 635–50. http://dx.doi.org/10.1111/j.1365-246x.2009.04437.x.
Full textKuo, John T., and Sun Yue-Feng. "Modeling gravity variations caused by dilatancies." Tectonophysics 227, no. 1-4 (November 1993): 127–43. http://dx.doi.org/10.1016/0040-1951(93)90091-w.
Full textClemesha, B. R., P. P. Batista, R. A. Buriti da Costa, and N. Schuch. "Seasonal variations in gravity wave activity at three locations in Brazil." Annales Geophysicae 27, no. 3 (March 4, 2009): 1059–65. http://dx.doi.org/10.5194/angeo-27-1059-2009.
Full textJournal, Baghdad Science. "Gravity Field Interpretation for Major Fault Depth Detection in a Region Located SW- Qa’im / Iraq." Baghdad Science Journal 14, no. 3 (September 3, 2017): 625–36. http://dx.doi.org/10.21123/bsj.14.3.625-636.
Full textRuggiero, Matteo Luca. "Perturbations of Keplerian orbits in stationary spherically symmetric spacetimes." International Journal of Modern Physics D 23, no. 05 (April 30, 2014): 1450049. http://dx.doi.org/10.1142/s0218271814500497.
Full textFöldváry, Lorant, Victor Statov, and Nizamatdin Mamutov. "Applicability of GRACE and GRACE-FO for monitoring water mass changes of the Aral Sea and the Caspian Sea." InterCarto. InterGIS 26, no. 2 (2020): 443–53. http://dx.doi.org/10.35595/2414-9179-2020-2-26-443-453.
Full textRidley, Kevin. "Modelling the Gravitational Effects of Random Underground Density Variations." Mathematical Geosciences 52, no. 6 (October 9, 2019): 759–81. http://dx.doi.org/10.1007/s11004-019-09827-3.
Full textGoodkind, John M. "Continuous measurement of nontidal variations of gravity." Journal of Geophysical Research 91, B9 (1986): 9125. http://dx.doi.org/10.1029/jb091ib09p09125.
Full textDissertations / Theses on the topic "Gravity variations"
Alothman, Abdulaziz. "Temporal variations of the earth's gravity field from GPS and SLR." Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405083.
Full textBerkel, Paula. "Multiscale methods for the combined inversion of normal mode and gravity variations." Aachen Shaker, 2009. http://d-nb.info/997085304/04.
Full textAnjasmara, Ira Mutiara. "Spatio-temporal analysis of GRACE gravity field variations using the principal component analysis." Thesis, Curtin University, 2008. http://hdl.handle.net/20.500.11937/957.
Full textAnjasmara, Ira Mutiara. "Spatio-temporal analysis of GRACE gravity field variations using the principal component analysis." Curtin University of Technology, Department of Spatial Sciences, 2008. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=18720.
Full textApart from these well-known signals, this contribution also demonstrates that the PCA is able to reveal longer periodic and a-periodic signal. A prominent example for the latter is the gravity signal of the Sumatra-Andaman earthquake in late 2004. In an attempt to isolate these signals, linear trend and annual signal are removed from the original data and the PCA is once again applied to the reduced data. For a complete overview of these results the most dominant PCA modes for the global and regional gravity field solutions are presented and discussed.
KARIYAWASAM, THARANGA MANOHARI. "Theoretical Analysis of the Temperature Variations and the Krassovsky Ratio for Long Period Gravity Waves." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1212176032.
Full textBerkel, Paula [Verfasser]. "Multiscale Methods for the Combined Inversion of Normal Mode and Gravity Variations / Paula Berkel." Aachen : Shaker, 2009. http://d-nb.info/1159835357/34.
Full textPrevost, Paoline. "Extraction des variations spatio-temporelles du champ de gravité à partir des données de la mission spatiale GRACE : méthodes et applications géophysiques." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE017.
Full textMeasurements of the spatio-temporal variations of Earth’s gravity field recovered from the Gravity Recovery and Climate Experiment (GRACE) mission have led to unprecedented insights into large spatial mass redistribution at secular, seasonal, and sub-seasonal time scales. GRACE solutions from various processing centers, while adopting different processing strategies, result in rather coherent estimates. However, these solutions also exhibit random as well as systematic errors, with specific spatial and temporal patterns in the latter. In order to dampen the noise and enhance the geophysical signals in the GRACE data, several methods have been proposed. Among these, methods based on filtering techniques require a priori assumptions regarding the spatio-temporal structure of the errors. Despite the large effort to improve the quality of GRACE data for always finer geophysical applications, removing noise remains a problematic question as discussed in Chapter 1. In this thesis, we explore an alternative approach, using a spatio-temporal filter, namely the Multichannel Singular Spectrum Analysis (M-SSA) described in Chapter 2. M-SSA is a data-adaptive, multivariate, and non-parametric method that simultaneously exploits the spatial and temporal correlations of geophysical fields to extract common modes of variability. We perform an M-SSA simultaneously on 13 years of GRACE spherical harmonics solutions from five different processing centers. We show that the method allows for the extraction of common modes of variability between solutions, and removal of the solution-specific spatio-temporal errors arising from each processing strategies. In particular, the method filters out efficiently the spurious North-South stripes, most likely caused by aliasing of the imperfect geophysical correction models of known phenomena. In Chapter 3, we compare our GRACE solution to other spherical harmonics solutions and to mass concentration (mascon) solutions which use a priori information on the spatio-temporal pattern of geophysical signals. We also compare performance of our M-SSA GRACE solution with respect to others by predicting surface displacements induced by GRACE-derived mass loading and comparing results with independent displacement data from stations of the Global Navigation Satellite System (GNSS). Finally, in Chapter 4 we discuss the possible application of a refined GRACE solution to answer debated post-glacial rebound questions. More precisely, we focus on separating the post-glacial rebound signal related to past ice melting and the present ice melting in the region of South Georgia
Werth, Susanna. "Calibration of the global hydrological model WGHM with water mass variations from GRACE gravity data." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4173/.
Full textDas Schwerefeld der Erde spiegelt die Verteilung von Massen auf und unter der Erdoberfläche wieder. Umverteilungen von Erd-, Luft- oder Wassermassen auf unserem Planeten sind damit über eine kontinuierliche Vermessung des Erdschwerefeldes beobachtbar. Besonders Satellitenmissionen sind hierfür geeignet, da deren Umlaufbahn durch zeitliche und räumliche Veränderung der Schwerkraft beeinflusst wird. Seit dem Start der Satellitenmission GRACE (Gravity Recovery And Climate Experiment) im Jahr 2002 stellt die Geodäsie daher globale Daten von zeitlichen Veränderungen des Erdschwerefeldes mit hoher Genauigkeit zur Verfügung. Mit diesen Daten lassen sich geophysikalische und klimatologische Massenumverteilungen auf der Erdoberfläche studieren. GRACE liefert damit erstmals Beobachtungen von Variationen des gesamten kontinentalen Wasserspeichers, welche außerordentlich wertvoll für die Analyse des Wasserkreislaufes über große Regionen sind. Die Daten ermöglichen die Überprüfung von großräumigen mathematischen Modellen der Hydrologie, welche den natürlichen Kreislauf des Wassers auf den Kontinenten, vom Zeitpunkt des Niederschlags bis zum Abfluss in die Ozeane, nachvollziehbar machen. Das verbesserte Verständnis über Transport- und Speicherprozesse von Süßwasser ist für genauere Vorhersagen über zukünftige Wasserverfügbarkeit oder potentielle Naturkatastrophen, wie z.B. Überschwemmungen, von enormer Bedeutung. Ein globales Modell, welches die wichtigsten Komponenten des Wasserkreislaufes (Boden, Schnee, Interzeption, Oberflächen- und Grundwasser) berechnet, ist das "WaterGAP Global Hydrology Model" (WGHM). Vergleiche von berechneten und beobachteten Wassermassenvariationen weisen bisher insbesondere in der jährlichen Amplitude deutliche Differenzen auf. Sehr große Unterschiede zwischen verschiedenen hydrologischen Modellen betonen die Notwendigkeit, deren Berechnungen zu verbessern. Zu diesem Zweck verbindet GRACE die Wissenschaftsbereiche der Geodäsie und der Hydrologie. Diese Verknüpfung verlangt von beiden Seiten die Entwicklung geeigneter Methoden zur Datenintegration, welche die Hauptaufgaben dieser Arbeit darstellten. Dabei handelt es sich insbesondere um die Auswertung der GRACE-Daten mit möglichst hoher Genauigkeit sowie um die Entwicklung einer Strategie zur Integration von GRACE Daten in das hydrologische Modell. Mit Hilfe von GRACE wurde das Modell neu kalbriert, d.h. Parameter im Modell so verändert, dass die hydrologischen Berechnungen besser mit den GRACE Beobachtungen übereinstimmen. Dabei kam ein multikriterieller Kalibrieralgorithmus zur Anwendung mit dem neben GRACE-Daten auch Abflussmessungen einbezogen werden konnten. Die Modellkalibierung wurde weltweit für die 28 größten Flusseinzugsgebiete durchgeführt. In den meisten Fällen konnte eine verbesserte Berechnung von Wassermassenvariationen und Abflüssen erreicht werden. Hieraus ergeben sich, z.B. für tropische Regionen, größere saisonale Variationen. Die Ergebnisse führen zu einem verbesserten Verständnis hydrologischer Prozesse. Zum Schluss konnte die Robustheit der Ergebnisse gegenüber Fehlern in GRACE- und Abflussmessungen erfolgreich getestet werden. Nach den wichtigsten Schlussfolgerungen, die aus den Ergebnissen abgeleitet werden konnten, sind nicht nur Bodenfeuchte- und Schneespeicher, sondern auch Grundwasser- und Oberflächenwasserspeicher in Vergleiche von berechneten und GRACE-beobachteten Wassermassenvariationen einzubeziehen. Weiterhin sind neben Abflussmessungen zusätzlich Beobachtungen von weiteren hydrologischen Prozessen notwendig, um die Ergebnisse mit größerer Genauigkeit überprüfen zu können. Die Ergebnisse dieser Arbeit heben hervor, wie wertvoll GRACE-Daten für die großräumige Hydrologie sind und eröffnen eine Methode zur Verbesserung unseres Verständnisses des globalen Wasserkreislaufes.
Lorant, Foldvary. "Geoid Height Variations Caused by Geophysical Fluids and Their Possible Recovery by Future Satellite Gravity Missions." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/150837.
Full textElsaka, Basem [Verfasser]. "Simulated satellite formation flights for detecting the temporal variations of the Earth's gravity field / Basem Elsaka." Bonn : Universitäts- und Landesbibliothek Bonn, 2019. http://d-nb.info/1199005320/34.
Full textBooks on the topic "Gravity variations"
Rapp, Richard H., Anny A. Cazenave, and R. Steven Nerem, eds. Global Gravity Field and Its Temporal Variations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61140-7.
Full textH, Rapp Richard, Cazenave Anny, and Nerem R. Steven 1960-, eds. Global gravity field and its temporal variations: Symposium no. 116, Boulder, CO, USA, July 12, 1995. Berlin: Springer, 1996.
Find full textToh, Hiroaki. Anomalies of geomagnetic and geoelectric variations at the seafloor around the Izu-Ogasawara Arc. Nakano-ku, Tokyo: Ocean Research Institute, University of Tokyo, 1995.
Find full textLangenheim, Victoria E. Gravity data collected along the Los Angeles Regional Seismic Experiment (LARSE) and preliminary model of regional density variations in basement rocks, southern California. [Menlo Park, CA]: U.S. Geological Survey, 1996.
Find full textSolomon, Sean C. Inversion of gravity and bathymetry in oceanic regions for long-wavelength variations in upper mantle temperature and composition: Final report to the National Aeronautics and Space Administration on NASA grant NAGW-3036. [Washington, DC]: The Administration, 1993.
Find full textSoveshchanie, Akademii͡a nauk SSSR Mezhduvedomstvennyĭ geofizicheskiĭ komitet Komissii͡a po izuchenii͡u sily ti͡azhesti. Povtornye gravimetricheskie nabli͡udenii͡a: Sbornik nauchnykh trudov soveshchanii͡a Komissii po izuchenii͡u sily ti͡azhesti (Moskva, mart 1986 g.). Moskva: Akademii͡a nauk SSSR, Mezhduvedomstvennyĭ geofizicheskiĭ kom-t pri Prezidiume AN SSSR, 1988.
Find full textD, Bulanzhe I͡U, Veselov K. E, Faĭtelʹson A. Sh, Kriger E. P, and Akademii͡a nauk SSSR. Mezhduvedomstvennyĭ geofizicheskiĭ komitet., eds. Povtornye gravimetricheskie nabli͡udenii͡a: Sbornik nauchnykh trudov. Moskva: Akademii͡a nauk SSSR, Mezhduvedomstvennyĭ geofizicheskiĭ kom-t pri Prezidiume AN SSSR, 1986.
Find full textVecchiato, Alberto. Variational Approach to Gravity Field Theories. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51211-2.
Full textBlaha, Stephen. The origin of the standard model: The genesis of four quark and lepton species, parity violation, the electro weak sector, color SU(3), three visible generations of fermions, and one generation of dark matter with dark energy ; Quantum theory of the third kind : a new type of divergence-free quantum field theory supporting a unified standard model of elementary particles and quantum gravity based on a new method in the calculus of variations. Auburn, NH: Pingree-Hill Publishing, 2006.
Find full textCenter, Lewis Research, ed. Convective instability of a gravity modulated fluid layer with surface tension variation. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textBook chapters on the topic "Gravity variations"
Kopaev, A. "Secular Gravity Variations." In Geodesy and Physics of the Earth, 213–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78149-0_51.
Full textWollard, George P. "Regional Variations in Gravity." In The Earth's Crust and Upper Mantle, 320–41. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm013p0320.
Full textAraneda, Manuel, and M. Soledad Avendaño. "Gravity Variations in Central Chile." In Recent Geodetic and Gravimetric Research in Latin America, 176–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-88055-1_14.
Full textMelchior, P., T. M. van Dam, O. Francis, and N. d'Oreye. "About Time Variations of Gravity." In Selected Papers From Volume 32 of Vychislitel'naya Seysmologiya, 198–207. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/cs007p0198.
Full textKuo, John T., and Maurice Ewing. "Spatial Variations of Tidal Gravity." In The Earth Beneath the Continents, 595–610. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm010p0595.
Full textDemirel, H., and C. Gerstenecker. "Secular Gravity Variations Along the North Anatolian Fault." In Gravity, Gradiometry and Gravimetry, 163–69. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3404-3_19.
Full textDimitrijevic, Ivan, Branko Dragovich, Zoran Rakic, and Jelena Stankovic. "Variations of Infinite Derivative Modified Gravity." In Springer Proceedings in Mathematics & Statistics, 91–111. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2715-5_5.
Full textBurša, M., Z. Martinec, and K. Pěč. "Gravity Field of Phobos and its Long Term Variations." In Gravity, Gradiometry and Gravimetry, 119–25. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3404-3_14.
Full textTiwari, Virendra M., and Jacques Hinderer. "Gravity Field, Time Variations from Surface Measurements." In Encyclopedia of Solid Earth Geophysics, 1–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_236-1.
Full textCazenave, A., J. L. Chen, and G. Ramillien. "Gravity Field, Temporal Variations from Space Techniques." In Encyclopedia of Solid Earth Geophysics, 1–6. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10475-7_96-1.
Full textConference papers on the topic "Gravity variations"
Bronnikova, K. A., and M. V. Skvortsova. "Variations of fundamental constants and multidimensional gravity." In Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814759816_0005.
Full textCogbill, Allen H. "Gravity variations observed from a detailed gravity survey at the NTS cloud chamber." In SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 2002. http://dx.doi.org/10.1190/1.1817379.
Full textRudenko, K. V., P. S. Solenov, and V. N. Rudenko. "Detection of slow gravity field variations with GW-interferometers." In Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814759816_0021.
Full textBlecha, Vratislav. "Corrections for time variations of gravity in microgravity surveys." In SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 2002. http://dx.doi.org/10.1190/1.1817371.
Full textPreusse, Peter, Manfred Ern, Klaus U. Grossmann, and John L. Mergenthaler. "Seasonal variations of gravity wave variance inferred from CLAES." In Remote Sensing, edited by Klaus Schaefer, Adolfo Comeron, Michel R. Carleer, and Richard H. Picard. SPIE, 2004. http://dx.doi.org/10.1117/12.514171.
Full textKarmakar, D., J. Bhattacharjee, and T. Sahoo. "Flexural Gravity Wave Scattering Due to Variations in Bottom Topography." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79191.
Full textLehn, Waldemar H., Wayne K. Silvester, and David M. Fraser. "Mirages with Atmospheric Gravity Waves." In Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/lcoa.1993.thb.3.
Full textJing Zhang, Lingyu Yang, and Gongzhang Shen. "Modeling and attitude control of aircraft with center of gravity variations." In 2009 IEEE Aerospace conference. IEEE, 2009. http://dx.doi.org/10.1109/aero.2009.4839615.
Full textAnder, Mark E., and Tom Summers. "LaCoste & Romberg gravity meter: Tares, drift, and temporal mass variations." In SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, 1997. http://dx.doi.org/10.1190/1.1885943.
Full textCherniakov, Sergei M., Valentin C. Roldugin, and Alexey V. Roldugin. "Airglow intensity variations affected by acoustic-gravity waves at high latitudes." In XXII International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, edited by Gennadii G. Matvienko and Oleg A. Romanovskii. SPIE, 2016. http://dx.doi.org/10.1117/12.2242778.
Full textReports on the topic "Gravity variations"
Harris, R. N., and D. A. Ponce. High-precision gravity network to monitor temporal variations in gravity across Yucca Mountain, Nevada. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/60645.
Full textLambert, A., J. Henton, S. Mazzotti, J. Huang, T S James, N. Courtier, and G. van der Kamp. Postglacial rebound and total water storage variations in the Nelson River drainage basin: a gravity-GPS study. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292189.
Full textMaceira, Monica, Robert D. van der Hilst, and Haijiang Zhang. 3D Variations in Seismic Wavespeed and Mass Density in the Crust and Upper Mantle of SE Asia from Joint Inversion of Seismic and Gravity Data. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1134770.
Full textAlpay, S., S. Day, R. McNeil, M. McCurdy, and P. Gammon. Variations on a theme of gravity coring: K-B, Glew and TechOps corers with core extrusion and high-resolution vertical sectioning of shallow aquatic sediments. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2011. http://dx.doi.org/10.4095/288037.
Full textAlpay, S., S. Day, R. McNeil, M. McCurdy, and P. Gammon. Variations on a theme of gravity coring: K-B, Glew and TechOps corers with core extrusion and high-resolution vertical sectioning of shallow aquatic sediments. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2011. http://dx.doi.org/10.4095/288046.
Full textWiemann, Michael C., and G. Bruce Williamson. Wood Specific Gravity Variation with Height and Its Implications for Biomass Estimation. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2014. http://dx.doi.org/10.2737/fpl-rp-677.
Full textBundy, Mark L. Variation in Gravity Droop Due to Gun Elevation: A Small but Predictable Source of Aiming Inaccuracy. Fort Belvoir, VA: Defense Technical Information Center, February 1994. http://dx.doi.org/10.21236/ada276518.
Full text